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In this note, we use ⟨·, ·⟩ to denote the inner product. Let [n] = {1, 2, . . . , n}.

1 Hadamard Code

Last time, we ended with the Plotkin bound as follows.

Claim 1 (Plotkin bound) Let C ⊆ Fn
2 denote a binary code of code length n and distance

d. If d ≥ n
2 , then |C| ≤ 2n.

When d = n
2 , we will see that the Hadamard code achieves the tight size bound. Be-

low, we first define the Hadamard code and introduce the notion of dual code. Next, we
demonstrate that the Hadamard code is the dual of the Hamming code. Finally, we show
the distance and size of the Hadamard code.

Definition 2 (Hadamard Code) Recall that the Hamming code Ham is

Ham =
{
c ∈ F2t−1

2 | Hc = 0 mod 2
}
,

where H ∈ Ft×(2t−1)
2 and the i-th column of H is the binary representation of i.

The Hadamard code Had is defined with respect to H as

Had =
{
c ∈ F2t−1

2 | a⊤H = c for some a ∈ Ft
2

}
.

We observe the following property of the Hadamard code.

Claim 3 (Property of Had) ∀ c ∈ Had, ∀y ∈ Ham, ⟨c, y⟩ = 0.

Proof By the definition of Had, since c ∈ Had, there exists a ∈ Ft
2 such that a⊤H = c.

Then ⟨c, y⟩ =
〈
a⊤H, y

〉
= ⟨a,Hy⟩. Since y ∈ Ham, then Hy = 0. Hence ⟨c, y⟩ = 0.

Definition 4 (Dual Code) For a linear code C ⊆ Fn
2 , its dual code, denoted as C⊥, is

C⊥ =
{
c′ ∈ Fn

2 |
〈
c′, c
〉
= 0 ∀c ∈ C

}
.

Remark Had is the dual code of Ham.
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Claim 5 (Size of Had) Let n = 2t − 1. Then |Had| = n+ 1.

Proof From lecture 2, we have dim(Ham) = dim(ker(H)) = n− t. Note that Had is the
orthogonal complement of Ham. Then dim(Had) = t by the fundamental theorem of linear
algebra. Hence, |Had| = 2t = n+ 1.

Before proving the distance of Had, we discuss an alternative view of the Hadamard
code. Each codeword c is considered as a function parameterized by a ∈ Ft

2, i.e.,

Had = {ca : Ft
2\{0} → F2 | a ∈ Ft

2},

where ca(x) = ⟨a, x⟩ for x ∈ Ft
2\{0}. For each codeword c ∈ Had, it can be represented as

c = (⟨a, b1⟩, . . . , ⟨a, b2t−1⟩), where bi ∈ Ft
2 corresponds to the binary representation of i for

i ∈ [2t − 1].

Claim 6 (Distance of Had) Let n = 2t − 1. Then ∆(Had) = n+1
2 .

Proof From lecture 2, it is equivalent to show that minc∈Had
c̸=0

wt(c, 0) = n+1
2 . We prove

that for every x ∈ Ft
2\{0} such that ⟨a, x⟩ = 0, we can uniquely pair x with x′ ∈ Ft

2\{0, x}
so that ca(x

′) = 1. Let x′ = x + ej , where aj ̸= 0 and ej is j-th standard basis. Then
⟨a, x+ ej⟩ = ⟨a, x⟩ + ⟨a, ej⟩ = aj = 1. Since c ̸= 0, at least one ⟨a, x⟩ ̸== 0. Hence, the

distance of Had is 2t−2
2 + 1 = n+1

2 .

We have show that there exists a code Had such that |Had| = n+1 and ∆(Had) = n+1
2

for an odd integer n. It can be simply extended to an arbitrary integer by considering the
following construction:

Had′ =
{
ca,b : Ft

2\{0} → F2 | a ∈ Ft
2, b ∈ F2

}
,

where ca,b(x) = ⟨a, x⟩+ b for x ∈ Ft
2\{0}.

2 Fourier Analysis over the Boolean Hypercube

We consider the vector space of real-valued functions over the boolean hypercube, i.e.,
V = {f : Fn

2 → R}. There are two basis. The first is the standard basis {1w | w ∈ Fn
2},

where

1w(x) =

{
1 if x = w

0 otherwise
.

The second is the Fourier basis {χy : Fn
2 → R | y ∈ Fn

2}, where χy(x) = (−1)⟨x,y⟩ for x ∈ Fn
2 .

We make the following two observations:

• ∀x, z ∈ Fn
2 , χy(x)χy(z) = χy(x+ z);

• ∀x, z ∈ Fn
2 , χx(y)χz(y) = χx+z(y).
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Recall that the inner product ⟨·, ·⟩ : Fn
2 × Fn

2 → R of two functions f, g : Fn
2 → R is

⟨f, g⟩ = E[fg] =
∑
x∈Fn

2

1

2n
f(x)g(x).

Claim 7 The Fourier basis is an orthonormal basis.

Proof Norm of χy. For each χy, we have ⟨χy, χy⟩ = 1
2n
∑

x χy(x+x) = 1
2n
∑

x(−1)0 = 1.

Orthogonal. For χy ̸= χz, we have ⟨χy, χz⟩ = 1
2n
∑

x χy+z(x) =
1
2n
∑

x(−1)⟨y+z,x⟩. Note
that y+z ̸= 0. We apply the same trick used in Claim 6 to pair each x where ⟨y + z, x⟩ = 0
to a unique x′ such that ⟨y + z, x′⟩ = 1. We have (−1)⟨y+z,x⟩ + (−1)⟨y+z,x′⟩ = 0. Hence,
⟨χy, χz⟩ = 0.

Definition 8 (Fourier Transform) For a function f ∈ V , it can be uniquely expressed
as

f =
∑
y∈Fn

2

f̂(y)χy,

where f̂ : Fn
2 → R.

Claim 9 ∀y ∈ Fn
2 , f̂(y) = ⟨f, χy⟩.

Proof

⟨f, χy⟩ =

〈∑
x

f̂(x)χx, χy

〉
=
∑
x

f̂(x)⟨χx, χy⟩

= f̂(y)⟨χy, χy⟩+
∑

x∈Fn
2 :x̸=y

f̂(x)⟨χx, χy⟩

= f̂(y) + 0,

where the first equality follows from Definition 8, and the forth inequality follows from
Claim 7.

Claim 10 (Parseval’s Identity) ∀f, g ∈ V , ⟨f, g⟩ =
∑

y f̂(y)ĝ(y).

Proof

⟨f, g⟩ =

〈
f,
∑
y

ĝ(y)χy

〉
=
∑
y

ĝ(y)⟨f, χy⟩ =
∑
y

ĝ(y)f̂(y),

where the first equality follows from Definition 8, and the second equality follows form
Claim 9.
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Corollary 11 ∀f ∈ V , f̂(0) = E[f ].

Proof
f̂(0) = ⟨f, χ0⟩ = E[f ],

where the first equality follows form Claim 9, and the second equality follows form χ0 = 1.

Definition 12 (Convolution) ∀f, g ∈ V , the convolution of f and g is

(f ∗ g)(x) = Ey[f(y)g(x+ y)].

Claim 13 The convolution operator ∗ is commutative and associative.

Claim 14 ∀x ∈ Fn
2 , f̂ ∗ g(x) = f̂(x)ĝ(x).

Proof

f̂(x)ĝ(x) = ⟨f, χx⟩⟨g, χx⟩

=
1

22n

(∑
y

f(y)χx(y)

)(∑
z

g(z)χx(z)

)

=
1

22n

∑
y,z

f(y)g(z)χx(y + z)

=
1

22n

∑
y,t

f(y)g(t+ y)χx(t)

=
1

2n

∑
t

χx(t)

(∑
y

1

2n
f(y)g(t+ y)

)

=
1

2n

∑
t

χx(t)(f ∗ g)(t)

= ⟨χx, f ∗ g⟩

= f̂ ∗ g(x),

where the first and last equalities follow from Claim 9.

For a code C ⊆ Fn
2 , define its characteristic functions as

1C(c) =

{
1 if c ∈ C

0 otherwise
.
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3 Application of Fourier Analysis

Claim 15 Let C ⊆ Fn
2 be a linear code. Then 1̂C = |C|

2n 1C⊥.

Proof ∀x ∈ Fn
2 ,

1̂C(x) =
〈
1̂C , χx

〉
=

1

2n

∑
y

1̂C(y)χx(y)

=
1

2n

 ∑
y∈Fn

2 :y∈C
1̂C(y)χx(y) +

∑
y∈Fn

2 :y ̸∈C
1̂C(y)χx(y)


=

1

2n

∑
y∈Fn

2 :y∈C
χx(y)

=
1

2n

∑
y∈Fn

2 :y∈C
(−1)⟨x,y⟩,

where the forth equality follows from the definition of 1̂C . Note that if x ∈ C⊥, ⟨x, y⟩ = 0
and

∑
y∈Fn

2 :y∈C
(−1)⟨x,y⟩ = |C|. Otherwise, there exists y∗ ∈ Fn

2 such that ⟨x, y∗⟩ = 1. By

the same trick used in Claim 6, if x ̸∈ C⊥, we have
∑

y∈Fn
2 :y∈C

(−1)⟨x,y⟩ = 0.

Claim 16 Let C ⊆ Fn
2 . Then 1C ∗ 1C = |C|

2n 1C .

Proof ∀x ∈ Fn
2 ,

(1C ∗ 1C)(x) =
∑
y

(
̂1C ∗ 1C(y)

)
χy(x)

=

(
|C|
2n

)2∑
y

(1C⊥(y))χy(x)

=

(
|C|
2n

)2 ∑
y∈Fn

2 :y∈C⊥

χy(x).

Since C is linear, we have |C⊥| · |C| = 2n. By the same tricks used in Claim 6 and Claim 14,
we have (

|C|
2n

)2 ∑
y∈Fn

2 :y∈C⊥

χy(x) =

(
|C|
2n

)2

|C⊥|1C =
|C|
2n

1C .
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4 LP Bound

The goal of this section is to prove the following theorem.

Theorem 17 (LP Bound) Let C ⊆ Fn
2 be a linear code of distance d ≤ n

2 and δ = d
n .

Then
|C| ≤ 2(H(τLP)+o(1))n,

where τLP = 1
2 −

√
δ(1− δ).

Below, we first state the covering lemma and directly apply it to derive the LP bound.
Then, we prove the covering lemma via a helper lemma on the existence of a function of
special properties. Finally, we introduce the special function to end the proof.

We define r = τn as a function of τ and θr = 2
√

r(1− r)− o(n) as a function of r.

Lemma 18 (Covering Lemma) Let C ⊆ Fn
2 be a linear code of distance d and C⊥ be the

dual of C. Let r be a radius such that θr ≥ n− 2d+1 and Br be the hamming bal of radius
r, where r = τn and θr = 2

√
r(n− r)− o(n) = 2n(

√
τ(1− τ)− o(1)). Then∣∣∣∣∣∣

⋃
z∈C⊥

(z +Br)

∣∣∣∣∣∣ ≥ 2n

n
.

4.1 Proof of the LP Bound

Proof Now, we leverage the covering lemma to prove LP bound. Take r = τLPn. We
neglect the o(1) terms and verify that θr ≥ n− 2d+ 1 below.

θr = 2n
√

τLP(1− τLP)

= 2n

√(
1

2
−
√
δ(1− δ)

)(
1

2
+
√
δ(1− δ)

)
= 2n

√
δ2 − δ +

1

4

≥ n− 2d+ 1.

Note that ∣∣∣∣∣∣
⋃

z∈C⊥

(z +Br)

∣∣∣∣∣∣ ≤
∑
z∈C⊥

|z +Br| = |C⊥| · |Br| =
2n

|C|
2(H(τLP)+o(1))n,

since |C⊥|·|C| = 2n and |Br| = 2(H(τLP)+o(1))n. Meanwhile, the covering lemma (Lemma 18)
gives a lower bound of

∣∣⋃
z∈C⊥(z +Br)

∣∣. Then
2n

n
≤

∣∣∣∣∣∣
⋃

z∈C⊥

(z +Br)

∣∣∣∣∣∣ ≤ 2n

|C|
2(H(τLP)+o(1))n.

We have |C| ≤ n2(H(τLP)+o(1))n = 2(H(τLP)+o(1))n as n is absorbed by the o(1) term.
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4.2 Proving the Covering Lemma

Below, we first set up useful notations and observations. Then, we state a helper lemma
and apply it to derive the covering lemma. Finally, we prove the helper lemma.

For two functions f and g, we denote f ≥ g if and only if f(x) ≥ g(x) for any x.
We consider a layered graph based on the boolean hypercube Fn

2 . There is an edge
between vi, vj ∈ Fn

2 if and only if ∆(vi, vj) = 1, i.e., vi = vj + ek for some k ∈ [n], where
ek ∈ Fn

2 is the k-th standard basis of Fn
2 . Let A denote the adjacency matrix of the layer

graph. Then Ay,y+ek = 1 for each y ∈ Fn
2 such that y ̸= 1, and each k ∈ [n].

Consider the function L : Fn
2 → R defined as follows.

L(x) =

{
2n if x = ek for some k ∈ [n]

0 otherwise
.

Claim 19 ∀f ∈ V , Af = L ∗ f .

Proof ∀x ∈ Fn
2 , (L ∗ f)(x) =

∑
y

1
2nL(y)f(y + x). Note that L(y) = 2n if and only if

y = ek for some k ∈ [n]. Then (L ∗ f)(x) =
∑

i∈[n] f(x+ ei), which is exactly the definition

of (Af)(x) since Ax,x′ = 1 if x′ = x+ ek for some k ∈ [n].

Claim 20 ∀x ∈ Fn
2 , L̂(x) = n− 2wt(x).

Proof

L̂(x) = ⟨L, χx⟩

=
1

2n

∑
z

(−1)⟨z,x⟩L(z)

=
1

2n

∑
i∈[n]

(−1)⟨ei,x⟩L(ei)

=
∑
i∈[n]

(−1)xi

= |{i ∈ [n] | xi = 0}| − |{i ∈ [n] | xi = 1}| = n− 2wt(x).

Claim 21 Let B = B(0, τn). Let C ⊆ Fn
2 be a code. ∀x ∈ Fn

2 , (1C ∗ 1B)(x) =
|C∩B(x,τn)|

2n .

Proof

(1C ∗ 1B)(x) =
1

2n

∑
y

1C(y)1B(x+ y)

=
1

2n

∑
y∈C

1B(x+ y).

Note that 1B(x+ y) = 1 if x+ y ∈ B, i.e., y ∈ B(x, τn). Hence, (1C ∗1B)(x) =
|C∩B(x,τn)|

2n .
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Lemma 22 (Helper Lemma) Let r = τn. Let B = B(0, r) denote the Hamming ball of
radius r. There exists a function f : Fn

2 → R such that

(1) supp(f) ⊆ B;

(2) f ≥ 0;

(3) Af ≥ θrf, where θr = 2
√
r(n− r)− o(n).

Remark The helper lemma implies that the largest eigenvalue of A is at least θr.

λB = max

{
⟨Af, f⟩
⟨f, f⟩

∣∣∣ f :∈ Fn
2 → R, supp(f) ⊆ B

}
≥ θr.

Now, we are ready to prove the covering lemma.

Proof of the Covering Lemma Let f denote a function given by the helper lemma.
Consider a function F : Fn

2 → R defined as follows:

F (z) = (1C⊥ ∗ f) (z) = 1

2n

∑
x

1C⊥(x)f(x+ z). (1)

Note that F (z) ̸= 0 only if there exits some x ∈ C⊥ such that f(x+z) ̸= 0. Then x+z ∈ B,
i.e., x ∈ z +B, since supp(f) ⊆ B. Hence, supp(F ) ⊆ S, where S =

⋃
z∈C⊥(z +B).

We next consider the expectation of F to relate |S|.

(E [F ])2 =

(
1

2n

∑
x∈S

F (x)

)2

≤ 1

22n
|S|

(∑
x∈S

F 2(x)

)

=
|S|
2n

⟨F, F ⟩

≤ |S|
2n

n(E [F ])2,

where the first inequality follows from the Cauchy-Schwartz inequality, the second equality
follows from the definition of inner product, and the second inequality follows from Claim 23.

Hence, |S| ≥ 2n

n .
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Claim 23 For the function F ∈ V defined as Equation (1), ⟨F, F ⟩ ≤ n(E [F ])2

Proof We consider the upper and lower bounds of ⟨AF,F ⟩.
Lower Bound. We have

AF = F ∗ L
= (1C⊥ ∗ f) ∗ L
= 1C⊥ ∗ (f ∗ L)
= 1C⊥ ∗Af
≥ 1C⊥ ∗ θrf
= θr(1C⊥ ∗ f)
= θrF,

where the equalities follows from the definitions of F and convolution, and the inequality
follows from the helper lemma. Then ⟨AF,F ⟩ ≥ θr⟨F, F ⟩ ≥ (n− 2d+ 1)⟨F, F ⟩.
Upper Bound. We have

⟨AF,F ⟩ =
∑
x

ÂF (x)F̂ (x) =
∑
x

L̂ ∗ F (x)F̂ (x) =
∑
x

L̂(x)F̂ (x)F̂ (x).

Recall that F (x) = (1C⊥ ∗ f) (x) and F̂ (x) = 1̂C⊥ ∗ f(x) = 1̂C⊥(x)̂f(x) = |C|
2n 1C(x)̂f(x).

Then F̂ (x) = 0 for any x ∈ Fn
2 such that 1 ≤ wt(x) ≤ d− 1, since C is of distance d.∑

x

L̂(x)F̂ (x)F̂ (x) = L̂(0)F̂ 2(0) +
∑

x∈Fn
2 :wt(x)≥d

L̂(x)F̂ 2(x)

= E [L] (E [F ])2 +
∑

x∈Fn
2 :wt(x)≥d

(n− 2wt(x))F̂ 2(x)

≤ n(E [F ])2 + (n− 2d)⟨F, F ⟩.

Combing the upper and lower bounds, we have

(n− 2d+ 1)⟨F, F ⟩ ≤ n(E [F ])2 + (n− 2d)⟨F, F ⟩.

Hence, ⟨F, F ⟩ ≤ n(E [F ])2.

Finally, we construct a special function for the helper lemma.

Proof of the Helper Lemma We consider the function constructed as follows. First,
we let f(x) = f(y) if x, y ∈ Fn

2 such that wt(x) = wt(y). We abuse the notation and denote
f(i) as the values of weight i vectors in Fn

2 . Recall that r = τn.

f(i) =


1√
(ni)

if i ∈ [r −
√
n, r]

0 otherwise
.

It is easy to see that supp(f) ⊆ B and f ≥ 0. Below, we verify that Af ≥ θrf.
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Recall that Af(x) =
∑

i∈[n] f(x+ ei). Then

Af(x) = wt(x)f(wt(x)− 1) + (n− wt(x))f(wt(x) + 1),

since there are wt(x) vectors of weight wt(x)− 1 from x. Thus, for i ∈ [r −
√
n+ 1, r − 1],

Af(i) =
(√

i(n− i) +
√
(n− i)(i+ 1)

)
f(i) ≥

(
2
√
r(n− r)− o(n)

)
f(i),

where the equality follows from the construction of f and f(i)
f(i+1) =

√
( n
i+1)
(ni)

=
√

n−i
i+1 .
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