CS 860 Topics in Coding Theory	

September 22, 2025

Lecture 4+5

Lecturer: Elena Grigorescu

Scribe: Zhiang Wu

In this note, we use $\langle \cdot, \cdot \rangle$ to denote the inner product. Let $[n] = \{1, 2, \dots, n\}$.

1 Hadamard Code

Last time, we ended with the Plotkin bound as follows.

Claim 1 (Plotkin bound) Let $C \subseteq \mathbb{F}_2^n$ denote a binary code of code length n and distance d. If $d \geq \frac{n}{2}$, then $|C| \leq 2n$.

When $d = \frac{n}{2}$, we will see that the *Hadamard code* achieves the tight size bound. Below, we first define the Hadamard code and introduce the notion of *dual code*. Next, we demonstrate that the Hadamard code is the dual of the Hamming code. Finally, we show the distance and size of the Hadamard code.

Definition 2 (Hadamard Code) Recall that the Hamming code Ham is

$$\operatorname{Ham} = \left\{ c \in \mathbb{F}_2^{2^t - 1} \mid Hc = 0 \bmod 2 \right\},\,$$

where $H \in \mathbb{F}_2^{t \times (2^t - 1)}$ and the *i*-th column of H is the binary representation of i. The Hadamard code Had is defined with respect to H as

$$\operatorname{Had} = \left\{ c \in \mathbb{F}_2^{2^t - 1} \mid a^\top H = c \text{ for some } a \in \mathbb{F}_2^t \right\}.$$

We observe the following property of the Hadamard code.

Claim 3 (Property of Had) $\forall c \in \text{Had}, \forall y \in \text{Ham}, \langle c, y \rangle = 0.$

Proof By the definition of Had, since $c \in \text{Had}$, there exists $a \in \mathbb{F}_2^t$ such that $a^\top H = c$. Then $\langle c, y \rangle = \langle a^\top H, y \rangle = \langle a, Hy \rangle$. Since $y \in \text{Ham}$, then Hy = 0. Hence $\langle c, y \rangle = 0$.

Definition 4 (Dual Code) For a linear code $C \subseteq \mathbb{F}_2^n$, its dual code, denoted as C^{\perp} , is

$$C^{\perp} = \left\{ c' \in \mathbb{F}_2^n \mid \left\langle c', c \right\rangle = 0 \ \forall c \in C \right\}.$$

Remark Had is the dual code of Ham.

Claim 5 (Size of Had) Let $n = 2^t - 1$. Then |Had| = n + 1.

Proof From lecture 2, we have $\dim(\operatorname{Ham}) = \dim(\ker(H)) = n - t$. Note that Had is the orthogonal complement of Ham. Then $\dim(\operatorname{Had}) = t$ by the fundamental theorem of linear algebra. Hence, $|\operatorname{Had}| = 2^t = n + 1$.

Before proving the distance of Had, we discuss an alternative view of the Hadamard code. Each codeword c is considered as a function parameterized by $a \in \mathbb{F}_2^t$, i.e.,

$$\operatorname{Had} = \{ c_a : \mathbb{F}_2^t \setminus \{0\} \to \mathbb{F}_2 \mid a \in \mathbb{F}_2^t \},\$$

where $c_a(x) = \langle a, x \rangle$ for $x \in \mathbb{F}_2^t \setminus \{0\}$. For each codeword $c \in \text{Had}$, it can be represented as $c = (\langle a, b_1 \rangle, \dots, \langle a, b_{2^t - 1} \rangle)$, where $b_i \in \mathbb{F}_2^t$ corresponds to the binary representation of i for $i \in [2^t - 1]$.

Claim 6 (Distance of Had) Let $n = 2^t - 1$. Then $\Delta(\text{Had}) = \frac{n+1}{2}$.

Proof From lecture 2, it is equivalent to show that $\min_{\substack{c \in \text{Had} \\ c \neq 0}} wt(c,0) = \frac{n+1}{2}$. We prove that for every $x \in \mathbb{F}_2^t \setminus \{0\}$ such that $\langle a, x \rangle = 0$, we can uniquely pair x with $x' \in \mathbb{F}_2^t \setminus \{0, x\}$ so that $c_a(x') = 1$. Let $x' = x + e_j$, where $a_j \neq 0$ and e_j is j-th standard basis. Then $\langle a, x + e_j \rangle = \langle a, x \rangle + \langle a, e_j \rangle = a_j = 1$. Since $c \neq 0$, at least one $\langle a, x \rangle \neq 0$. Hence, the distance of Had is $\frac{2^t - 2}{2} + 1 = \frac{n+1}{2}$.

We have show that there exists a code Had such that |Had| = n + 1 and $\Delta(\text{Had}) = \frac{n+1}{2}$ for an odd integer n. It can be simply extended to an arbitrary integer by considering the following construction:

$$\operatorname{Had}' = \left\{ c_{a,b} : \mathbb{F}_2^t \setminus \{0\} \to \mathbb{F}_2 \mid a \in \mathbb{F}_2^t, b \in \mathbb{F}_2 \right\},\,$$

where $c_{a,b}(x) = \langle a, x \rangle + b$ for $x \in \mathbb{F}_2^t \setminus \{0\}$.

2 Fourier Analysis over the Boolean Hypercube

We consider the vector space of real-valued functions over the boolean hypercube, i.e., $V = \{f : \mathbb{F}_2^n \to \mathbb{R}\}$. There are two basis. The first is the standard basis $\{\mathbb{1}_w \mid w \in \mathbb{F}_2^n\}$, where

$$\mathbb{1}_w(x) = \begin{cases} 1 & \text{if } x = w \\ 0 & \text{otherwise} \end{cases}.$$

The second is the Fourier basis $\{\chi_y : \mathbb{F}_2^n \to \mathbb{R} \mid y \in \mathbb{F}_2^n\}$, where $\chi_y(x) = (-1)^{\langle x,y \rangle}$ for $x \in \mathbb{F}_2^n$. We make the following two observations:

- $\forall x, z \in \mathbb{F}_2^n$, $\chi_y(x)\chi_y(z) = \chi_y(x+z)$;
- $\forall x, z \in \mathbb{F}_2^n$, $\chi_x(y)\chi_z(y) = \chi_{x+z}(y)$.

Recall that the inner product $\langle \cdot, \cdot \rangle : \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{R}$ of two functions $f, g : \mathbb{F}_2^n \to \mathbb{R}$ is

$$\langle f, g \rangle = \mathbb{E}[fg] = \sum_{x \in \mathbb{F}_2^n} \frac{1}{2^n} f(x) g(x).$$

Claim 7 The Fourier basis is an orthonormal basis.

Proof Norm of χ_y . For each χ_y , we have $\langle \chi_y, \chi_y \rangle = \frac{1}{2^n} \sum_x \chi_y (x+x) = \frac{1}{2^n} \sum_x (-1)^0 = 1$. **Orthogonal.** For $\chi_y \neq \chi_z$, we have $\langle \chi_y, \chi_z \rangle = \frac{1}{2^n} \sum_x \chi_{y+z}(x) = \frac{1}{2^n} \sum_x (-1)^{\langle y+z,x \rangle}$. Note that $y+z \neq 0$. We apply the same trick used in Claim 6 to pair each x where $\langle y+z, x \rangle = 0$ to a unique x' such that $\langle y+z, x' \rangle = 1$. We have $(-1)^{\langle y+z,x \rangle} + (-1)^{\langle y+z,x' \rangle} = 0$. Hence, $\langle \chi_y, \chi_z \rangle = 0$.

Definition 8 (Fourier Transform) For a function $f \in V$, it can be uniquely expressed as

$$f = \sum_{y \in \mathbb{F}_2^n} \hat{f}(y) \chi_y,$$

where $\hat{f}: \mathbb{F}_2^n \to \mathbb{R}$.

Claim 9 $\forall y \in \mathbb{F}_2^n$, $\hat{f}(y) = \langle f, \chi_y \rangle$.

Proof

$$\langle f, \chi_y \rangle = \left\langle \sum_x \hat{f}(x) \chi_x, \chi_y \right\rangle$$

$$= \sum_x \hat{f}(x) \langle \chi_x, \chi_y \rangle$$

$$= \hat{f}(y) \langle \chi_y, \chi_y \rangle + \sum_{x \in \mathbb{F}_2^n : x \neq y} \hat{f}(x) \langle \chi_x, \chi_y \rangle$$

$$= \hat{f}(y) + 0.$$

where the first equality follows from Definition 8, and the forth inequality follows from Claim 7. \blacksquare

Claim 10 (Parseval's Identity) $\forall f, g \in V, \langle f, g \rangle = \sum_{y} \hat{f}(y)\hat{g}(y).$

Proof

$$\langle f, g \rangle = \left\langle f, \sum_{y} \hat{g}(y) \chi_{y} \right\rangle = \sum_{y} \hat{g}(y) \langle f, \chi_{y} \rangle = \sum_{y} \hat{g}(y) \hat{f}(y),$$

where the first equality follows from Definition 8, and the second equality follows form Claim 9. \blacksquare

Corollary 11 $\forall f \in V, \ \hat{f}(0) = \mathbb{E}[f].$

Proof

$$\hat{f}(0) = \langle f, \chi_0 \rangle = \mathbb{E}[f],$$

where the first equality follows form Claim 9, and the second equality follows form $\chi_0 = 1$.

Definition 12 (Convolution) $\forall f, g \in V$, the convolution of f and g is

$$(f * g)(x) = \mathbb{E}_y[f(y)g(x+y)].$$

Claim 13 The convolution operator * is commutative and associative.

Claim 14
$$\forall x \in \mathbb{F}_2^n$$
, $\widehat{f * g}(x) = \widehat{f}(x)\widehat{g}(x)$.

Proof

$$\hat{f}(x)\hat{g}(x) = \langle f, \chi_x \rangle \langle g, \chi_x \rangle
= \frac{1}{2^{2n}} \left(\sum_y f(y) \chi_x(y) \right) \left(\sum_z g(z) \chi_x(z) \right)
= \frac{1}{2^{2n}} \sum_{y,z} f(y) g(z) \chi_x(y+z)
= \frac{1}{2^{2n}} \sum_{y,t} f(y) g(t+y) \chi_x(t)
= \frac{1}{2^n} \sum_t \chi_x(t) \left(\sum_y \frac{1}{2^n} f(y) g(t+y) \right)
= \frac{1}{2^n} \sum_t \chi_x(t) (f * g)(t)
= \langle \chi_x, f * g \rangle
= \widehat{f * g}(x),$$

where the first and last equalities follow from Claim 9. \blacksquare

For a code $C \subseteq \mathbb{F}_2^n$, define its characteristic functions as

$$\mathbb{1}_C(c) = \begin{cases} 1 & \text{if } c \in C \\ 0 & \text{otherwise} \end{cases}.$$

3 Application of Fourier Analysis

Claim 15 Let $C \subseteq \mathbb{F}_2^n$ be a linear code. Then $\widehat{\mathbb{1}_C} = \frac{|C|}{2^n} \mathbb{1}_{C^{\perp}}$.

Proof $\forall x \in \mathbb{F}_2^n$,

$$\begin{split} \widehat{\mathbb{1}_C}(x) &= \left\langle \widehat{\mathbb{1}_C}, \chi_x \right\rangle \\ &= \frac{1}{2^n} \sum_y \widehat{\mathbb{1}_C}(y) \chi_x(y) \\ &= \frac{1}{2^n} \left(\sum_{y \in \mathbb{F}_2^n : y \in C} \widehat{\mathbb{1}_C}(y) \chi_x(y) + \sum_{y \in \mathbb{F}_2^n : y \notin C} \widehat{\mathbb{1}_C}(y) \chi_x(y) \right) \\ &= \frac{1}{2^n} \sum_{y \in \mathbb{F}_2^n : y \in C} \chi_x(y) \\ &= \frac{1}{2^n} \sum_{y \in \mathbb{F}_3^n : y \in C} (-1)^{\langle x, y \rangle}, \end{split}$$

where the forth equality follows from the definition of $\widehat{\mathbb{1}_C}$. Note that if $x \in C^{\perp}$, $\langle x, y \rangle = 0$ and $\sum_{y \in \mathbb{F}_2^n : y \in C} (-1)^{\langle x, y \rangle} = |C|$. Otherwise, there exists $y^* \in \mathbb{F}_2^n$ such that $\langle x, y^* \rangle = 1$. By the same trick used in Claim 6, if $x \notin C^{\perp}$, we have $\sum_{y \in \mathbb{F}_2^n : y \in C} (-1)^{\langle x, y \rangle} = 0$.

Claim 16 Let $C \subseteq \mathbb{F}_2^n$. Then $\mathbb{1}_C * \mathbb{1}_C = \frac{|C|}{2^n} \mathbb{1}_C$.

Proof $\forall x \in \mathbb{F}_2^n$,

$$(\mathbb{1}_C * \mathbb{1}_C)(x) = \sum_y \left(\widehat{\mathbb{1}_C * \mathbb{1}_C}(y)\right) \chi_y(x)$$

$$= \left(\frac{|C|}{2^n}\right)^2 \sum_y \left(\mathbb{1}_{C\perp}(y)\right) \chi_y(x)$$

$$= \left(\frac{|C|}{2^n}\right)^2 \sum_{y \in \mathbb{F}_n^n : y \in C^\perp} \chi_y(x).$$

Since C is linear, we have $|C^{\perp}| \cdot |C| = 2^n$. By the same tricks used in Claim 6 and Claim 14, we have

$$\left(\frac{|C|}{2^n}\right)^2 \sum_{y \in \mathbb{F}_2^n : y \in C^{\perp}} \chi_y(x) = \left(\frac{|C|}{2^n}\right)^2 |C^{\perp}| \mathbb{1}_C = \frac{|C|}{2^n} \mathbb{1}_C.$$

4 LP Bound

The goal of this section is to prove the following theorem.

Theorem 17 (LP Bound) Let $C \subseteq \mathbb{F}_2^n$ be a linear code of distance $d \leq \frac{n}{2}$ and $\delta = \frac{d}{n}$. Then

$$|C| \le 2^{(H(\tau_{LP}) + o(1))n},$$

where $\tau_{LP} = \frac{1}{2} - \sqrt{\delta(1-\delta)}$.

Below, we first state the covering lemma and directly apply it to derive the LP bound. Then, we prove the covering lemma via a helper lemma on the existence of a function of special properties. Finally, we introduce the special function to end the proof.

We define $r = \tau n$ as a function of τ and $\theta_r = 2\sqrt{r(1-r)} - o(n)$ as a function of r.

Lemma 18 (Covering Lemma) Let $C \subseteq \mathbb{F}_2^n$ be a linear code of distance d and C^{\perp} be the dual of C. Let r be a radius such that $\theta_r \geq n - 2d + 1$ and B_r be the hamming bal of radius r, where $r = \tau n$ and $\theta_r = 2\sqrt{r(n-r)} - o(n) = 2n(\sqrt{\tau(1-\tau)} - o(1))$. Then

$$\left| \bigcup_{z \in C^{\perp}} (z + B_r) \right| \ge \frac{2^n}{n}.$$

4.1 Proof of the LP Bound

Proof Now, we leverage the covering lemma to prove LP bound. Take $r = \tau_{\text{LP}} n$. We neglect the o(1) terms and verify that $\theta_r \geq n - 2d + 1$ below.

$$\begin{aligned} \theta_r &= 2n\sqrt{\tau_{\text{LP}}(1-\tau_{\text{LP}})} \\ &= 2n\sqrt{\left(\frac{1}{2} - \sqrt{\delta(1-\delta)}\right)\left(\frac{1}{2} + \sqrt{\delta(1-\delta)}\right)} \\ &= 2n\sqrt{\delta^2 - \delta + \frac{1}{4}} \\ &\geq n - 2d + 1. \end{aligned}$$

Note that

$$\left| \bigcup_{z \in C^{\perp}} (z + B_r) \right| \le \sum_{z \in C^{\perp}} |z + B_r| = |C^{\perp}| \cdot |B_r| = \frac{2^n}{|C|} 2^{(H(\tau_{\text{LP}}) + o(1))n},$$

since $|C^{\perp}| \cdot |C| = 2^n$ and $|B_r| = 2^{(H(\tau_{\text{LP}}) + o(1))n}$. Meanwhile, the covering lemma (Lemma 18) gives a lower bound of $|\bigcup_{z \in C^{\perp}} (z + B_r)|$. Then

$$\left| \frac{2^n}{n} \le \left| \bigcup_{z \in C^{\perp}} (z + B_r) \right| \le \frac{2^n}{|C|} 2^{(H(\tau_{\text{LP}}) + o(1))n}.$$

We have $|C| \leq n2^{(H(\tau_{LP})+o(1))n} = 2^{(H(\tau_{LP})+o(1))n}$ as n is absorbed by the o(1) term.

4.2 Proving the Covering Lemma

Below, we first set up useful notations and observations. Then, we state a helper lemma and apply it to derive the covering lemma. Finally, we prove the helper lemma.

For two functions f and g, we denote $f \ge g$ if and only if $f(x) \ge g(x)$ for any x.

We consider a layered graph based on the boolean hypercube \mathbb{F}_2^n . There is an edge between $v_i, v_j \in \mathbb{F}_2^n$ if and only if $\Delta(v_i, v_j) = 1$, i.e., $v_i = v_j + e_k$ for some $k \in [n]$, where $e_k \in \mathbb{F}_2^n$ is the k-th standard basis of \mathbb{F}_2^n . Let A denote the adjacency matrix of the layer graph. Then $A_{y,y+e_k} = 1$ for each $y \in \mathbb{F}_2^n$ such that $y \neq 1$, and each $k \in [n]$.

Consider the function $L: \mathbb{F}_2^n \to \mathbb{R}$ defined as follows.

$$L(x) = \begin{cases} 2^n & \text{if } x = e_k \text{ for some } k \in [n] \\ 0 & \text{otherwise} \end{cases}.$$

Claim 19 $\forall f \in V, Af = L * f.$

Proof $\forall x \in \mathbb{F}_2^n$, $(L*f)(x) = \sum_y \frac{1}{2^n} L(y) f(y+x)$. Note that $L(y) = 2^n$ if and only if $y = e_k$ for some $k \in [n]$. Then $(L*f)(x) = \sum_{i \in [n]} f(x+e_i)$, which is exactly the definition of (Af)(x) since $A_{x,x'} = 1$ if $x' = x + e_k$ for some $k \in [n]$.

Claim 20 $\forall x \in \mathbb{F}_2^n$, $\hat{L}(x) = n - 2\mathrm{wt}(x)$.

Proof

$$\hat{L}(x) = \langle L, \chi_x \rangle
= \frac{1}{2^n} \sum_{z} (-1)^{\langle z, x \rangle} L(z)
= \frac{1}{2^n} \sum_{i \in [n]} (-1)^{\langle e_i, x \rangle} L(e_i)
= \sum_{i \in [n]} (-1)^{x_i}
= |\{i \in [n] \mid x_i = 0\}| - |\{i \in [n] \mid x_i = 1\}| = n - 2 \text{wt}(x).$$

Claim 21 Let $B = B(0, \tau n)$. Let $C \subseteq \mathbb{F}_2^n$ be a code. $\forall x \in \mathbb{F}_2^n$, $(\mathbb{1}_C * \mathbb{1}_B)(x) = \frac{|C \cap B(x, \tau n)|}{2^n}$.

Proof

$$(\mathbb{1}_C * \mathbb{1}_B)(x) = \frac{1}{2^n} \sum_y \mathbb{1}_C(y) \mathbb{1}_B(x+y)$$
$$= \frac{1}{2^n} \sum_{y \in C} \mathbb{1}_B(x+y).$$

Note that $\mathbb{1}_B(x+y) = 1$ if $x+y \in B$, i.e., $y \in B(x, \tau n)$. Hence, $(\mathbb{1}_C * \mathbb{1}_B)(x) = \frac{|C \cap B(x, \tau n)|}{2^n}$.

Lemma 22 (Helper Lemma) Let $r = \tau n$. Let B = B(0,r) denote the Hamming ball of radius r. There exists a function $f : \mathbb{F}_2^n \to \mathbb{R}$ such that

- (1) supp(f) $\subseteq B$;
- (2) $f \ge 0$;
- (3) Af $\geq \theta_r f$, where $\theta_r = 2\sqrt{r(n-r)} o(n)$.

Remark The helper lemma implies that the largest eigenvalue of A is at least θ_r .

$$\lambda_B = \max \left\{ \frac{\langle Af, f \rangle}{\langle f, f \rangle} \mid f :\in \mathbb{F}_2^n \to \mathbb{R}, \text{ supp}(f) \subseteq B \right\} \ge \theta_r.$$

Now, we are ready to prove the covering lemma.

Proof of the Covering Lemma Let f denote a function given by the helper lemma. Consider a function $F: \mathbb{F}_2^n \to \mathbb{R}$ defined as follows:

$$F(z) = (\mathbb{1}_{C^{\perp}} * \mathsf{f})(z) = \frac{1}{2^n} \sum_{x} \mathbb{1}_{C^{\perp}}(x) \mathsf{f}(x+z). \tag{1}$$

Note that $F(z) \neq 0$ only if there exits some $x \in C^{\perp}$ such that $f(x+z) \neq 0$. Then $x+z \in B$, i.e., $x \in z+B$, since $\mathrm{supp}(f) \subseteq B$. Hence, $\mathrm{supp}(F) \subseteq S$, where $S = \bigcup_{z \in C^{\perp}} (z+B)$. We next consider the expectation of F to relate |S|.

$$(\mathbb{E}[F])^2 = \left(\frac{1}{2^n} \sum_{x \in S} F(x)\right)^2$$

$$\leq \frac{1}{2^{2n}} |S| \left(\sum_{x \in S} F^2(x)\right)$$

$$= \frac{|S|}{2^n} \langle F, F \rangle$$

$$\leq \frac{|S|}{2^n} n(\mathbb{E}[F])^2,$$

where the first inequality follows from the Cauchy-Schwartz inequality, the second equality follows from the definition of inner product, and the second inequality follows from Claim 23.

Hence,
$$|S| \ge \frac{2^n}{n}$$
.

Claim 23 For the function $F \in V$ defined as Equation (1), $\langle F, F \rangle \leq n(\mathbb{E}[F])^2$

Proof We consider the upper and lower bounds of $\langle AF, F \rangle$. **Lower Bound.** We have

$$\begin{split} AF &= F * L \\ &= (\mathbb{1}_{C^{\perp}} * \mathsf{f}) * L \\ &= \mathbb{1}_{C^{\perp}} * (\mathsf{f} * L) \\ &= \mathbb{1}_{C^{\perp}} * A\mathsf{f} \\ &\geq \mathbb{1}_{C^{\perp}} * \theta_r \mathsf{f} \\ &= \theta_r (\mathbb{1}_{C^{\perp}} * \mathsf{f}) \\ &= \theta_r F, \end{split}$$

where the equalities follows from the definitions of F and convolution, and the inequality follows from the helper lemma. Then $\langle AF, F \rangle \geq \theta_r \langle F, F \rangle \geq (n-2d+1)\langle F, F \rangle$. **Upper Bound.** We have

$$\langle AF,F\rangle = \sum_{x} \widehat{AF}(x)\widehat{F}(x) = \sum_{x} \widehat{L*F}(x)\widehat{F}(x) = \sum_{x} \widehat{L}(x)\widehat{F}(x)\widehat{F}(x).$$

Recall that $F(x) = (\mathbb{1}_{C^{\perp}} * \mathsf{f})(x)$ and $\hat{F}(x) = \widehat{\mathbb{1}_{C^{\perp}}} * \mathsf{f}(x) = \widehat{\mathbb{1}_{C^{\perp}}}(x)\hat{\mathsf{f}}(x) = \frac{|C|}{2^n}\mathbb{1}_C(x)\hat{\mathsf{f}}(x)$. Then $\hat{F}(x) = 0$ for any $x \in \mathbb{F}_2^n$ such that $1 \leq \operatorname{wt}(x) \leq d - 1$, since C is of distance d.

$$\sum_{x} \hat{L}(x)\hat{F}(x)\hat{F}(x) = \hat{L}(0)\hat{F}^{2}(0) + \sum_{x \in \mathbb{F}_{2}^{n}: \text{wt}(x) \geq d} \hat{L}(x)\hat{F}^{2}(x)$$

$$= \mathbb{E}\left[L\right] (\mathbb{E}\left[F\right])^{2} + \sum_{x \in \mathbb{F}_{2}^{n}: \text{wt}(x) \geq d} (n - 2\text{wt}(x))\hat{F}^{2}(x)$$

$$\leq n(\mathbb{E}\left[F\right])^{2} + (n - 2d)\langle F, F \rangle.$$

Combing the upper and lower bounds, we have

$$(n - 2d + 1)\langle F, F \rangle \le n(\mathbb{E}[F])^2 + (n - 2d)\langle F, F \rangle.$$

Hence, $\langle F, F \rangle \leq n(\mathbb{E}[F])^2$.

Finally, we construct a special function for the helper lemma.

Proof of the Helper Lemma We consider the function constructed as follows. First, we let f(x) = f(y) if $x, y \in \mathbb{F}_2^n$ such that $\operatorname{wt}(x) = \operatorname{wt}(y)$. We abuse the notation and denote f(i) as the values of weight i vectors in \mathbb{F}_2^n . Recall that $r = \tau n$.

$$f(i) = \begin{cases} \frac{1}{\sqrt{\binom{n}{i}}} & \text{if } i \in [r - \sqrt{n}, r] \\ 0 & \text{otherwise} \end{cases}.$$

It is easy to see that supp(f) $\subseteq B$ and $f \ge 0$. Below, we verify that $Af \ge \theta_r f$.

Recall that $Af(x) = \sum_{i \in [n]} f(x + e_i)$. Then

$$A\mathsf{f}(x) = \mathrm{wt}(x)\mathsf{f}(\mathrm{wt}(x)-1) + (n-\mathrm{wt}(x))\mathsf{f}(\mathrm{wt}(x)+1),$$

since there are $\operatorname{wt}(x)$ vectors of weight $\operatorname{wt}(x)-1$ from x. Thus, for $i\in[r-\sqrt{n}+1,r-1],$

$$A\mathsf{f}(i) = \left(\sqrt{i(n-i)} + \sqrt{(n-i)(i+1)}\right)\mathsf{f}(i) \ge \left(2\sqrt{r(n-r)} - o(n)\right)\mathsf{f}(i),$$

where the equality follows from the construction of f and $\frac{\mathsf{f}(i)}{\mathsf{f}(i+1)} = \sqrt{\frac{\binom{n}{i+1}}{\binom{n}{i}}} = \sqrt{\frac{n-i}{i+1}}$.