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1 Random Error

We consider two types of random errors:
e Binary Symmetric Channel(BSC)

e Binary Eraser Channel(BEC)

Binary Symmetric Channel (BSC)

Binary symmetric channel has an input space equal to the output space, {0,1}. A BSC
with crossover probability 0 < p < %, denoted as BSC,, flips an input with probability p.

Figure 1: BSC,

Binary Erasure Channel (BEC)

Binary erasure channel has input space {0,1} and ouput space {0,1,?}. Binary erasure
channel with parameter 0 < e < %, denotes as BEC, erase an input with probiablity e.

Figure 2: BEC,




2 Basic Probability Facts

Let D be a probability distribution over U. A random variable X < D is drawn from U
according to U. Let f: U — R be a function.
Variance. The variance is defined as

Varx. p[f(X)] = E[f*(2)] — E[f(X)]*.
Expecation. For random variables X; and X1,
E(Xl + XQ) = E(Xl) + E(XQ)

and
E(X1X2) = E(X1)E(X2) if and only X; and X5 are independent.

Expection. For events & and &, the union bound states that
Pr[&; U &) < Pr[&] + Pr[&s).

Indicator Random Variable. For event &, the indicator variable I, is a 0/1 random

variable defind as
1 fXce
Ie(X) = {

0 otherwise.

Therefore
E[I.(X)] = Pr[&].

Tail Bound/Markov Inequality. Let X be a non-negative random variable and o > 0.

Then E
Pr[X > o] < L
a

E.g.
o If o =2E[X], Pr[X > a] <

o If o = /E[X], Pr[X > E[X]] < VE[X].

Chernoff Bounds for Bernoulli Random Variable. If Xi,..., X, are iid. {0,1}-
valued random variables with Pr[X; = 1] = p. For € > 0, for large enought n,

N

62
Pr [Z Xi>(p+ e)n] <2727

and
2

Pr [Z Xi<(p— e)n} <275"



3 Shannon Capacity

The capacity of a BSC,, channel is
r

lim —

n—oo n
which depends only on the channel. We will show that the capcity of BSC,, is 1 — H(p) ﬂ
That is, we will show that there exists encoding and decoding maps E : {0,1}* — {ak}
and D : {0,1}** — {0,1} for & > 1 such that with high probability over noise vector 7
decoding is successful.

Recall that n € {0,1}" is a random variable with each word being 0 with probability p

and 1 with probability 1 — p.
Theorem 1 (Shannon’s Capacity Theorem) For all p € [0, %), 0 <~y < % —p, for

large enough n, there exists 8 = [(v,p), let o = and E : {0,1}k — {(),1}'1’“,

D :{0,1}** — {0,1}* U {“fail’} such that

I S
1-H(p+v)’

Pr[D(E(m) +n) =m] > 1 — 2",
n

Proof By the probabilistic method. We look at the random encoding functions. Let
{ =k+1. Let E: {0,1}* — {0,1}" be randomly chosen from all such functions. This
means that for a fixed m, E(m) is uniformly random in {0,1}". Let € = ¢(y) > 0 be small
enough. The decoding function is deifned as:

D {m if m is unique codeword such that A(y, E(m)) < (p+ €)n
y g

fail otherwise.

(D is not efficient).
Decoding is not successful when one of the two following events will happen:

1. Too many errors have been incurred. i.e., A(y, E(m)) > (p+e€)n, where y = E(m)+.
2. More than 2 messages have encodings in B(y, (p + €)n).

For fixed m, consider all E.
Case 1. Consider the first event.

F:Ir[A(y, E(m)) > (p+ €)n] = Priwt(y — E(m)) > (p + €)n]
= 2~ US)n (by Chernoff bound)
Case 2.. Consider the second event. Fix a y, (which fixes n and m' # m.

< =0 7
)] < 2
< 9(H(p+e)+o(1))n

I;r[E(m/) € B(y,(p+e

"binary entopy: H(x) = —zlg(z) — (1 —z)1g(1 — z)



By union bound over all m/,
};1" [Elm/, E(m') c B(y, (p + E)TL)] < ok+1 2n(H(p+e)—1+o(1))
— 9. 9(I=H(p+y))n+n(H (pte)—1+o(1))
— 9. 9(=H(p+7)+H(p+e)+o(1))n
By lineraity of expectation,
Eg |Pr[D(E(m) +n) #m]| < 9~ U 4 o . 9(H(p+e)—H(p+y)+o(1))n
n

1
< -27Pm
2

where (8 is a function of p and . This implies there exists an encoding function that is
decoded correctly with high probability. Our goal is to say there exists such an F that is
good for all messages m, and the union bound is not strong enough for this.

Since we have the above for each fixed m,

B [B [Br{D(B(m) + 1) # m]] < 327
— Ep [Em [I;r[D(E(m) +p) £ m]H _ %Q-Bn
Therefore there exsits E* such that
B [BrD(E* ) + 1) # | < G2

Applying Markov’s inequality,

N | =

%r[}:?r[D(E*(m) +n) #m]>27 <

Hence, for at least 1/2 fraction of the messages, m, E* fails on m with probability < 27/,
Removing all the other messages, which are fewer than %ee, we are left with a code with
> 2. % = 2% many messages for which E* decodes correctly with probability 1 — 277", B

Observation 2 Neither E* nor D* are efficiently computable.

3.1 Connection between Shannon and Hamming

Claim 3 IfC C {0,1}" and A(C) = 2p+e¢, then we can communicate over BSC, decoding
correctly with 1 — 2~
Proof By Chernoff bound, with high probability, the number of errors is

< A(c) _pte

-2 2

So we have unique closest codeword. B




4 Shannon’s Converse Theorem

Theorem 4 (Shannon’s Converse Theorem) For all p € |0, %), for all €,6 > 0, for
large enough n, for k> (1 — H(p) + €)n, for all E : {0,1}* — {0,1}", for all D : {0,1}" —
{0,1}k

Pr  [D(E(m)+n)#m]>1-4.
n,m+{0,1}*

In other words, if we are sending information at a rate > 1 — H(p) + €, decoding is on
average erroneous for any encoding/decoding.

Intuition

For 1 — H(p) being the upperbound, suppose D : {0,1}" — {0,1}" U {*fail’} decodes with
negligible error probability. Typical noise has weight € [(p — €)n, (p + €)n]. So E(m) + n
takes approximately 2 (p)n many possibilities. To decode correctly, D should map most of
these 211(P) strings back to m. So |C| < 27/2H®)" therefore R < 1 — H(p).
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