CS 860 Topics in Coding Theory September 22, 2025

Lecture 445

Lecturer: Elena Grigorescu Scribe:  Zhiang Wu

In this note, we use (-, ) to denote the inner product. Let [n] = {1,2,...,n}.

1 Hadamard Code

Last time, we ended with the Plotkin bound as follows.

Claim 1 (Plotkin bound) Let C C FY denote a binary code of code length n and distance
d. If d> %, then |C| < 2n.

When d = 3, we will see that the Hadamard code achieves the tight size bound. Be-

low, we first define the Hadamard code and introduce the notion of dual code. Next, we
demonstrate that the Hadamard code is the dual of the Hamming code. Finally, we show

the distance and size of the Hadamard code.
Definition 2 (Hadamard Code) Recall that the Hamming code Ham is
Ham = {c € F3 ™" | He=0mod 2},

t_
where H € ng(Q Y and the i-th column of H is the binary representation of i.

The Hadamard code Had is defined with respect to H as
Had = {c € F%til | a" H = ¢ for some a € F’;} :

We observe the following property of the Hadamard code.
Claim 3 (Property of Had) V ¢ € Had, Yy € Ham, (c,y) = 0.
Proof By the definition of Had, since ¢ € Had, there exists a € F} such that a'H = c.
Then (c,y) = <aTH,y> = (a, Hy). Since y € Ham, then Hy = 0. Hence (c,y) =0. &
Definition 4 (Dual Code) For a linear code C C FY, its dual code, denoted as C, is

ct = {d eFy | (d,c)=0VceC}.

Remark Had is the dual code of Ham.



Claim 5 (Size of Had) Let n = 2! — 1. Then |Had| =n + 1.

Proof From lecture 2, we have dim(Ham) = dim(ker(H)) = n — t. Note that Had is the
orthogonal complement of Ham. Then dim(Had) = ¢ by the fundamental theorem of linear
algebra. Hence, [Had| =2 =n+1. ®

Before proving the distance of Had, we discuss an alternative view of the Hadamard
code. Each codeword c is considered as a function parameterized by a € F%, i.e.,

Had = {c, : F{\{0} = Fs | a € F}},

where cq(x) = (a,z) for € F5\{0}. For each codeword ¢ € Had, it can be represented as
c= ({a,by),...,{a,by_1)), where b; € F} corresponds to the binary representation of i for
i€ 2t —1].

Claim 6 (Distance of Had) Let n =2’ — 1. Then A(Had) = 2§

Proof From lecture 2, it is equivalent to show that min.cpaq wt(c,0) = "T‘H We prove
c#0

that for every x € F4\{0} such that (a,x) = 0, we can uniquely pair z with 2’ € F5\{0, z}

so that ¢,(z') = 1. Let 2/ = x + e, where a; # 0 and e; is j-th standard basis. Then

(a,z+e;) = (a,z) + (a,e;) = a; = 1. Since ¢ # 0, at least one (a,x) #= 0. Hence, the

distance of Had is TT_Q +1= ”T‘H |

We have show that there exists a code Had such that [Had| = n+1 and A(Had) = %‘H
for an odd integer n. It can be simply extended to an arbitrary integer by considering the
following construction:

Had' = {c,p : F5\{0} = F5 | a € F5,b € Fa},

where ¢, p(z) = (a,z) + b for z € F4\{0}.

2 Fourier Analysis over the Boolean Hypercube

We consider the vector space of real-valued functions over the boolean hypercube, i.e.,
V = {f:F3 — R}. There are two basis. The first is the standard basis {1,, | w € Fy},

where
1 fz=w
1,(x)= .
w(@) {0 otherwise

The second is the Fourier basis {x, : F§ — R |y € F3}, where x,(z) = (—1)®¥) for z € F3.
We make the following two observations:

o Vz,z € Fy, xy(z)xy(2) = xy(z + 2);

o Vr,z € 3, Xo(Y)X=(¥) = Xat2(¥).



Recall that the inner product (-,-) : F§ x F§ — R of two functions f,g : F5 — R is

(f.9) =Elfg) = 3 o f@hgla).

z€Fy
Claim 7 The Fourier basis is an orthonormal basis.

Proof Norm of x,. For each x,, we have (xy, xy) = 2% Yow Xylrtz) = 2% S (1) =

Orthogonal. For x, # ., we have (xy, Xz) = 3 Dy Xy+2(2) = 50 >, (—1)¥F>2). Note
that y+ z # 0. We apply the same trick used in Claim 6 to pair each & where (y + z,z) =0
to a unique z’ such that (y + z,2’) = 1. We have (—1)@+2%) 4 (—1)¥+22") — 0. Hence,

QvaXk> =0. 1

Definition 8 (Fourier Transform) For a function f € V, it can be uniquely expressed

as R
F=> fwxy
yelry

where f : F} — R.

Claim 9 Vy € F%, f(y) = (f, xy)-

Proof

faXy anXy>
::jgjtf anXy
=fWwx) + D F@) X xy)
xeFy:xy

= fly)+0

where the first equality follows from Definition 8, and the forth inequality follows from
Claim 7. &

~

Claim 10 (Parseval’s Identity) Vf,g €V, (f,9) = >_, f(v)9(y)-

Proof
g) = <f,2§1(y)><y> Zg WFoxw) =Y 9w f W),
Yy Yy

where the first equality follows from Definition 8, and the second equality follows form
Claim 9. H



Corollary 11 Vf e V, f(0) = E[f].

Proof R
£(0) = (f,x0) = E[f],

where the first equality follows form Claim 9, and the second equality follows form yo = 1.
|
Definition 12 (Convolution) Vf,g € V, the convolution of f and g is

(f*9)(z) = Ey[f(y)g(z +y)].

Claim 13 The convolution operator * is commutative and associative.
Claim 14 V2 € F, f+g(z) = f(2)j().
Proof

F@)3(@) = (£, x2) (9 )
= o (Z f(y)xx(y)> (Zg@)xx(z))
= 2% > FW)e(2)xaly + 2)

= oo 3 Tt + et
y,t

= e (Z ;nf(y)g(Hy))
= o S )0

= (Xor f*9)
= T xg(z),

where the first and last equalities follow from Claim 9. B

For a code C' C F3, define its characteristic functions as

1o(c) = .
cle) 0 otherwise

{1 ifceC



3 Application of Fourier Analysis
Claim 15 Let C C Iy be a linear code. Then 1c = |2£n|]].cL.

Proof Vx ¢y,

lo(x) = <11Ac,xm>

1 _
= 50 2 Le®)xa()
Yy
1 —~ —~
=5 | 2 Te@x@)+ Y Te@xra()
yelFyyel yelry:ygC
1
:27 Z Xz(y)
yelryyel
1
= o Z (_1)<x7y>,
yelry.yel

where the forth equality follows from the definition of 1¢. Note that if € CL, (z,y) =0
and Zyeﬂ?g:yec(*l)mw = |C|. Otherwise, there exists y* € F§ such that (z,y*) = 1. By

the same trick used in Claim 6, if 2 ¢ C*, we have Zyewgzyec(—1)<”C’y> =0. 1

Claim 16 Let C C F3. Then ]lc*]lc—‘ |]lc

Proof Vx €[y,

(e *1¢)(x Z(ﬂc*ﬂc( )) Xy ()

Y

- (‘f) (o2 (1)) wy @)
- <‘20n) Yo @),

yeF2:yeCt

Since C is linear, we have |C+|-|C| = 2". By the same tricks used in Claim 6 and Claim 14,

we have
Cl\? C’ C

yeF}yeC+



4 LP Bound

The goal of this section is to prove the following theorem.

Theorem 17 (LP Bound) Let C C Fy be a linear code of distance d < 5 and 6 =
Then

Sl

)

€| < oW (rp)Fo())n
where T,p = % —4/0(1 =9).

Below, we first state the covering lemma and directly apply it to derive the LP bound.
Then, we prove the covering lemma via a helper lemma on the existence of a function of
special properties. Finally, we introduce the special function to end the proof.

We define r = mn as a function of 7 and 6, = 2,/r(1 —r) — o(n) as a function of r.

Lemma 18 (Covering Lemma) Let C C F} be a linear code of distance d and C+ be the
dual of C'. Let r be a radius such that 6, > n—2d+1 and B, be the hamming bal of radius

r, where r = tn and 0, = 2\/r(n —7r) —o(n) = 2n(y/7(1 — 7) — o(1)). Then

U +B)| >

2eC+

4.1 Proof of the LP Bound

Proof Now, we leverage the covering lemma to prove LP bound. Take r = mpn. We
neglect the o(1) terms and verify that 6, > n — 2d + 1 below.

0, = 2n\/7Lp(1 — 7Lp)
_ 2n\/(; 5= 5)) (; 4= 5))

>n—2d+ 1.
Note that
n
U G+ Bo| s 3 le+ Bl = [CF] |B,| = 2ot
zeCL zeCL

since |C*|-|C| = 2" and | B,| = 2(H(7ep)+o(1)n  Meanwhile, the covering lemma (Lemma 18)
gives a lower bound of {UzeCi (z + BT)‘. Then

2” 2n
— < U (z+ B;)| < WQ(H(TLP)'FO(I))’R.

n
zeC+

We have |C] < n2(H(p)+o(D)n — o(H(mp)+o(1)n a5 1 is absorbed by the o(1) term. W



4.2 Proving the Covering Lemma

Below, we first set up useful notations and observations. Then, we state a helper lemma
and apply it to derive the covering lemma. Finally, we prove the helper lemma.

For two functions f and g, we denote f > g if and only if f(z) > g(x) for any z.

We consider a layered graph based on the boolean hypercube Fy. There is an edge
between v;,v; € F4 if and only if A(v;,v;) = 1, i.e., v; = v; + e;, for some k € [n], where
er € Fy is the k-th standard basis of Fy. Let A denote the adjacency matrix of the layer
graph. Then Ay 4., =1 for each y € F§ such that y # 1, and each k € [n].

Consider the function L : Fy — R defined as follows.

L(x) = 2n ifa::cik for some k € [n] ‘
0 otherwise
Claim 19 Vf eV, Af = Lx f.

Proof Vz € Fy, (Lx f)(z) =3_, #L(y)f(y + x). Note that L(y) = 2" if and only if
y = ey, for some k € [n]. Then (L * f)(x) = 3 ;e /(2 + €i), which is exactly the definition
of (Af)(z) since A, v =1 if 2/ = x + ¢;, for some k € [n]. W

Claim 20 Vz € FZ, L(x) = n — 2wt(z).
Proof

L(z) = (L, xa)
1
Toon

1€[n]

S

i€[n]
=|Hien] |z =0} —-|{i€n] |z =1} =n—2wt(z).

(~1)EPL(2)

Claim 21 Let B = B(0,7n). Let C CF} be a code. Vx € Fy, (1o *1p)(z) = |C’F1B2(+n)|‘

Proof

(e # 15)(@) = 5 S 1e@)is(a+)

1
yeC

_ [CnB(z,mn)|

Note that 1g(z+y) =1if x+y € B, i.e.,, y € B(z,mn). Hence, (1¢*15)(x) on



Lemma 22 (Helper Lemma) Let r = tn. Let B = B(0,r) denote the Hamming ball of
radius r. There exists a function f : Fyy — R such that

(1) supp(f) € B;
(2) f>0;
(3) Af > 0.f, where 6, = 2+/r(n —1) —o(n).

Remark The helper lemma implies that the largest eigenvalue of A is at least 6,.

Ap = max{<é{c’f];> ‘ f:€Fy = R, supp(f) C B} > 0,.

Now, we are ready to prove the covering lemma.

Proof of the Covering Lemma Let f denote a function given by the helper lemma.
Consider a function F': F§} — R defined as follows:

F(2) = (Lo ) (2) = o S en () + 2). &

Note that F(z) # 0 only if there exits some 2 € C+ such that f(z+2) # 0. Then z+2 € B,
i.e., x € z+ B, since supp(f) C B. Hence, supp(F) C S, where S = (J,cc1 (2 + B).
We next consider the expectation of F' to relate |S|.

(E[F)? = (; ZF(@)

€S
1
< 2%‘5‘ <ZF2(x)>
z€eS
_ 15

5|
< Dln(®[F)?,
where the first inequality follows from the Cauchy-Schwartz inequality, the second equality
follows from the definition of inner product, and the second inequality follows from Claim 23.
Hence, |S| > 2% [ ]



Claim 23 For the function F € V defined as Equation (1), (F,F) < n(E[F])?

Proof We consider the upper and lower bounds of (AF, F').
Lower Bound. We have

AF =FxL
= (1o xf)*xL
=1L x(f*xL)
=150 x Af
> 1oL *0,.f
=0, (1o1 xf)
—0,F,

where the equalities follows from the definitions of F' and convolution, and the inequality
follows from the helper lemma. Then (AF, F) > 0,(F,F) > (n —2d + 1)(F, F).
Upper Bound. We have

(AF,F) ZAF ZL*F ZL VE(x)F(z).

Recall that F(z) = (Lew *f) (z) and F(z) = Tow * f(z) = Lo (@)f(z) = Sio@)i@).
Then F(z) = 0 for any « € F} such that 1 < wt(z) < d — 1, since C is of distance d.

Y L(@)F(z)P(z) = LOF*0)+ Y L(z)F*()

T x€Fywt(z)>d

=E[L]E[F)*+ ) (n—2wt(@)F ()

z€Fy wt(z)>d
< n(E[F])*+ (n— 2d)(F, F).

Combing the upper and lower bounds, we have
(n —2d+ 1)(F, F) < n(E[F])?> + (n — 2d)(F, F).
Hence, (F, F) < n(E[F])%. &

Finally, we construct a special function for the helper lemma.

Proof of the Helper Lemma We consider the function constructed as follows. First,
we let f(x) = f(y) if z,y € F4 such that wt(z) = wt(y). We abuse the notation and denote
f(7) as the values of weight 7 vectors in F§. Recall that r = mn.

A ifielr—n,r
f(i) =< V() | \F].

0 otherwise

It is easy to see that supp(f) C B and f > 0. Below, we verify that Af > 0,f.



Recall that Af(z) =), 1,1 f(x +€;). Then

i€[n]

Af(z) = wt(z)f(wt(z) — 1) + (n — wt(x))f (wt(x) + 1),

since there are wt(z) vectors of weight wt(z) — 1 from x. Thus, for i € [r — /n+ 1,7 — 1],

Af(i) = <\/z’(n )+ (=) i+ 1)) £(i) > (2 r(n—1) — o(n)) (i),

where the equality follows from the construction of f and f(fi(j)l) =4/ (Eﬁi) = 1/%. |
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