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Abstract

We propose fast algorithms for computing composed products and composed sums,
as well as diamond products of univariate polynomials. These operations correspond
to special multivariate resultants, that we compute using power sums of roots of
polynomials, by means of their generating series.

1 Introduction

Let k be a field and let f and g be monic polynomials in k[T ], of degrees m
and n respectively. We are interested in computing efficiently their composed
sum f ⊕ g and composed product f ⊗ g. These are polynomials defined by

f ⊕ g =
∏

α,β

(
T − (α + β)

)
and f ⊗ g =

∏

α,β

(T − αβ),

the products running over all the roots α of f and β of g, counted with
multiplicities, in an algebraic closure k of k.

More generally, given a bivariate polynomial H ∈ k[X, Y ], of degree less
than m in X and less than n in Y , we study the fast computation of the
diamond product f ⋄H g, which is the polynomial of degree D = mn defined by

f ⋄H g =
∏

α,β

(
T −H(α, β)

)
, (1)

the product running over all the roots of f and g, counted with multiplicities.
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The operation ⋄H was introduced by Brawley and Carlitz (1987). They showed
the following property: if k is finite, then for large families of polynomials H ,
the polynomial f ⋄H g is irreducible if and only if both f and g are irreducible
and their degrees are coprime. Thus, diamond products are used for construct-
ing irreducible polynomials of large degree over finite fields, see (Brawley et al.,
1999; Shoup, 1990, 1994). They occur as subroutines in many other algorithms,
including computations with algebraic numbers, symbolic summation and the
study of linear recurrent sequences. We present these applications in Section 5.

The polynomials f ⊕ g and f ⊗ g can be expressed by means of bivariate
resultants, see for instance (Loos, 1983):

(f⊕g)(T ) = ResX(f(T −X), g(X)), (f⊗g)(T ) = ResX(Xmf(T/X), g(X)).
(2)

A similar formula also holds for the diamond product f ⋄H g:

(f ⋄H g)(T ) = ResX

(
ResY

(
T −H(X, Y ), f(Y )

)
, g(X)

)
. (3)

Formulae (2) and (3) show that f ⊗ g, f ⊕ g and f ⋄H g have coefficients
in k. They also provide a way of computing these polynomials. Still, the com-
plexity of the resulting algorithms is not satisfactory. For instance, if f and g
have degrees of order

√
D, the fastest existing algorithms for bivariate resul-

tants (Schwartz, 1980; Lickteig and Roy, 1996; Reischert, 1997; Lickteig and
Roy, 2001) based on Formulae (2) have complexity of order Õ(D M(

√
D)) field

operations, while the one exploiting Formula (3) has complexity Õ(D2
M(
√

D)).

In this article the symbol Õ indicates the omission of logarithmic terms, while
M(d) stands for the number of operations in k required to perform the product
of two polynomials of degree at most d. To prove complexity estimates, we
implicitly use the inequality M(d1) + M(d2) ≤ M(d1 + d2) for all positive
integers d1, d2. Using algorithms based on Fast Fourier Transform (Schönhage
and Strassen, 1971; Schönhage, 1977; Cantor and Kaltofen, 1991), see also (von
zur Gathen and Gerhard, 1999, Section 8.2), M(d) can be taken in Õ(d). We
also use a function denoted by M(n, d) which represents the complexity of
multiplication of two power series in n variables and truncated at order d with
respect to each variable. By a recent algorithm by Schost (2005), M(n, d) is in
O(n2

M(d)dn log(d)). Using FFT yields M(n, d) = Õ(n2dn+1), which is almost
optimal with respect to the size dn of the support of the power series.

Over fields of characteristic zero, an algorithm for computing composed sums
and products was given by Dvornicich and Traverso (1989). The key idea is
to represent polynomials by the power sums of their roots. We will call this
the Newton representation. Dvornicich and Traverso gave formulae expressing
f⊕g and f⊗g in terms of f and g in Newton representation. However, a direct
application of their formulae, combined with the use of Newton formulae for
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conversions between Newton representation and the monomial one, lead to
algorithms of complexity O(D2) (which is slower than the resultant method).

Brawley et al. (1999) proposed several algorithmic solutions for the composed
product and sum over a finite field. Apart from the resultant method described
above, their most efficient solution has quadratic complexity in the degree D
of the output and works only under the assumption of an irreducible out-
put. They also considered the problem of computing the diamond product.
Their algorithm works over a finite field with q elements and has complexity
Õ(D log(q) + D3), if f and g have degrees of order

√
D.

Our contribution

Our aim is to show that a better complexity can be achieved, in any char-
acteristic. One of the keys of our approach is the use of fast algorithms due
to Schönhage (1982) and Pan (2000) for converting a polynomial from the clas-
sical monomial representation to its Newton representation, and backwards.

Another crucial ingredient is our reformulation, in terms of generating series,
of some formulae by Dvornicich and Traverso (1989) expressing f⊗g and f⊕g
in their Newton representation. This approach enables us to give nearly op-
timal algorithms for the composed product and the composed sum, provided
the characteristic of k is zero or large enough. Our algorithms use mainly mul-
tiplications, inversions and exponentiations of power series, for which nearly
optimal algorithms are known (Sieveking, 1972; Kung, 1974; Brent, 1976), see
also (Henrici, 1986, Section 13.9; Bini and Pan, 1994; Bürgisser et al., 1997,
Chapter 2; von zur Gathen and Gerhard, 1999, Section 9.1). Throughout this
article, “nearly optimal” means that the number of operations in k is linear
in the size of the result, up to logarithmic factors.

Our algorithm for the composed product can be slightly modified so as to work
in small characteristic as well, but the situation is different for the composed
sum. By introducing a new combinatorial idea, we reduce the computation of
composed sums in small characteristic p to the multiplication of two multi-
variate power series at order less than p in each variable. Combined with the
algorithm given by Schost (2005) for multiplying multivariate power series
with respect to partial truncation, this yields a nearly optimal algorithm for
composed sums in small characteristic.

We also propose a fast algorithm for computing the diamond product. The
heart of our method consists in relating the Newton representation of f ⋄H g to
the traces of multiplication by successive powers of H in the quotient algebra
Q = k[X, Y ]/(f(X), g(Y )). This way, the computation of f⋄Hg mainly reduces
to solving the power projection problem in Q: given an element x ∈ Q, compute
the sequence ℓ(1), ℓ(x), . . . , ℓ(xN), where ℓ is a linear form on Q and N ≥ 1.
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For the latter problem, we propose an algorithm using O
(√

D(M(D) + Dω/2)
)

operations in k. In this article ω denotes a feasible exponent of matrix mul-
tiplication over the field k, that is, a positive real number such that any two
n× n matrices over k can be multiplied using O(nω) operations in k.

The same complexity result for the bivariate power projection has already been
given (in a slightly more general context) by Shoup (1994); see also (Kaltofen,
2000). Shoup’s result is an existence theorem; we build upon his idea and we
exhibit an explicit algorithm with this complexity. We refer to Section 4 for
historical notes on this subject.

Combining our algorithm for the power projection problem in the quotient
k[X, Y ]/(f(X), g(Y )) with the fast conversion techniques mentioned above
we obtain an algorithm for the diamond product whose complexity is in
O
(√

D(M(D) + Dω/2)
)
. Plugging the best upper bound known to this date

ω ≈ 2.376 by Coppersmith and Winograd (1990), and using Fast Fourier
Transform for the power series multiplication, we infer that the complexity of
our algorithm is in O(D1.688) 1 . For the time being, this complexity result has
only a theoretical relevance, since the algorithm corresponding to ω ≈ 2.376 is
of no practical use. In contrast, using Strassen’s (1969) algorithm for matrix
multiplication, with exponent log2(7) ≃ 2.807, yields a practical O(D1.904) al-
gorithm for the diamond product, whose experimental success is reported in
Section 4. Even using naive matrix multiplication (ω = 3), our algorithm is
faster than previously known algorithms roughly by a factor of

√
D.

We encapsulate our complexity results in the following theorem. Our algo-
rithms for the composed sums and products and for the diamond product
work under no additional assumption if the base field has characteristic zero
or large enough. Over fields of small positive characteristic, they require some
mild assumptions, which are satisfied, for instance, if the output is squarefree.
If these assumptions are not satisfied, then only a divisor of the correct result
is returned.

Theorem 1 Let k be a field of characteristic p and let f and g be two monic
polynomials in k[T ] of degrees m and n. Let D = mn.

(1) If p = 0 or p > D, then the composed operations f ⊗ g and f ⊕ g can be
performed using O(M(D)) operations in k.

(2) If p < D is larger than all the multiplicities of the roots of f⊗g, then f⊗g

can be computed in O
(
p M

(
D
p

)
log

(
D
p

)
+ M(D)

)
operations in k.

(3) If p < D is larger than all the multiplicities of the roots of f⊕g, then f⊕g

can be computed in O
(
p M

(
D
p

)
log

(
D
p

)
+ M

(
log(D)
log(p)

, p
))

operations in k.

1 The exponent 1.688 may be slightly improved to 1.667 by using the faster algo-
rithms for rectangular matrix multiplication by Huang and Pan (1998).
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Let H ∈ k[X, Y ] have degree less than m in X and degree less than n in Y .

(4) If p is zero or larger than all the multiplicities of the roots of f ⋄H g,

then f ⋄H g can be computed in O
(√

D
(
M(D) + Dω/2

))
operations in k.

Taking M(D) ∈ Õ(D) and M(n, d) ∈ Õ(n2dn+1) justifies our claims on the
near optimality of our algorithms for the composed product and sum.

Outline of the article

In Section 2, we recall known fast algorithms for the translation between
classical and Newton representation of univariate polynomials. In Section 3 we
use these results to compute the composed product and sum, and we present
the experimental behavior of the resulting algorithms. In Section 4 we study
the fast computation of the diamond product f ⋄H g and provide experimental
results. Section 5 presents applications of composed operations and describes
two related questions: computation of resolvents and Graeffe polynomials.

Notation

– Ns(h) denotes the sth power sum of the roots of a polynomial h ∈ k[T ], i.e.,
the sum

∑
γ γs, taken over all the roots of h in k, counted with multiplicities.

– The Newton series of h is the power series Newton(h) =
∑

s≥0 Ns(h)T s.
– If P is a polynomial in k[T ] of degree at most n, we write rev(n, P ) for its

nth reversal, namely for the polynomial P
(

1
T

)
T n.

– For h > l ≥ 0, we use the operations ⌈.⌉h, ⌊.⌋l and [.]hl on P =
∑n

i=0 piT
i:

⌈P ⌉h =
h−1∑

i=0

piT
i, ⌊P ⌋l =

n−l∑

i=0

pi+lT
i, [P ]hl =

h−l−1∑

i=0

pi+lT
i.

– Given a power series S =
∑

i≥0 siT
i ∈ k[[T ]] and an integer m ≥ 1, we write

S mod T m for the truncated power series
∑m−1

i≥0 siT
i.

– ⌊x⌋ and ⌈x⌉ respectively denote the largest integer less than or equal to x,
and the smallest integer larger than or equal to x.

– For a k-vector space V , we denote by V̂ its dual, that is, the k-vector space
of k-linear maps ℓ : V → k.

2 Fast Conversion between Polynomials and Power Sums

As mentioned in the introduction, the speed-up that we obtain in computing
composed and diamond operations is based on the use of an alternative encod-
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ing for univariate polynomials, the Newton representation by power sums of
roots. The use of the Newton representation for polynomials is classical. It is
already present in (Le Verrier, 1840), and also in (Lascoux (1986); Dvornicich
and Traverso (1989); Valibouze (1989); Giusti et al. (1989); Thiong Ly (1989);
Schönhage (1993); González-Vega and Trujillo (1995a; 1995b); González-López
and González-Vega (1998); Rouillier (1999); van Hoeij (2002); Briand and
González-Vega (2002)). Pushing further an idea of (Dvornicich and Traverso,
1989), we show that Newton representation provides the appropriate data
structure for the efficient computation of composed and diamond operations.

In characteristic zero or larger than D, any polynomial of degree D is uniquely
determined by the first D power sums of its roots. Newton formulae provide a
straightforward algorithm to perform these conversions, but its complexity is
quadratic in D. Fortunately, faster conversion methods exist. We thus recall
algorithms due to Schönhage and Pan in this section; they will be used as basic
algorithmic bricks in the rest of our article. For the sake of completeness, we
collected them under the shape of ready-to-implement pseudo-code.

The structure of this section is as follows: we begin by recalling an algorithm for
the direct conversion (from a polynomial to its Newton representation), which
works in arbitrary characteristic. Next, we deal with the inverse conversion in
characteristic zero or large enough. We conclude the section by presenting an
algorithm for the inverse conversion in the positive characteristic setting.

2.1 From monomial to Newton representation

Schönhage (1982) was the first to propose an algorithm for the translation
from monomial to Newton representation. It is based on the following result.

Lemma 1 Let h be a monic polynomial in k[T ], of degree D. Then, the series
Newton(h) is rational; moreover, the following formula holds:

Newton(h) =
rev(D − 1, h′)

rev(D, h)
.

Proof. Let γ1, . . . , γD be the roots of h in k. Since h =
∏D

i=1(T − γi), we have

Newton(h) =
∑

s≥0

( D∑

i=1

γs
i

)
T s =

D∑

i=1

(∑

s≥0

γs
i T

s
)

=
D∑

i=1

1

1− γiT
=

rev(D − 1, h′)

rev(D, h)
.

�

Proposition 1 If h ∈ k[T ] has degree D and if N ≥ D, then the first N

power sums of the roots of h can be computed in O
(

N
D

M(D)
)

operations in k.
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Proof. By Lemma 1, it is sufficient to prove that if a polynomial A has degree
at most D−1 and if a polynomial B has degree D, then the first N ≥ D coef-
ficients of the rational series A/B can be computed within the announced run-
ning time bound. The idea is to proceed by slices of size D. We first compute
the first D coefficients of 1/B, using the Sieveking-Kung algorithm (Sieveking,
1972; Kung, 1974), for a cost of O(M(D)) operations in k. Denote B0 the cor-
responding polynomial, of degree D− 1. We let C0 = ⌈AB0⌉D and recursively
define the polynomials

Cj+1 = −
⌈
⌊BCj⌋D B0

⌉D
, for 0 ≤ j ≤ ⌊N/D⌋ .

Then, it is easy to check that A
B

= C0 + TDC1 + T 2DC2 + . . . and the result
follows. �

The corresponding algorithm is summarized in Figure 1.

Input: a polynomial h of degree D.
Output: Newton(h) at precision N ≥ D.

A← rev(D − 1, h′)
B ← rev(D, h)

B0 ←
⌈

1
B

⌉D

C0 ← ⌈AB0⌉D
l ←

⌊
N
D

⌋

for j from 0 to l do

Cj+1 ← −
⌈
⌊BCj⌋D B0

⌉D

return
∑l

i=0 CiT
Di + O(TN)

Fig. 1. Computing the Newton series of a polynomial

2.2 From Newton representation to monomial representation

The converse direction is more difficult to handle: while in characteristic zero
the Newton formulae give a one-to-one correspondence between power sums
and elementary symmetric polynomials, in the positive characteristic case dis-
tinct monic polynomials of the same degree may have equal power sums of
roots (e.g., T 2 and T 2 + 1 over F2). Consequently, the treatment of this ques-
tion should take into account the characteristic of the base field. Many efforts
have been made to bypass this difficulty, see Subsection 2.2.2 for historical
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details. The content of the next subsections is encapsulated in the following
proposition.

Proposition 2 (Schönhage (1982); Pan (2000)) Let h be a polynomial
of degree D in k[T ].

(1) If k has characteristic zero or greater than D, then h can be computed
from the first D power sums of its roots within O(M(D)) operations in k.

(2) Suppose that k has positive characteristic p and that all the roots of h have
multiplicities less than p. Then, the number of operations in k needed to
compute the polynomial h from the first 2D power sums of its roots is

O

(
M(D) + p M

(
D

p

)
log

(
D

p

))
.

In Subsection 2.2.1 we treat the case of characteristic zero or large enough,
since the ideas involved in that case are important and help understand the
extension to the arbitrary positive characteristic case. The latter case is ad-
dressed in Subsection 2.2.2, where technical details are intentionally omitted.
Instead we preferred to write down complete pseudo-code, to simplify the task
of reading Pan’s original article (Pan, 2000).

2.2.1 The case of characteristic zero or large enough

The exponential of a power series F of positive valuation over a field k is
given by

exp(F ) =





∑
s≥0 F s/s!, if char(k) = 0,

∑p−1
s=0 F s/s!, if char(k) = p > 0.

The next result is a converse of Lemma 1.

Lemma 2 Let h be a monic polynomial of degree D in k[T ], where k is a field
of characteristic zero or larger than D. Then the following formula holds:

rev(D, h) = exp
(∫

1

T
·
(
D − Newton(h)

))
.

Proof. Let γ1, . . . , γD be the roots of h in k. By Lemma 1, it follows that:

rev(D, h)′

rev(D, h)
=
∑

i

−γi

1− γiT
= −

∑

s≥0

(∑

i

γs+1
i

)
T s (4)

and, by definition, the right-hand side equals
(
D −Newton(h)

)
/T .
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As one can easily verify, for P ∈ k[T ] with constant coefficient 1, the formula
P = exp(

∫
P ′/P ) holds as soon as k has characteristic zero. The same equality

remains valid modulo T p if p = char(k) is larger than the degree of P . By
applying this fact to P = rev(D, h), we conclude the proof of the lemma. �

Corollary 1 A monic polynomial h of degree D over a field of characteristic
zero or larger than D can be computed from the first D power sums of its roots
within O(M(D)) base field operations.

Proof. The primitive of the power series (D−Newton(h))/T can be computed
at precision D in linear time. By Lemma 2, exponentiating the latter series
gives the polynomial rev(D, h). This exponential can be computed within
O(M(D)) field operations, (Brent, 1976). Finally, we recover the polynomial

h = rev
(
D, rev(D, h)

)
. �

The first part of Proposition 2 is now proved. The resulting algorithm is pre-
sented in Figure 2. For a polynomial P , we denote by Coeff(P, i) the coefficient
of T i in P . We use a variant of the algorithm in (Brent, 1976) for power series
exponential based on Newton iteration, but whose complexity has a better
constant factor and which is similar to that of (Pan, 1997, Appendix A).

Input: the first D terms of Newton(h).
Output: the polynomial h.

S ← (Newton(h)−D)/T
R← 1− Coeff(S, 0)T
n← 2
while n ≤ D do

M ′ ← −
⌈

R′

R
+ S

⌉2n−1

M ← 1 +
∑

i Coeff(M
′, i)T i

i

R← ⌈RM⌉2n

n← 2n

R← ⌈R⌉D+1

return rev(D, R)

Fig. 2. Recovering a polynomial from its Newton series in characteristic zero

2.2.2 The small positive characteristic case – the Schönhage-Pan algorithm

The conversion from Newton sums to coefficients in small characteristic is a
more subtle problem. Historically, two kinds of approaches have been pro-
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posed 2 : on the one hand, the techniques of recursive triangulation originated
in (Kaltofen and Pan, 1992, 1994), on the other hand, those using fundamental
sets of power sums of (Schönhage, 1993; Pan, 1996, 2000). The best currently
known solution is that of Pan (2000), which inherits ideas from Schönhage
(1993) and from the algorithmic improvements in (Pan, 1996, 1997). The first
approach was designed for parallel computations and its sequential complexity
is not competitive with that of the second one; we thus focus on the latter.

Let h be a polynomial of degree D over a field of characteristic 0 < p < D.
To recover h from its first 2D power sums, Schönhage (1993) proposed the
following method:

(1) Compute a polynomial g = T d +g1T
d−1+ · · ·+gd of degree d > 2D whose

first d power sums equal those of h and such that gip = 0 for i ≥ 1.
(2) Starting from g, recover the polynomial h.

Intuitively, the polynomial g is obtained by applying to h those Newton for-
mulae which do not involve division by p and setting the other coefficients
to zero. This can be performed using O(D2) operations in k. In (Schönhage,
1993) this stage was completed using a reduction to a triangular linear system

of size ⌊D/p⌋, for a cost of O
(
M(D) + (D/p)2

)
operations in k. Subsequently,

Pan (1996) gave an improved solution for the computation of g, by adapting
Newton’s iteration in the algorithm of Corollary 1 to the positive characteristic
case, leading to a cost of O (M(D)) operations in k for this first stage.

Concerning the second stage, Schönhage (1993) proposed a solution based on
the resolution of a linear system of equations of size ⌊D/p⌋. This step was
accelerated by Pan (1997), who showed that it amounts to solving p− 1 Padé
approximation problems of sizes at most (D/p, D/p).

For technical details, we refer to the original articles (Schönhage, 1993; Pan,
1996, 1997, 2000). We give in Figure 3 the algorithm we extracted from (Pan,
2000). This algorithm takes as input the first 2D terms of the series Newton(h)
and returns the polynomial h. We use the notation lcm(fi) for the least com-
mon multiple of a family of polynomials (fi) and Pade(S, a, b) for the Padé
approximant (A, B) of a power series (polynomial) S, that is the (unique) pair
of polynomials A and B of minimal degrees such that B(0) = 1 and such that
the following holds:

A− BS = 0 mod T a+b+1, deg(A) ≤ a, deg(B) ≤ b.

A conceptually simpler algorithm was given in (Bostan et al., 2002, Lemma 3).

2 A third approach, specific to finite fields, has been recently developed by Bostan
et al. (2005), but the input required by that algorithm is different.
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The Schönhage-Pan algorithm

Input: the first 2D terms of Newton(h).
Output: the polynomial h.

S ← (Newton(h)−D)/T
R← 1− Coeff(S, 0)T
n← 2
while n ≤ 2D do

M ′ ← −
⌈

R′

R + S
⌉2n−1

M ← 1 +
∑

p 6 | i Coeff(M
′, i)T i

i

g ← ⌊2n−1
p ⌋

if gp > n then

A← [R]gp−n+1
1 [M ]gp

n

M ←M −∑g
i=⌈n

p
⌉ Coeff(A, ip − n− 1)T ip

R← ⌈RM⌉2n

n← 2n
for i from 1 to p− 1 do

di ←
⌊

D−i
p

⌋

Qi ←
∑d+di

j=0 Coeff(R, jp + i)T j

(Ai, Bi)← Pade(Qi, di, d)
H0 ← lcm(Bi)

Hi ← ⌈QiH0⌉di+1

H ← H0(T
p) +

∑p−1
i=1 Hi(T

p)T i

return rev(D,H)

Fig. 3. Recovering a monic polynomial from its Newton series in small characteristic

It has complexity O(M(D) log(D)), and, for fixed p, it differs from that of the
Schönhage-Pan algorithm only by a constant factor.

3 Two Useful Resultants that Can Be Computed Fast

Designing nearly optimal algorithms for general bivariate resultants is still
an open problem, see (von zur Gathen and Gerhard, 1999, Research prob-
lem 11.10). The results of the preceding section enable us to give such algo-
rithms for the particular cases of the composed product f ⊗ g and composed
sum f⊕g. Our algorithms are based on formulae expressing the Newton series
of f ⊗ g and of f ⊕ g in terms of those of f and g.
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3.1 Computing the composed product

Lemma 3 Let f and g be two polynomials in k[T ]. Then:

Newton(f ⊗ g) = Newton(f)⊙Newton(g),

where ⊙ denotes the Hadamard (term-wise) product of power series.

Proof. For s ≥ 0, the sth power sum of the roots of f ⊗ g is
∑

α,β(αβ)s, the
sum running over all the roots α of f and β of g. This sum can be rewritten
as
(∑

α αs
)
·
(∑

β βs
)
, which is the product of the sth power sums of the roots

of f and of g. This proves that the series Newton(f ⊗ g) is the Hadamard
product of Newton(f) and Newton(g). �

As a corollary, we obtain the following algorithm for f ⊗ g. Given two monic
polynomials f and g of degrees m and n, we first compute the power series
Newton(f) and Newton(g) up to precision D = mn. Using Proposition 1, this

step requires O
(

D
m

M(m) + D
n
M(n)

)
operations in k. Then we perform, at a

cost linear in D, the Hadamard product of Newton(f) and Newton(g). By the
preceding lemma, we thus obtain the Newton series of f ⊗ g at precision D.
We recover the polynomial f ⊗ g by applying the conversion algorithms in
Proposition 2. Summing up the costs of each stage proves the complexity
results concerning f ⊗ g in the first two assertions in Theorem 1.

3.2 Computing the composed sum in characteristic zero or large enough

Let k be a field and E ∈ k[[T ]] be the power series exp(T ), with exp as defined
in Section 2.2.1. Then our algorithm for f⊕g is based on the following lemma:

Lemma 4 Let f and g be two polynomials in k[T ]. Then

(1) If the characteristic of k is zero, the following formula holds:

Newton(f ⊕ g) ⊙ E =
(
Newton(f) ⊙ E

)
·
(
Newton(g) ⊙ E

)
;

(2) If p > 0 is the characteristic of k, the following formula holds:

Newton(f ⊕ g) ⊙ E =
(
Newton(f) ⊙ E

)
·
(
Newton(g) ⊙ E

)
mod T p.

Proof. We only treat the characteristic zero case; the arguments apply mutatis
mutandis in characteristic p, since exp(F + G) = exp(F ) exp(G) mod T p.
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The definition of Newton series shows that

Newton(f ⊕ g) =
∑

s≥0


∑

α,β

(α + β)s


T s,

the second sum running over the roots of f and g. The conclusion now reads

∑

s≥0

∑
α,β (α + β)s

s!
T s =


∑

s≥0

∑
α αs

s!
T s


 ·


∑

s≥0

∑
β βs

s!
T s




and we are done, as the latter equality simply translates the fact that

∑

α,β

exp
(
(α + β)T

)
=
(∑

α

exp
(
αT

))
·
(∑

β

exp
(
βT

))
. �

As a corollary, we obtain an algorithm for computing the composed sum of
two monic polynomials f and g: first, compute Newton(f) and Newton(g)
to precision D, perform their Hadamard product with E, then compute the
product in Lemma 4 to recover Newton(f ⊕ g) at precision D and finally
convert the last Newton series to the polynomial f ⊕ g. Using Proposition 1
and Proposition 2, this completes the proof of the first assertion in Theorem 1.

3.3 Computing the composed sum in small characteristic

In this section we treat the computation of composed sums in small charac-
teristic. In the case of large characteristic, our solution involved an identity
related to the exponential series. Because of non-invertible factorials, the def-
inition of the exponential series is problematic in the present case. In what
follows we overcome this difficulty by appealing to certain multivariate expo-
nential generating series.

We begin by giving the intuition behind our approach on a particular case.
Suppose that f and g are polynomials over a field of characteristic p > 0;
our aim is to express the first p2 power sums of the roots

∑
α,β(α + β)ℓ in

terms of
∑

α αℓ and
∑

β βℓ. The first p of these sums can be determined using
the method in the previous section, which amounts to exploiting the identity
exp((α + β)T ) = exp(αT ) · exp(βT ). For ℓ between p and p2− 1, this method
fails, since one is not able to divide by p in k. In contrast, if ℓ is written as
i+ pj with i and j less than p, then the equality (α+β)ℓ = (α+β)i(αp +βp)j

suggests the use of the bivariate identity

exp
(
(α + β)T + (α + β)pU

)
= exp(αT + αpU) · exp(βT + βpU),
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which translates into the following equality modulo (T p, Up)




p−1∑

i,j=0

(∑

α

αi+pj
)

T iU j

i!j!






p−1∑

i,j=0

(∑

β

βi+pj
)

T iU j

i!j!


 =

p−1∑

i,j=0

(∑

α,β

(α+β)i+pj
)

T iU j

i!j!
,

helping us to find the first p2 power sums of f⊕g by means of a multiplication
of bivariate power series. We now formalize this idea in the general case.

Let k be a field of characteristic p > 0. For i ∈ N, we write ip = (i0, . . . , is) for
its p-adic expansion, that is, the (unique) sequence of integers 0 ≤ iℓ < p such
that i = i0 + i1p+ · · ·+ isp

s. Let T be an infinite set of indeterminates (Ti)i≥0.
We define the p-exponential Ep ∈ k[[T]] as the multivariate power series

Ep =
∑

i≥0

Tip

ip!
,

where for ip = (i0, . . . , is), we note ip! = i0! · · · is! and Tip = T i0
0 · · ·T is

s . For
f ∈ k[T ], we define the p-Newton series of f as the multivariate power series

Newtonp(f) =
∑

i≥0

Ni(f)Tip.

By definition, in each variable, the degree of Newtonp(f) is smaller than p.
With this notation, our algorithm for f ⊕ g in small characteristic is based on
the following results, which generalize Lemma 4.

Lemma 5 Let k a field of characteristic p and let f ∈ k[T ]. Then:

Newtonp(f)⊙ Ep =
∑

s≥0

∑

f(α)=0

(
s∏

ℓ=0

exp(αpℓ

Tℓ)

)
,

where ⊙ denotes the term-wise product of multivariate power series.

Proof. By definition, the left-hand side equals

∑

i≥0
ip=(i0,...,is)

Ni(f)

i0! · · · is!
T i0

0 · · ·T is
s =

∑

s≥0

∑

f(α)=0




∑

0≤i0<p
···

0≤is<p

αi0+i1p+···+isps

i0! · · · is!
T i0

0 · · ·T is
s


 .

The lemma follows, since all the summation indices iℓ vary independently and

∑

0≤iℓ<p

αiℓp
ℓ

iℓ!
T iℓ

ℓ = exp(αpℓ

Tℓ). �

Lemma 6 Let k be a field of characteristic p > 0 and let f and g be two
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monic polynomials in k[T ]. Then the following identity holds:

Newtonp(f ⊕ g)⊙Ep =
(
Newtonp(f)⊙Ep

)
·
(
Newtonp(g)⊙Ep

)
mod (Tp),

where (Tp) denotes the ideal generated by the monomials T p
0 , . . . T p

s , . . . in k[[T]].

Proof. By Lemma 5, we can rewrite the left-hand side as

∑

s≥0

∑

f(α)=0
g(β)=0

exp
(
(α + β)T0

)
· · · exp

(
(α + β)ps

Ts

)

and the right-hand side as

∑

s≥0

∑

f(α)=0
g(β)=0

exp(αT0) exp(βT0) · · · exp(αps

Ts) exp(βps

Ts).

The conclusion of the lemma follows, using the fact that the series

exp
(
(α + β)pℓ

Tℓ

)
= exp

(
αpℓ

Tℓ + βpℓ

Tℓ

)

is equal to exp(αpℓ

Tℓ) exp(βpℓ

Tℓ) modulo T p
ℓ for any ℓ ≥ 0. �

Via the fast conversion algorithms in Section 2, the preceding lemma enables
us to reduce the computation of the composed sum of characteristic p > 0 to
a single multiplication of multivariate series involving a finite number of vari-
ables and of degree less than p in each variable. Precisely, to recover the poly-
nomial f⊕g, only 2D terms of its Newton series suffice, where D = deg(f⊕g),
and this means that in the p-Newton series of f⊕g, all we need to know are co-
efficients of the monomials containing T0, . . . , Ts, where s = ⌊log(2D)/ log(p)⌋.
By Lemma 6, this can be done by multiplying two multivariate power series
in at most log(2D)/ log(p) variables and of degree less than p in each variable.
This completes the proof of part (3) in Theorem 1.

Using the algorithm of Schost (2005), the last multivariate multiplication of
power series can be performed in Õ(pD). A simpler (but slower) alternative al-
gorithm relies on Kronecker’s substitution, see (Kronecker, 1882, §4) and (von

zur Gathen and Gerhard, 1999, Section 8.4); its cost is Õ(D
1+ 1

log(p) ).

3.4 Experimental results

We have implemented the algorithms for the composed sum and product, in
their versions for large or zero characteristic. We used the NTL C++ library
as a basis (Shoup, 1996–2005).
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Since our complexity estimates are stated in terms of the number of operations
executed in the base field, we have chosen to experiment on finite fields of the
form Z/pZ, with p prime. For such fields, NTL implements polynomial arith-
metic using classical, Karatsuba and Fast Fourier Transform multiplications.

For the tests 3 presented in Figure 4, the input polynomials have equal degrees
m = n and their coefficients are chosen uniformly at random; the output has
degree D = m2. We let m vary from 1 to 500 by steps of 8, so that D varies
from 1 to 250000; the base field is defined by a 32 bit prime. We stress the
fact that such output degrees are met in applications, see Section 5.
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Fig. 4. Composed product and sum. (Time in sec. vs output degree)

In both cases (composed product and composed sum), the running times
present an abrupt jump when the output degree D passes a power of 2. This
feature is actually already present in polynomial multiplication, and is inherent
in NTL’s use of the Fast Fourier Transform: see Figure 5, which displays the
time for one polynomial multiplication, in the same degree range as Figure 4.
We also plot the ratios between the times of composed sum (resp. product)
and polynomial multiplication. For large degrees, the ratios do not exceed 5.
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Fig. 5. Left: polynomial multiplication (Time in sec. vs output degree). Right: (Com-
posed product or sum time) / (Multiplication time) vs output degree.

We also implemented in NTL an algorithm based on Formulae (2), as well

3 All our tests were performed on the computers of the MEDICIS resource center
http://www.medicis.polytechnique.fr, using a 2 GB, 2200+ AMD Athlon processor.
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as the algorithm by Dvornicich and Traverso (1989). The bivariate resultant
computation relies on NTL’s built-in implementation of both quadratic and
fast algorithms for univariate resultants. The latter is used for m larger than
180, i.e. D larger than 32400. The experimental timings are given in Figure 6.
A first observation is that, in accordance with theoretical estimates, the al-
gorithm of Dvornicich and Traverso (1989) is slower than the resultant based
algorithm. The main conclusion is that these experimental results show that
for large degrees, the resultant computations take several hours, whereas our
algorithms require approximately one minute.
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Fig. 6. Composed product (left) and sum (right) by resultant computation, respec-
tively by Dvornicich and Traverso (1989) algorithm. (Time in sec. vs output degree)

4 Computing the Diamond Product

We finally address the general case: computing the diamond product of f
and g. In this section, we give an algorithm that computes f ⋄H g using
O
(√

D
(
M(D) + Dω/2

))
operations in k. Anticipating the following section,

f ⋄H g is the characteristic polynomial of the image of H in the quotient
algebra k[X, Y ]/(f(X), g(Y )). This characterization of the diamond product
enables us to reduce its computation to that of the power projections of H
under the trace map, followed by a linearly generated sequence recovery.

The origins of this approach can be traced back at least to Le Verrier (1840)
who proposed a method for computing characteristic polynomials of matri-
ces by means of traces of matrix powers and using Newton identities for the
recovery step. The idea of using power projections for computing minimal
polynomials in quotient algebras appears in (Thiong Ly, 1989; Rifà and Bor-
rell, 1991) in the one variable case k[X]/(f(X)). A breakthrough was achieved
by Shoup (1994), who was the first to notice that the power projection problem
is dual to the modular composition problem.

Combining a complexity result of Brent and Kung (1978) for the latter problem
with an algorithmic theorem called Tellegen’s principle, Shoup proved the ex-
istence of an algorithm solving the power projection problem within the same
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complexity as ours, even for the more general algebra k[X, Y ]/(f(X), g(X, Y )).
Still, Shoup gave no explicit algorithm. In (Shoup, 1995, Section 4.1 and 7.5)
he partially filled in this gap and proposed a “baby step/giant step” algo-
rithm for the power projection in the univariate case, in the FFT polynomial
multiplication setting; in a subsequent article (Shoup, 1999, Section 2.2), he
extended his algorithm to the bivariate case, and independently of the poly-
nomial multiplication model. Yet, in the complexity of algorithms in (Shoup,
1995, 1999), the term Dω/2 is replaced by D3/2. Finally, Kaltofen (2000) de-
scribes the bivariate power projection and its relation to modular composition.

In this section, we follow the steps of Kaltofen and Shoup and we solve the
power projection problem for the quotient algebra Q = k[X, Y ]/(f(X), g(Y ))
within the complexity predicted by Tellegen’s principle. This is done by ap-
plying effective transposition techniques by Bostan et al. (2003a) to Brent
and Kung’s algorithm for modular composition in Q. We refer to Bostan et al.
(2003b) for a description of the general multivariate power projection problem,
and its applications to the context of polynomial system solving.

4.1 Computations in the quotient algebra

Let Q be the quotient algebra k[X, Y ]/(f(X), g(Y )). In the rest of this section,
we repeatedly use the trace, which is a linear form defined on Q: the trace of
A ∈ Q is defined as the trace of the map of multiplication by A in Q.

Our algorithm for the diamond product is based on the following fundamental
fact, which is sometimes referred to as Stickelberger’s Theorem, see (Cox et al.,
1998, Proposition 2.7): for any A in Q, the characteristic polynomial of A

equals
∏

α,β

(
T − A(α, β)

)
, where the product runs over all the roots of f

and g counted with multiplicities. As a corollary, we have the following:

Lemma 7 The polynomial f ⋄H g is the characteristic polynomial of H in Q.
The sth power sum of the roots of f ⋄H g is the trace of Hs in Q.

The second part of Lemma 7 together with the fast conversion algorithms of
Section 2 show that the proof of the final part of Theorem 1 amounts to giving
a fast computation scheme for the first traces of Hs in Q. This is the object
of the following proposition.

Proposition 3 Given N ≥ 1, the sequence

trace(1), trace(H), trace(H2), . . . , trace(HN−1)

can be computed within O
(√

N M(D) + DN (ω−1)/2

)
base field operations.
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The proof of the complexity estimates in Theorem 1 follows directly: from
Proposition 2, the number of traces to be computed is at most 2D and by
Proposition 3, this has complexity O

(√
D(M(D)+Dω/2)

)
. Then Proposition 2

and the obvious inequality p M(D
p
) log(D

p
) ≤ M(D) log(D) show that the cost

of recovering f ⋄H g from the power sums of its roots is negligible. Thus, we
now concentrate on proving Proposition 3.

4.2 Power projection

Computing the traces of the first N powers of H is a particular instance of the
power projection problem: given a linear form ℓ on the k-algebra Q, compute
the image of ℓ under the linear map

Q̂ → k[[T ]]<N

ℓ 7→
N−1∑

i=0

ℓ(H i)T i + O(TN).

It is useful to notice that k[[T ]]<N naturally identifies, as a k-vector space, with
the dual of the space k[T ]<N formed by polynomials of degree at most N − 1.
Under this identification, the linear map defining the power projection is the
transposed map of the modular composition (polynomial evaluation) by H

k[T ]<N → Q

p 7→ p(H).

Now, an algorithmic theorem called transposition principle, or Tellegen’s prin-
ciple, states, roughly speaking, that for any algorithm computing a linear map
there exists an algorithm that computes the transposed map using almost the
same number of arithmetic operations (see the next proposition for a pre-
cise statement). In our situation, this principle establishes a computational
equivalence between the dual problems of modular composition and power
projection. This observation is due to Shoup (1994); see also (Kaltofen, 2000).

Tellegen’s principle can be phrased in terms of linear straight-line programs;
these are “ordinary” straight-line programs, that use only linear operations, see
Chapter 13 in (Bürgisser et al., 1997) for precise definitions. The complexity
of a linear straight-line program is measured by its size, that is, the number
of operations it uses.

Proposition 4 (Bürgisser et al., 1997, Th. 13.20) Let M be a m× n matrix
with zr zero rows and zc zero columns. For every linear straight-line program
of size L that computes the matrix-vector product Mv there exists a linear
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straight-line program of size L− n + m− zr + zc that computes the transposed
matrix-vector product Mtrv.

Paterson and Stockmeyer (1973) proposed a “baby-step / giant-step” algo-
rithm for the modular composition by H , requiring the computation of only√

N powers of H . The key idea is to see p(H) as a polynomial in H
√

N of de-
gree

√
N . Computing its coefficients amounts to

√
N modular compositions of

polynomials of degree at most
√

N by the same element H . Brent and Kung
(1978, Algorithm 2.1) remarked that these simultaneous modular composi-
tions can be performed using D/

√
N products of pairs of

√
N ×
√

N matrices.
Adding the O(

√
N) multiplications in Q, the total cost of this algorithm is

O
(√

N M(D) + DN (ω−1)/2
)
.

Tellegen’s principle implies that the power projection problem can also be
solved within O

(√
N M(D) + DN (ω−1)/2

)
operations in k.

We now make explicit and effectively transpose the maps involved in the algo-
rithm for modular composition described above. In order to simplify notations,
set r =

⌊√
N
⌋

and G = Hr. For a polynomial p = p0 + · · · + pN−1T
N−1, set

p̃i = p(i−1)r + · · ·+ pir−1T
r−1. After precomputing the elements 1, H, . . . , Hr,

Brent and Kung’s modular composition algorithm decomposes into three lin-
ear maps, as follows:

k[T ]<N → k[T ]<r × · · · × k[T ]<r → Q× · · · ×Q → Q

p(T ) 7→
(
p̃1(T ), . . . , p̃r(T )

)

(q1, . . . , qr) 7→
(
q1(H), . . . , qr(H)

)

(A1, . . . , Ar) 7→ ∑r
i=1 AiG

i−1

– The first one is a splitting map, so that no arithmetic operation is required.
– The second map is M 7→ HM , where H is the r×D matrix whose columns

contain the coordinates of the first r − 1 powers of H .
– The third map is computed using a Horner-like method.

We now proceed to inspect the transposed maps. Concerning the last one, we
first note that, by definition, the transpose of the usual product map B 7→ AB
on Q is the map Q̂→ Q̂ that associates to ℓ ∈ Q̂ the linear form

A ◦ ℓ : Q → k

B 7→ ℓ(AB).

We use the classical denomination transposed product for the operation A ◦ ℓ.
An important property is that it endows the dual Q̂ with a Q-module struc-
ture. With this notation, transposing Horner’s rule amounts to computing
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G ◦ ℓ, then G ◦ (G ◦ ℓ) and so on. The transpose of the second map is simply
given by M 7→ HtrM and that of the first map can be computed for free.

In summary, reversing the arrows in the previous diagram gives the following
decomposition of the power projection map; recall that 1, H, . . . , Hr−1 and
G = Hr are precomputed.

k[[T ]]<N ← k[[T ]]<r × · · · × k[[T ]]<r ← Q̂× · · · × Q̂ ← Q̂
∑r

i=1 SiT
(i−1)r ← [ (S1, . . . , Sr)(∑r−1

i=0 ℓj(H
i)T i

)

1≤j≤r
← [ (ℓ1, . . . , ℓr)

(ℓ, . . . , Gr−1 ◦ ℓ) ← [ ℓ

The corresponding algorithm for the power projection works as described in
Figure 7 below; therein we denoted by M [i, j] the (i, j)th entry of a matrix M
and by 1Q the unity of the algebra Q.

Input: H in Q, ℓ in Q̂, N ≥ 1 in N.
Output: the series

∑N−1
i=0 ℓ(H i)T i +O(TN).

r ← ⌊
√

N⌋, s← ⌈N/r⌉
H0 ← 1Q

for p from 1 to r do

Hp ← H ·Hp−1

M1 ← the D × r matrix whose pth column is Hp−1

ℓ0 ← ℓ
for q from 1 to s− 1 do

ℓq ← Hr ◦ ℓq−1

M2 ← the s×D matrix whose qth row is ℓq−1

M ←M2M1

return
∑

1≤i≤s

1≤j≤r

M [i, j]T (i−1)r+j−1 + O(TN)

Fig. 7. Bivariate power projection

Apart from the computation of a product of two rectangular matrices M1

and M2 of sizes
√

N × D and D ×
√

N , this algorithm requires
√

N multi-
plications in Q and

√
N transposed products. Decomposing the matrices M1

and M2 into D/
√

N square matrices of size
√

N allows us to compute their

product M2M1 within O
(
DN (ω−1)/2

)
operations in k. In the next sections,

we give explicit algorithms for the product and the transposed product in Q,
which have complexity O(M(D)). This concludes the proof of Proposition 3.
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In contrast to Shoup’s (1999) algorithm for the power projection, our algo-
rithm uses fast matrix arithmetic. Interestingly, in (Kaltofen and Shoup, 1998,
Algorithm AP), a related question, the automorphism evaluation problem, is
solved in a similar fashion.

4.3 Representing the linear forms

The quotient algebra Q has a canonical monomial basis: since f has degree m
and g has degree n, then

M = {xiyj, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1}

forms a monomial basis of Q, where x and y are the images of X and Y in Q.
The linear forms will be given by their coefficients in the dual basis of M,
that is, by the list of their values on the elements in M. Then the cost of a
single evaluation is mn = D operations in the base field. As a preamble to our
algorithm, it is necessary to compute the trace of all elements in the basisM.

Let us thus consider i in 0, . . . , m− 1 and j in 0, . . . , n− 1. By Stickelberger’s
theorem, the trace of xiyj equals

∑
α,β αiβj; then Lemma 3 shows that this

trace is the product of the coefficients of T i in Newton(f) and T j in Newton(g).
The series Newton(f) and Newton(g) can be computed at precision respec-
tively m and n in O(M(max(m, n))) base field operations. Then by the above
reasoning, the value of the trace form on the canonical basis M can be com-
puted for mn = D additional multiplications.

4.4 Complexity of the product in Q

Due to the very specific form of the ideal defining our quotient algebra Q =
k[X, Y ]/(f(X), g(Y )), one can design the following algorithm for the product
in Q. It takes as input two elements A, B in Q. To obtain AB in Q, we
first compute their product as plain polynomials in k[X, Y ], then reduce this
product modulo (f(X), g(Y )).

We use Kronecker’s substitution X ← T, Y ← T 2m−1 to reduce the compu-
tation of the product of A and B as polynomials in k[X, Y ] to a univariate
multiplication of polynomials of degree at most 2mn−m− n < 2D. This can
be done in complexity O(M(D)). The resulting product P = AB is a bivariate
polynomial of degree at most 2m− 2 in X and at most 2n− 2 in Y . We next
reduce it modulo the ideal (f(X), g(Y )); this is done in two steps.

We first consider P as a polynomial in k[X][Y ] and we reduce all its coefficients
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Pj(X) modulo f , using the variant of Sieveking-Kung’s algorithm (Sievek-
ing, 1972; Kung, 1974) described in (von zur Gathen and Gerhard, 1999,
Algorithm 9.5): given Pj, compute Sj = ⌈u · rev(2m − 2, Pj)⌉m−1, where
u denotes the power series 1/rev(m, f) at precision m; then Pj mod f is
given by Pj − rev(m − 2, Sj) · f . Besides the precomputation of u, whose
cost is 3M(m) + O(m) base field operations, see (von zur Gathen and Ger-
hard, 1999, Theorem 9.4), this algorithm uses at most 2n(2M(m) + O(m)) =
4nM(m) + O(D) operations in k.

We have obtained a bivariate polynomial of degree at most m−1 in X and at
most 2n−2 in Y , which we now view in k[Y ][X]. The final step consists in re-
ducing its coefficients modulo g(Y ). This is done using again Sieveking-Kung’s
algorithm, within 2mM(n) + O(D) operations in k, plus the precomputation
of 1/rev(n, g), of cost 3M(n) + O(n). As both mM(n) and nM(m) are at most
M(mn) = M(D), our algorithm for the product in Q uses O(M(D)) operations
in k. We give the corresponding pseudo-code in Figure 8 below.

Input: A, B ∈ Q = k[X, Y ]/(f(X), g(Y )).
Output: the product AB in Q.

C(T )← A(T, T 2m−1) · B(T, T 2m−1)
u← ⌈1/rev(m, f)⌉m−1

for j from 0 to 2n− 2 do

Pj ←
∑2m−2

i=0 Coeff(C, (2m− 1)j + i)X i

Sj ← ⌈u · rev(2m− 2, Pj)⌉m−1

Pj ← Pj − rev(m− 2, Sj) · f
v ← ⌈1/rev(n, g)⌉n−1

for i from 0 to m− 1 do

Qi ←
∑2n−2

j=0 Coeff(Pj, i)Y
j

Ri ← ⌈v · rev(2n− 2, Qi)⌉n−1

Qi ← Qi − rev(n− 2, Ri) · g

return
m−1∑

i=0

Qi(Y )X i

Fig. 8. Bivariate modular multiplication

4.5 Complexity of the transposed product

In this section we propose an algorithm for the transposed product in Q,
whose complexity is the same as that of the multiplication in Q. As noticed
by Shoup (1994), Proposition 4 already implies that such an algorithm exists,
our contribution is to exhibit a simple, ready-to-implement one. We derive
it by applying the program transformation techniques introduced by Bostan
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et al. (2003a) to the algorithm of Section 4.4. Roughly, this works as follows.
Given a program, we decompose it into “elementary” blocks of instructions,
then go through from the bottom to the top and transpose each block. In this
process, the ascending for loops are transformed into descending ones, and
input and output are swapped. We refer to (Bostan et al., 2003a) for details.

In our case, two main procedures have to be transposed: the bivariate poly-
nomial multiplication using Kronecker’s substitution on the one hand, and
Sieveking-Kung’s algorithm on the other hand. The latter is explicitly trans-
posed by Bostan et al. (2003a). Since Kronecker’s substitution is the identity
map in the canonical bases, transposing it is immediate, so it remains to
transpose the univariate polynomial product involved in the bivariate multi-
plication. The transposed map of the multiplication by a fixed polynomial P
of degree m is the middle product defined by Hanrot et al. (2004): it sends Q
of degree at most m + n to the polynomial [rev(m, P ) · Q]m+n+1

m , denoted
mult(n, P, Q). By Proposition 4 it can be computed for the cost of one mul-
tiplication of two polynomials of degree m and n, up to O(m) operations,
see (Hanrot et al., 2004; Bostan et al., 2003a) for explicit algorithms. Note
that the transposed Sieveking-Kung’s algorithm in Bostan et al. (2003a) also
uses middle products. The corresponding algorithm goes as in Figure 9.

Input: A in Q = k[X, Y ]/(f(X), g(Y )), ℓ in Q̂.
Output: the transposed product A ◦ ℓ.

v ← ⌈1/rev(n, g)⌉n−1

for i from m− 1 downto 0 do

Qi ←
∑n−1

j=0 ℓ(xiyj)Y j

Ri ← mult(n− 2, g, Qi)
Qi ← Qi −Xn⌈Ri · v⌉n−1

u← ⌈1/rev(m, f)⌉m−1

for j from 2n− 2 downto 0 do

Pj ←
∑m−1

i=0 Coeff(Qi, j)X
i

Sj ← mult(m− 2, f, Pj)
Pj ← Pj −Xm⌈Sj · u⌉m−1

P (X, Y )← ∑2n−2
j=0 Pj(X)Y j

C ← mult
(
2mn−m− n, A(T, T 2m−1), P (T, T 2m−1)

)

return
∑

0≤i≤m−1
0≤j≤n−1

Coeff(C, (2m− 1)j + i)X iY j

Fig. 9. Bivariate transposed product

This program has been constructed by operating some transformation on the
instructions of the program for the dual question in Section 4.4. Its correctness
is guaranteed by the validity of these transformations techniques. However, we
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conclude this section by interpreting what is computed.

The algorithm takes as input a linear form ℓ in Q̂. Since f(x) = 0 in Q,
for any integer j ≥ 0, the sequence ℓ(xiyj)i≥0 satisfies a linear recurrence with
constant coefficients, of characteristic polynomial f . The problem of extending
such a linear recurrent sequence is dual to the division with remainder by f ,
see (Bostan et al., 2003a, Section 5), so in the first for loop, the algorithm
computes the values ℓ(xiyj), for 0 ≤ j ≤ n−1 and m ≤ i ≤ 2m−2. Similarly,
after the pass through the second for loop, all the values taken by ℓ on the
monomials in the set M2 = {xiyj, 0 ≤ i ≤ 2m − 2, 0 ≤ j ≤ 2n − 2} are
computed; these values are encoded in the polynomial P (X, Y ). By definition
of the middle product, one can finally check that the algorithm outputs the
part supported byM in the product A( 1

X
, 1

Y
)·P (X, Y ), that is, in the product

A
(

1

X
,

1

Y

)
·

∑

xiyj∈M2

ℓ(xiyj)X iY j.

Proposition 1 in (Bostan et al., 2003b) shows that this part gives the coeffi-
cients of A ◦ ℓ in the dual basis ofM and this finishes an alternative proof of
the correctness of our algorithm.

4.6 Experimental results

We implemented our diamond product algorithm in the NTL C++ li-
brary (Shoup, 1996–2005); we implemented the version for large or zero char-
acteristic, for base fields of type Z/pZ, with p prime. Our implementation
uses Winograd’s variant of Strassen’s (1969) matrix multiplication algorithm;
it also uses the implementation of transposed polynomial multiplication de-
veloped by Bostan et al. (2003a).

The data used to test the diamond product are similar to those of Section 3.4:
the input polynomials f(X) and g(Y ) have equal degrees m = n and their
coefficients are chosen uniformly at random; the output has degree D = m2.
The polynomial H is randomly chosen of degree less than m in both X and Y .
We let m vary from 1 to 425; the base field is defined by a 32 bit prime.

Figure 10 shows the time for the diamond product computation, using both
classical and Strassen’s matrix multiplication. Again, the abrupt time jumps
that occur at powers of 2 come from the Fourier transform. In Figure 11,
we separate the times used in the polynomial multiplication and transposed
multiplication step, on the one hand, and the linear algebra step, using respec-
tively classical and Strassen multiplication, on the other hand. The polynomial
multiplication step is predominant, but the ratio between this step and the
linear algebra one actually reduces as the degree grows.
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Fig. 11. Respective times for polyno-
mial multiplications & linear algebra
by classical and Strassen’s algorithm.
(Time in sec. vs output degree)

Recall that the diamond product algorithm handles matrices whose size
m =

√
D varies from 1 to 425. It appears that for such sizes, using a fast ma-

trix multiplication algorithm does have a practical significance on the whole
diamond product computation time. Indeed we save a factor of up to 3 on the
linear algebra phase, and more than 25% on the whole computation time.

5 Applications and Related Questions

To conclude this article, we present situations where composed operations,
notably sums and products, are useful.

Algebraic numbers. One may represent an algebraic number by its min-
imal polynomial. If α and β are two algebraic numbers represented by their
minimal polynomials f(x) and g(y), the sum α+β is represented by one of the
irreducible factors of the composed sum f ⊕ g. The product αβ is represented
by one of the irreducible factors of the composed product f ⊗ g (subtractions
α−β and divisions α/β can be handled similarly). Thus the resultant methods
described in (Loos, 1983; Cohen, 1993) can be replaced by our faster solutions,
even though factoring the output remains necessary and is possibly costly.

We mention that Kaltofen (2000) presents an alternative solution for this
question: it consists in factoring f in the algebraic extension Q[y]/(g(y)) be-
forehand, and then computing a power projection modulo a system of the form
g(y) = 0, h(x, y) = 0. Thus, the factorization in degree deg(f)deg(g) over Q is
replaced by a factorization in degree deg(f) in a number field of degree deg(g).

Algebraic functions. Our algorithms also adapt to operations over Puiseux
series as it suffices to operate with a base field of the form k(z). As a matter
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of fact, ideas similar to the ones developed in Section 3 prove useful in de-
termining the generating function of walks over the half-line determined by a
fixed finite set of allowed jumps; see the “Platypus Algorithm” [sic] and the
discussion of (Banderier and Flajolet, 2002, pp. 56–58). (There the problem
is to calculate the minimal polynomial satisfied by a product α1 · · ·αk of k
distinct branches of an algebraic function defined by P (z, α) = 0.)

Dispersion set of polynomials. In many algorithms for symbolic sum-
mation (e.g., Abramov, 1971; Gosper, 1978; Abramov, 1989; Petkovšek, 1992;
Paule, 1995) one has to compute the dispersion set of two polynomials, that is,
the set of the (integer) distances between their roots. Classically, this is done
by computing the polynomial whose roots are the elements of the dispersion
set. The latter polynomial is again a resultant of the particular form discussed
in Section 3 and can be computed fast using our algorithms. Alternative meth-
ods for determining the dispersion set have been designed by Man and Wright
(1994); Gerhard et al. (2003). It would be interesting to carefully compare the
(bit) complexities and the practical performances of these algorithms.

Irreducible polynomials. Constructing irreducible polynomials of pre-
scribed degree over finite fields is a useful but difficult task. It serves, for
instance, to implement arithmetic in extension fields. The most efficient al-
gorithm known is due to Shoup (1990, 1994): it consists in first constructing
irreducible polynomials whose degree is a prime power, then combining them
by means of composed products. In (Shoup, 1994), the second step is achieved

by a minimal polynomial computation, which has complexity O
(
D(ω+1)/2

)
,

where D is the output degree. Thanks to our algorithm for the composed
product, the cost of this step becomes linear in D, up to logarithmic factors.

Point counting. Designing genus 2 hyperelliptic cryptosystems requires de-
termining the cardinality of the Jacobian of genus 2 curves defined over finite
fields. When the base field is a prime field of the form Z/pZ, a commonly
used solution is the extension by Gaudry and Harley (2000) of Schoof’s (1985)
algorithm for elliptic curves, which requires to compute torsion subgroups of
the Jacobian.

Working out the details, one is led to solve systems of the form

f(x1)

g(x1)
=

f(x2)

g(x2)
,

h(x1)

g(x1)
=

h(x2)

g(x2)
,

where f, g, h are univariate polynomials. Taking into account the symmetry in
x1, x2, we wish to compute an eliminating polynomial for x1 +x2. This can be
done through a suitable resultant computation, but the denominators g(x1)
and g(x2) create high-degree spurious factors in this resultant, which should be
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found and removed. The parasites are powers of the composed sum of g with
itself; in their cryptographic-size record, Gaudry and Schost (2004) encounter
degrees in the range of several hundreds of thousands. To treat problems of
such sizes, the use of our fast algorithms for composed sums becomes necessary.

Linear recurrent sequences with infinitely many zeros. A classical
result (Berstel and Mignotte, 1976) asserts that a linear recurrent sequence
has infinitely many zero terms if its minimal polynomial f has a unitary pair,
that is, if it has two roots whose ratio is a root of unity. Yokoyama et al.
(1995) give algorithms to test this condition, and if so, to find the order of the
multiplicative group generated by the corresponding roots of unity. The most
time-consuming part of their algorithm is the computation of a polynomial
whose roots are the ratios of all pairs of roots of f . This directly reduces to
the computation of a composed product, for which our algorithms apply.

Shift of polynomials. In (von zur Gathen and Gerhard, 1997), six algo-
rithms for computing shifts of polynomials are proposed and their complexity
is analyzed. A seventh algorithm can be deduced as a straightforward appli-
cation of our algorithm for the composed sums, since f ⊕ (T + a) is the shift
polynomial of f by a. In characteristic zero, the complexity of this algorithm
is linear (up to logarithmic factors) in the degree of f , in terms of base field
operations. Yet, the convolution method of Aho et al. (1975) is better by a
constant factor. In small characteristic, the analysis has yet to be done.

Construction of polynomials that are hard to factor. Our algorithms
for composed sums can be used to compute the Swinnerton-Dyer polyno-
mials (Zippel, 1993, p. 305), defined as

∏
(T ±√p1 ± · · · ±

√
pn), where the

product runs over all 2n possible combinations of ± signs and p1, . . . , pn are
distinct primes. They also apply to the computation of their bivariate ana-
logues (Zippel, 1993, p. 340), which are the bivariate polynomials of total de-
gree D = 2n defined by Sn(X, Y ) =

∏
(Y ±

√
X + 1± · · · ±

√
X + n). (These

families of polynomials are known to exhibit the worst possible case for factor-
ization algorithms, over Z[T ] and k[X, Y ], based on the “lift and recombine”
strategy.) Without getting into details, an evaluation/interpolation scheme
together with our algorithms for composed sums allow the computation of
Sn(X, Y ) in O(D M(D)) operations in k, which is again nearly optimal in
the size of the output. Similarly, one can compute all the “hard to factor”
polynomials in (Kaltofen et al., 1983). Moreover, performing composed sums
of polynomials of Swinnerton-Dyer type allows one to build polynomials of
prescribed degrees which are irreducible in Z[T ], but reducible modulo any
prime p. This yields a constructive proof of the result in (Brandl, 1986), in
the case of nonsquarefree degrees.
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Resolvents. Resolvents are an important tool in Galois theory, notably for
the direct problem of determining the Galois group of an irreducible polynomial
f of degree m. Their factorization patterns help determine the Galois group of
f . For h ≤ m, an example of such a resolvent is the polynomial f+h of degree
N =

(
m
h

)
, whose roots are the sums αi1 +· · ·+αih , with 1 ≤ i1 < · · · < ih ≤ m,

where (αi)1≤i≤m are the roots of f . This differs from the hth iterated composed
sum, since repetitions of roots are not allowed here. Yet, the methods we have
presented help answer some simple cases, as illustrated in the next example.

Let f(T ) = T 7 − 7T + 3 be the Cartier polynomial introduced by Giusti
et al. (1989), and F = f+3 the polynomial whose roots are all sums of h = 3
distinct roots of f . To prove that the Galois group of f is not the symmetric
group S7, it is enough to check that F is not irreducible. The polynomial F
has degree 35, so knowing its Newton series to order 35 suffices to recover it.
To do this, we first decompose f⊕3 = f ⊕ f ⊕ f as

f⊕3 =
∏

α

(T − 3α) ·
∏

α6=β

(
T − (α + 2β)

)3 ·
∏

α6=β 6=γ 6=α

(
T − (α + β + γ)

)6
.

Then, using the definition F =
∏

α6=β 6=γ 6=α

(
T−(α+β+γ)

)
and the equalities

∏

α

(T − 3α) = f ⊗ (T − 3) and
∏

α6=β

(
T − (α + 2β)

)
=

f ⊕
(
f ⊗ (T − 2)

)

f ⊗ (T − 3)

enables us to express Newton(F ) as

1

6

(
Newton

(
f⊕3

)
+2 Newton

(
f ⊗ (T −3)

)
−3 Newton

(
f ⊕

(
f ⊗ (T − 2)

)) )
.

Using Lemmas 3 and 4, this series can be computed from the series Newton(f)
and exp(T ) to order 35. The polynomial F is then recovered using the algo-
rithms in Section 2. The CPU time used in a direct resultant computation is
about 300 times the whole computation time using our approach.

A straightforward generalization of this approach for an arbitrary h is not
satisfactory, due to the combinatorial explosion of the number of terms in-
volved. A faster method is presented by Casperson and McKay (1994) and
has complexity Õ (h2N + N2). It is based on the following recurrence rela-
tion, expressing f+h in terms of f+j, for j < h:

(
f+h

)h
=

h∏

i=1

((
f ⊗ (T − i)

)
⊕ f+(h−i)

)(−1)i+1

.

Using this formula and the fast conversion algorithms presented in Section 2
reduces the complexity to Õ (hN). Nevertheless, the degree of the output is N ,
so an optimal algorithm for this question has yet to be found.
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Characteristic polynomials in univariate quotient algebras. By defini-
tion, the diamond product includes as a very particular case the characteristic
polynomial of a univariate polynomial H(X) in an univariate quotient algebra
k[X]/(b(X)). The latter can thus be computed using O(

√
n(M(n)+nω/2)) op-

erations in k, where n = deg(b) > deg(H). The resulting algorithm is similar
to that for minimal polynomials in (Shoup, 1999).

Rothstein-Trager resultants. A special type of bivariate resultant occurs
in algorithms for symbolic integration, see (Trager, 1976; Rothstein, 1977).
Given a(X) and b(X) in k[X] of degree at most n, with b squarefree, these
algorithms require the computation of r(Y ) = ResX(Y b′(X) − a(X), b(X)),
which has degree at most n. A direct evaluation-interpolation based algorithm
has complexity O(n M(n) log(n)). A different approach is based on the fact
that r(X) equals, up to the factor Res(b, b′), the characteristic polynomial of
H(X) = a/b′ mod b in k[X]/(b), thus can be computed as explained in the
preceding paragraph.

Graeffe polynomials. Let f be a monic polynomial of degree m and N
be a positive integer. We call Nth Graeffe polynomial of f the polynomial of
degree m whose roots are the Nth powers of the roots of f .

This polynomial can be obtained using O(M(mN)) operations in k, by comput-
ing the composed product of f and XN − 1. Note that the same complexity
result is announced in (Henrici, 1986, Section 13.8). This is nearly optimal
with respect to m, but not to N . On the other hand, the Nth Graeffe poly-
nomial of f is the characteristic polynomial of XN modulo f . Computing XN

mod f has complexity O(M(m) log(N)), which is optimal in N , but then the
characteristic polynomial computation has complexity more than linear in m.

For comparison, Graeffe polynomials are computed by von Haeseler and
Jürgensen (2001) by means of so-called decimation matrices, which are struc-
tured (Toeplitz, quasi-circulant) N × N matrices with polynomial entries of
degree at most m+N

N
. Using an evaluation-interpolation scheme, the cost of

this method is dominated by the evaluation of m determinants of N × N
scalar Toeplitz matrices. Over C, Toeplitz determinants can be evaluated in
O(M(N) log N) operations, using the algorithm in (Kravanja and Van Barel,
2000).

Is there a way of reducing the cost to O(M(m) log(N))? If N is a power of 2,
this can be achieved using binary powering, but the general case remains open.
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Gaudry, P., Schost, É., 2004. Construction of secure random curves of genus 2
over prime fields. In: Advances in Cryptology – EUROCRYPT 2004. Vol.
3027 of LNCS. Springer-Verlag, pp. 239–256.

Gerhard, J., Giesbrecht, M., Storjohann, A., Zima, E. V., 2003. Shiftless de-
composition and polynomial-time rational summation. In: ISSAC’03. ACM
Press, pp. 119–126.

Giusti, M., Lazard, D., Valibouze, A., 1989. Algebraic transformations of poly-
nomial equations, symmetric polynomials and elimination. In: ISSAC’88.
Vol. 358 of LNCS. Springer-Verlag, pp. 309–314.
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Kronecker, L., 1882. Grundzüge einer arithmetischen Theorie der algebrais-
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