A New General-Purpose Method to Multiply 3x3 Matrices Using Only 23 Multiplications

Nicolas T. Courtois1,3, Gregory V. Bard2, and Daniel Hulme1,3

1 University College London, UK,
2 University of Wisconsin Stout Campus, Menomonie, WI, USA
3 NP-Complete Ltd, London, UK

Abstract. One of the most famous conjectures in computer algebra is that matrix multiplication might be feasible in nearly quadratic time, \cite{8}. The best known exponent is 2.376, due to Coppersmith and Winograd \cite{9}. Many attempts to solve this problems in the literature work by solving, fixed-size problems and then apply the solution recursively \cite{6,22,17,21,2}. This leads to pure combinatorial optimisation problems with fixed size. These problems are unlikely to be solvable in polynomial time, see \cite{21,15}. In 1976 Laderman published a method to multiply two 3x3 matrices using only 23 multiplications. This result is non-commutative, and therefore can be applied recursively to smaller sub-matrices. In 35 years nobody was able to do better and it remains an open problem if this can be done with 22 multiplications.

We proceed by solving the so called Brent equations \cite{6}. We have implemented a method to converting this very hard problem to a SAT problem, and we have attempted to solve it, with our portfolio of some 500 SAT solvers. With this new method we were able to produce new solutions to the Laderman’s problem.

We present a new fully general non-commutative solution with 23 multiplications and show that this solution is new and is \textit{NOT} equivalent to any previously known solution. This result demonstrates that the space of solutions to Laderman’s problem is larger than expected, and therefore it becomes now more plausible that a solution with 22 multiplications exists.

If it exists, we might be able to find it soon just by running our algorithms longer, or due to further improvements in the SAT solver algorithms.

Key Words: Linear Algebra Fast Matrix Multiplication, Strassen’s algorithm, Laderman’s Method, Tensor Rank, Multiplicative Complexity

* This work was supported by the Technology Strategy Board in the United Kingdom under Project No 9626-58525.
1 Introduction

One of the most famous problems in computer algebra is the problem of matrix multiplication (MM) of square and non-square matrices.

1.1 Fast Matrix Multiplication

For square matrices the naive algorithm is cubic and the best known theoretical exponent is 2.376, due to Coppersmith and Winograd [9]. This exponent is quite low and it is conjectured that one should be able to do matrix multiplication in so called “soft quadratic time”, with possibly some poly-logarithmic overheads, which could even be sub-exponential in the logarithm, [8]. This in fact would be nearly-linear in the size of the input (!).

In 2005 a team of scientists from Microsoft Research and two US universities established a new method for finding such algorithms based on group theory, and their best method so far gives an exponents of 2.41 [8], very close to Coppersmith-Winograd result and subject to further improvement.

It is also known that efficient algorithms for fast matrix multiplication are a bottleneck for many important algorithms. Any improvement in MM also leads to more efficient algorithms for solving a plethora of other algebra problems, such as inverting matrices, solving systems of linear equations, finding determinants, and also for some graph problems.

1.2 Fixed Size Problems

More or less all attempts to solve these problems in the literature rely on solving, once for all, certain fixed-size problems, which can be the recursively applied to at lower levels, to produce asymptotically fast algorithms. [6,22,17,21,2].

In 1969 Victor Strassen established a first asymptotic improvement to the complexity of dense linear algebra, by showing that two matrices 2x2 can be multiplied by using seven instead of eight multiplications [27].

Then in 1975 Laderman published a solution for multiplying 3x3 matrices with 23 multiplications [19]. In 35 years this topic has generated very considerable interest, see for example [22,17,18,25,20] yet to this day it is not clear if Laderman’s result is optimal and if it can be improved.

1.3 Commutative Solutions

Makarov found an algorithm using 22 multiplications for the product of 3x3 matrices but only in the commutative case, see [20].

1.4 Approximate Solutions

Very recently Gregory Bard found an approximate solution with 22 multiplications see [2]. An approximate solution with 21 was also found, see [24]. However it is much easier to find an approximate solution than an exact one.
2 New Result

2.1 Brent Equations

As in many previous attempts to solve the problem we proceed by solving the so called Brent equations [6]. This approach has been tried many times before, see [6,16,25,3,2,7].

We write the coefficients of each products as three 3x3-matrices for each multiplication $A^{(i)}$, $B^{(i)}$ and $C^{(i)}$, $1 \leq i \leq r$, with $r = 23$ where A will be the left hand side of each product, B the right hand size, and C tells to which coefficient of the result this product contributes.

The Brent equations are as follows:

$$\forall i \forall j \forall k \forall l \forall m \forall n \sum_{i=1}^{r} A^{(i)}_{ij} B^{(i)}_{kl} C^{(i)}_{mn} = \delta_{ni} \delta_{jk} \delta_{lm}$$

For 3x3 matrixes we get 729 cubic equations exactly.

2.2 Solving Brent Equations Modulo 2 and Lifting

In general these equations can have rational coefficients [16], or even complex coefficients. [24].

We are interested only in very simple solutions which work over small finite rings and fields.

First we write these Brent equations [6] modulo 2. Then we solve them modulo 2.

Then we start from scratch and given a solution modulo 2, we try to lift it by very similar formal encoding and solving methods to a solution modulo 4.

So far a solution thus obtained seems to always be also a general solution (for arbitrary rings R, and therefore also for finite fields of arbitrary characteristic). This is to say, we were quite lucky.

2.3 Solving and Conversion

Our equations are written algebraically and the converted to a SAT problem. Our complete equations generator with some embedded converters to SAT can be downloaded from [11].

We have implemented a method to converting this very hard problem to a SAT problem, and we have attempted to solve it, with our portfolio of some 500 SAT solvers and their variants. With many improvements and tweaks we are now able to obtain such a solution for 23 variables in a few days with one single CPU.
2.4 The Laderman Solution From 1975

We present it in a form which can be directly verified with Maple computer algebra software:

\[P01 := (a_{1,1}-a_{1,2}-a_{1,3}+a_{2,1}-a_{2,2}-a_{3,2}-a_{3,3}) \ast (-b_{2,2}); \]
\[P02 := (a_{1,1}+a_{2,1}) \ast (b_{1,2}+b_{2,2}); \]
\[P03 := (a_{2,2}) \ast (b_{1,1}-b_{1,2}+b_{2,1}-b_{2,2}-b_{2,3}+b_{3,1}-b_{3,3}); \]
\[P04 := (-a_{1,1}-a_{2,1}+a_{2,2}) \ast (-b_{1,1}+b_{1,2}+b_{2,2}); \]
\[P05 := (-a_{2,1}+a_{2,2}) \ast (-b_{1,1}+b_{1,2}); \]
\[P06 := (a_{1,1}) \ast (-b_{1,1}); \]
\[P07 := (a_{1,1}+a_{3,1}+a_{3,2}) \ast (b_{1,1}-b_{1,3}+b_{2,3}); \]
\[P08 := (a_{1,1}+a_{3,1}) \ast (-b_{1,3}+b_{2,3}); \]
\[P09 := (a_{3,1}+a_{3,2}) \ast (b_{1,1}-b_{1,3}); \]
\[P10 := (a_{1,1}+a_{1,2}-a_{1,3}-a_{2,2}+a_{2,3}+a_{3,1}+a_{3,2}) \ast (b_{2,3}); \]
\[P11 := (a_{3,2}) \ast (-b_{1,1}+b_{1,3}+b_{2,1}-b_{2,2}-b_{2,3}+b_{3,1}+b_{3,2}); \]
\[P12 := (a_{1,3}+a_{3,2}+a_{3,3}) \ast (b_{2,2}+b_{3,1}-b_{3,2}); \]
\[P13 := (a_{1,3}+a_{3,3}) \ast (-b_{2,2}+b_{3,2}); \]
\[P14 := (a_{1,3}) \ast (b_{3,1}); \]
\[P15 := (-a_{3,2}-a_{3,3}) \ast (-b_{3,1}+b_{3,2}); \]
\[P16 := (a_{1,3}+a_{2,2}-a_{2,3}) \ast (b_{2,3}-b_{3,1}+b_{3,3}); \]
\[P17 := (-a_{1,3}+a_{2,3}) \ast (b_{2,3}+b_{3,3}); \]
\[P18 := (a_{2,2}-a_{2,3}) \ast (b_{3,1}-b_{3,3}); \]
\[P19 := (a_{2,1}) \ast (b_{2,1}); \]
\[P20 := (a_{2,3}) \ast (b_{3,2}); \]
\[P21 := (a_{2,1}) \ast (b_{1,3}); \]
\[P22 := (a_{3,1}) \ast (b_{1,2}); \]
\[P23 := (a_{3,3}) \ast (b_{3,3}); \]
\[\text{expand}(-P06+P14+P19-a_{1,1} \ast b_{1,1}-a_{1,2} \ast b_{2,1}-a_{1,3} \ast b_{3,1}); \]
\[\text{expand}(P01-P04+P05-P06-P12+P14+P15-a_{1,1} \ast b_{1,2}-a_{1,2} \ast b_{2,2}-a_{1,3} \ast b_{3,2}); \]
\[\text{expand}(-P06+P07+P09+P10+P14+P16+P18-a_{1,1} \ast b_{1,3}-a_{1,2} \ast b_{2,3}-a_{1,3} \ast b_{3,3}); \]
\[\text{expand}(P02+P03+P04+P14+P16+P17-a_{2,1} \ast b_{1,1}+a_{2,2} \ast b_{2,1}-a_{2,3} \ast b_{3,1}); \]
\[\text{expand}(P02+P04+P05+P06+P20-a_{2,1} \ast b_{1,2}-a_{2,2} \ast b_{2,2}-a_{2,3} \ast b_{3,2}); \]
\[\text{expand}(P14+P16+P17+P18+P21-a_{2,1} \ast b_{1,3}-a_{2,2} \ast b_{2,3}-a_{2,3} \ast b_{3,3}); \]
\[\text{expand}(P06+P07+P08+P11+P12+P14-a_{3,1} \ast b_{1,1}-a_{3,2} \ast b_{2,1}-a_{3,3} \ast b_{3,1}); \]
\[\text{expand}(P12+P13+P14+P15+P22-a_{3,1} \ast b_{1,2}-a_{3,2} \ast b_{2,2}-a_{3,3} \ast b_{3,2}); \]
\[\text{expand}(P06+P07+P08-P09+P23-a_{3,1} \ast b_{1,3}-a_{3,2} \ast b_{2,3}-a_{3,3} \ast b_{3,3}); \]
2.5 The New Method with 23 Multiplications

We present it in the same form which can also be directly verified with Maple computer algebra software:

\[
P01 := (a_{2,3}) \cdot (-b_{1,2}+b_{1,3}-b_{3,2}+b_{3,3});
\]
\[
P02 := (-a_{1,1}+a_{1,3}+a_{3,1}+a_{3,2}) \cdot (b_{2,1}+b_{2,2});
\]
\[
P03 := (a_{1,3}+a_{2,3}-a_{3,3}) \cdot (b_{3,1}+b_{3,2}-b_{3,3});
\]
\[
P04 := (-a_{1,1}+a_{1,3}) \cdot (-b_{2,1}+b_{2,2}+b_{3,1});
\]
\[
P05 := (a_{1,1}-a_{1,3}+a_{3,3}) \cdot (b_{3,1});
\]
\[
P06 := (-a_{2,1}+a_{2,3}+a_{3,1}) \cdot (b_{1,2}-b_{1,3});
\]
\[
P07 := (-a_{3,1}-a_{3,2}) \cdot (b_{2,2});
\]
\[
P08 := (a_{3,1}) \cdot (b_{1,1}-b_{2,1});
\]
\[
P09 := (-a_{2,1}-a_{2,2}+a_{3,3}) \cdot (b_{3,3});
\]
\[
P10 := (a_{1,1}+a_{2,1}-a_{3,1}) \cdot (b_{1,1}+b_{1,2}+b_{3,3});
\]
\[
P11 := (-a_{1,2}-a_{2,2}+a_{3,2}) \cdot (-b_{2,2}+b_{2,3});
\]
\[
P12 := (a_{3,3}) \cdot (b_{3,2});
\]
\[
P13 := (a_{2,2}) \cdot (b_{1,3}-b_{2,3});
\]
\[
P14 := (a_{2,1}+a_{2,2}) \cdot (b_{1,3}+b_{3,3});
\]
\[
P15 := (a_{1,1}) \cdot (-b_{1,1}+b_{2,1}-b_{3,1});
\]
\[
P16 := (a_{3,1}) \cdot (b_{1,2}-b_{2,2});
\]
\[
P17 := (a_{2,2}) \cdot (-b_{2,2}+b_{2,3}-b_{3,3});
\]
\[
P18 := (-a_{1,1}+a_{1,3}+a_{2,2}+a_{3,1}) \cdot (b_{2,1}+b_{2,2}+b_{3,3});
\]
\[
P19 := (-a_{1,1}+a_{2,2}+a_{3,1}) \cdot (b_{1,3}+b_{2,1}+b_{3,3});
\]
\[
P20 := (-a_{1,2}+a_{2,2}-a_{2,3}-a_{3,3}) \cdot (-b_{3,3});
\]
\[
P21 := (-a_{2,2}-a_{3,1}) \cdot (b_{1,3}-b_{2,2});
\]
\[
P22 := (-a_{1,1}+a_{1,2}+a_{3,1}+a_{3,2}) \cdot (b_{2,1});
\]
\[
P23 := (a_{1,1}+a_{2,3}) \cdot (b_{1,2}-b_{1,3}-b_{3,3});
\]

\[
\text{expand}(P02+P04+P07+P15+P22-a_{1,1}*b_{1,1}-a_{1,2}*b_{2,1}-a_{1,3}*b_{3,1});
\]
\[
\text{expand}(P01-P02+P03+P05-P07+P12+P18+P19-P20+P21+P22+P23-a_{1,1}*b_{1,1}+a_{1,2}*b_{1,2}-a_{1,3}*b_{1,3}+b_{3,2});
\]
\[
\text{expand}(-P02-P04+P07-P15+P17+P18-P19+P21+a_{1,1}+b_{1,1}+a_{1,2}+b_{2,1}-a_{1,3}+b_{3,3});
\]
\[
\text{expand}(P06+P08+P10+P14+P15+P19-P23-a_{2,1}+b_{1,1}+a_{2,2}+b_{2,1}+a_{3,1}+b_{3,1});
\]
\[
\text{expand}(-P01+P06+P09+P14+P16+P21-a_{1,1}+b_{1,2}+a_{2,2}+b_{2,1}+a_{3,1}+b_{3,2});
\]
\[
\text{expand}(P09+P13+P14-a_{2,1}+b_{1,3}+a_{2,2}+b_{2,3}+a_{3,3});
\]
\[
\text{expand}(P02+P04+P05+P07+P08-a_{3,1}+b_{1,1}+a_{3,2}+b_{2,1}+a_{3,3}+b_{3,1});
\]
\[
\text{expand}(-P07+P12+P16-a_{1,1}+b_{1,2}+a_{2,2}+b_{2,1}+a_{3,3}+b_{3,2});
\]
\[
\text{expand}(-P07-P09+P11+P13+P17-P20+P21-a_{3,1}+b_{1,1}+a_{3,2}+b_{2,1}+a_{3,3}+b_{3,3});
\]
3 Equivalent Solutions

An important question is as follows: can our solution be obtained from the Laderman’s solution?

Equivalence relations and the group of transformations which allow to transform one exact non-commutative solution for matrix multiplication, into another such solution, have been studied in [16,13].

We give here a brief description of transformations in question:

As in [16] we write the coefficients of each products as three 3x3-matrices for each multiplication \(A^{(i)}, B^{(i)} \) and \(C^{(i)} \), 1 ≤ \(i \) ≤ \(r \), with \(r = 23 \) where \(A \) will be the left hand side of each product, \(B \) the right hand size, and \(C \) tells to which coefficient of the result this product contributes.

We have the following transformations which transform one solution to another solution:

1. One can permute the \(r \) indexes \(i \).
2. One can cyclically shift the three sets of matrices, \(A^{(i)}, B^{(i)} \) and \(C^{(i)} \) for \(1 \leq i \leq r \) becomes \(B^{(i)}, C^{(i)} \) and \(A^{(i)} \) for \(1 \leq i \leq r \).
3. One reverse the order and transpose: \(A^{(i)}, B^{(i)} \) and \(C^{(i)} \) for \(1 \leq i \leq r \) becomes \((C^{(i)})^T, (B^{(i)})^T \) and \((A^{(i)})^T \) for \(1 \leq i \leq r \).
4. One can rescale as follows: \(a_i A^{(i)}, b_i B^{(i)} \) and \(c_i C^{(i)} \) for \(1 \leq i \leq r \) where \(a_i, b_i, c_i \) are rational coefficients with \(a_i b_i c_i = 1 \) for each \(1 \leq i \leq r \).
5. This method is called “sandwiching”. We replace \(A^{(i)}, B^{(i)} \) and \(C^{(i)} \) for \(1 \leq i \leq r \) by \(U A^{(i)} V^{-1}, V B^{(i)} W^{-1} \) and \(W C^{(i)} U^{-1} \), where \(U, V, W \) are three arbitrary invertible matrices.

Main results in this area of concern to us can be summarized as follows: for the 2x2 case and 7 multiplications, all non-commutative algorithms are equivalent to Strassens algorithm, see [16,13].

For 3x3 matrices and 23 multiplications, Johnson and McLoughlin have in 1986 exhibited two families of infinitely pairwise inequivalent algorithms, see [16]. Now the main question is, is our solution new, or already found in [16].
4 Comparison

4.1 Is Our Solution Equivalent To Any Previous Solution?

An important question is as follows: can our solution be obtained from the Laderman’s solution or from one of the solutions from [16].

To prove inequivalence, we follow the methodology of [16].

Theorem 4.1.1 (Invariant for Equivalent Solutions). It is possible to see, that all the transformations described on the previous page, leave the distribution of $3 \times r$ ranks of matrices unchanged, except that these integers can be permuted.

Proof: This is obvious and was already stated in [16].

Theorem 4.1.2. Our new solution from Section 2.5 is neither equivalent to the Laderman’s solution from Section 2.4 nor it is to any of the solutions given in [16].

Proof: Following [16], the Laderman’s solution has exactly 6 matrices of rank 3 (which occur in products $P01, P03, P06, P10, P11, P14$ in Section 2.4).

At the same time in all new solutions presented in [16], at most 1 matrix will have rank 3.

In our solution we have exactly 2 matrices of rank 3 (which occur in products $P18$ and $P20$, they are 2 and not more such matrices, both being on the left hand size namely $A^{(18)}$, in $A^{(20)}$, and we have checked carefully, there is no mistake).

This proves that all these solutions are distinct.
5 Conclusion

One of the most famous problems in computer algebra is the problem of fast matrix multiplication. The progress in this area is very slow. Many attempts to solve these problems in the literature work by solving, fixed-size problems and apply the solution recursively [6,22,17,21,2]. This leads to pure combinatorial optimisation problems with fixed size.

In 1976 Laderman published a general and non-commutative method to multiply two 3x3 matrices using only 23 multiplications. In 35 years very little no progress was made on this very famous problem and until this day it remains an open problem if this can be done with 22 multiplications.

We have implemented a new method which converts this very hard problem to a SAT problem, and we have attempted to solve it, with our portfolio of some 500 SAT solvers. We were able to produce new solutions to the Laderman’s problem. We present a new fully general and non-commutative solution with also 23 multiplications. We prove that this new solution is NOT equivalent to the Laderman’s original solution, neither it is equivalent to any of the new solutions given in [16]. In fact it is very different.

This preliminary result gives strong evidence that the space of solutions to Laderman’s problem is larger than expected, and therefore it is worth trying to find more such solutions. It further increases the chances that a solution for 22 multiplications exits and it might be found soon by running our algorithms longer, or just by using better SAT solvers. This also motivates further research about SAT solvers and their applications in mathematics and computer science.

Acknowledgements: We would like to thank Richard Brent, Markus Bläser, Denis Farr and Alexey Pospelov for their very helpful comments.
References

7. Nicola Burr: An investigation into fast matrix multiplication, individual research project report, done under supervision of Nicolas T. Courtois, and submitted as a part of BSc Degree in Computer Science at Univesity College London, 6 June 2010.