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1 Random Error

We consider two types of random errors:

• Binary Symmetric Channel(BSC)

• Binary Eraser Channel(BEC)

Binary Symmetric Channel (BSC)

Binary symmetric channel has an input space equal to the output space, {0, 1}. A BSC
with crossover probability 0 ≤ p ≤ 1

2 , denoted as BSCp, flips an input with probability p.

Figure 1: BSCp
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Binary Erasure Channel (BEC)

Binary erasure channel has input space {0, 1} and ouput space {0, 1, ?}. Binary erasure
channel with parameter 0 ≤ ϵ ≤ 1

2 , denotes as BECϵ erase an input with probiablity ϵ.

Figure 2: BECϵ
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2 Basic Probability Facts

Let D be a probability distribution over U . A random variable X ← D is drawn from U
according to U . Let f : U → R be a function.
Variance. The variance is defined as

VarX←D[f(X)] = E[f2(x)]− E[f(X)]2.

Expecation. For random variables X1 and X1,

E(X1 +X2) = E(X1) + E(X2)

and
E(X1X2) = E(X1)E(X2) if and only X1 and X2 are independent.

Expection. For events E1 and E2, the union bound states that

Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2].

Indicator Random Variable. For event E , the indicator variable Iϵ is a 0/1 random
variable defind as

IE(X) =

{
1 if X ∈ ϵ

0 otherwise.

Therefore
E[Iϵ(X)] = Pr[E ].

Tail Bound/Markov Inequality. Let X be a non-negative random variable and α > 0.
Then

Pr[X ≥ α] ≤ E[X]

α
.

E.g.

• If α = 2E[X], Pr[X ≥ α] ≤ 1

2
.

• If α =
√

E[X], Pr[X ≥
√

E[X]] ≤
√
E[X].

Chernoff Bounds for Bernoulli Random Variable. If X1, . . . , Xn are i.i.d. {0, 1}-
valued random variables with Pr[Xi = 1] = p. For ϵ > 0, for large enought n,

Pr
[∑

Xi ≥ (p+ ϵ)n
]
≤ 2−

ϵ2

2
n

and

Pr
[∑

Xi ≤ (p− ϵ)n
]
≤ 2−

ϵ2

3
n.
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3 Shannon Capacity

The capacity of a BSCp channel is

lim
n→∞

r

n

which depends only on the channel. We will show that the capcity of BSCp is 1−H(p) 1.

That is, we will show that there exists encoding and decoding maps E : {0, 1}k → {αk}
and D : {0, 1}αk → {0, 1} for α > 1 such that with high probability over noise vector η
decoding is successful.

Recall that η ∈ {0, 1}n is a random variable with each word being 0 with probability p
and 1 with probability 1− p.

Theorem 1 (Shannon’s Capacity Theorem) For all p ∈ [0, 12), 0 ≤ γ ≤ 1
2 − p, for

large enough n, there exists β = β(γ, p), let α = 1
1−H(p+γ) , and E : {0, 1}k → {0, 1}αk,

D : {0, 1}αk → {0, 1}k ∪ {‘fail’} such that

Pr
η
[D(E(m) + η) = m] ≥ 1− 2−Ω(ϵ2)n.

Proof By the probabilistic method. We look at the random encoding functions. Let
ℓ = k + 1. Let E : {0, 1}k → {0, 1}ℓ be randomly chosen from all such functions. This
means that for a fixed m, E(m) is uniformly random in {0, 1}n. Let ϵ = ϵ(γ) > 0 be small
enough. The decoding function is deifned as:

D(y) =

{
m if m is unique codeword such that ∆(y,E(m)) ≤ (p+ ϵ)n

fail otherwise.

(D is not efficient).
Decoding is not successful when one of the two following events will happen:

1. Too many errors have been incurred. i.e., ∆(y,E(m)) > (p+ϵ)n, where y = E(m)+η.

2. More than 2 messages have encodings in B(y, (p+ ϵ)n).

For fixed m, consider all E.
Case 1. Consider the first event.

Pr
η
[∆(y,E(m)) > (p+ ϵ)n] = Pr[wt(y − E(m)) > (p+ ϵ)n]

= 2−Ω(ϵ2)n (by Chernoff bound)

Case 2.. Consider the second event. Fix a y, (which fixes η and m′ ̸= m.

Pr
E
[E(m′) ∈ B(y, (p+ ϵ)n)] ≤ |B(y, p+ ϵ)|

2n

≤ 2(H(p+ϵ)+o(1))n

1binary entopy: H(x) = −x lg(x)− (1− x) lg(1− x)
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By union bound over all m′,

Pr
E

[
∃m′, E(m′) ∈ B(y, (p+ ϵ)n)

]
≤ 2k+1 · 2n(H(p+ϵ)−1+o(1))

= 2 · 2(1−H(p+γ))n+n(H(p+ϵ)−1+o(1))

= 2 · 2(−H(p+γ)+H(p+ϵ)+o(1))n

By lineraity of expectation,

EE

[
Pr
η
[D(E(m) + η) ̸= m]

]
≤ 2−Ω(ϵ2)n + 2 · 2(H(p+ϵ)−H(p+γ)+o(1))n

<
1

2
2−βn

where β is a function of p and γ. This implies there exists an encoding function that is
decoded correctly with high probability. Our goal is to say there exists such an E that is
good for all messages m, and the union bound is not strong enough for this.

Since we have the above for each fixed m,

Em

[
EE

[
Pr
η
[D(E(m) + η) ̸= m]

]]
<

1

2
2−βn

=⇒ EE

[
Em

[
Pr
η
[D(E(m) + η) ̸= m]

]]
<

1

2
2−βn

Therefore there exsits E∗ such that

Em

[
Pr
η
[D(E∗(m) + η) ̸= m]

]
<

1

2
2−βn

Applying Markov’s inequality,

Pr
m
[Pr
η
[D(E∗(m) + η) ̸= m] > 2−βn] <

1

2
.

Hence, for at least 1/2 fraction of the messages, m, E∗ fails on m with probability < 2−βn.
Removing all the other messages, which are fewer than 1

2e
ℓ, we are left with a code with

> 2ℓ · 12 = 2k many messages for which E∗ decodes correctly with probability 1− 2−βn.

Observation 2 Neither E∗ nor D∗ are efficiently computable.

3.1 Connection between Shannon and Hamming

Claim 3 If C ⊆ {0, 1}n and ∆(C) = 2p+ ϵ, then we can communicate over BSCp decoding

correctly with 1− 2−Ω(ϵ2).

Proof By Chernoff bound, with high probability, the number of errors is

≤ ∆(c)

2
=

p+ ϵ

2

So we have unique closest codeword.
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4 Shannon’s Converse Theorem

Theorem 4 (Shannon’s Converse Theorem) For all p ∈ [0, 12), for all ϵ, δ > 0, for

large enough n, for k ≥ (1−H(p) + ϵ)n, for all E : {0, 1}k → {0, 1}n, for all D : {0, 1}n →
{0, 1}k

Pr
η,m←{0,1}k

[D(E(m) + η) ̸= m] ≥ 1− δ.

In other words, if we are sending information at a rate > 1 −H(p) + ϵ, decoding is on
average erroneous for any encoding/decoding.

Intuition

For 1 −H(p) being the upperbound, suppose D : {0, 1}n → {0, 1}k ∪ {‘fail’} decodes with
negligible error probability. Typical noise has weight ∈ [(p − ϵ)n, (p + ϵ)n]. So E(m) + η
takes approximately 2H(p)n many possibilities. To decode correctly, D should map most of
these 2H(p) strings back to m. So |C| ≤ 2n/2H(p)n, therefore R < 1−H(p).
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