
CS 860 Topics in Coding Theory Sept. 11, 2025

Lecture 3

Lecturer: Elena Grigorescu Scribe: Hanna Derets

Previous lecture:

• Hamming bound for large distances: R < 1−H(δ/2),

• GV bound: R > 1−H(δ) - showed existence of codes of large rate by greedy approach
in general, and by taking a generator matrix uniformly at random for linear codes.

This lecture:

• Singleton bound: R ≤ 1− δ,

• Plotkin bound: R ≤ 1− 2δ,

• New model – list decoding,

• Elias–Bassalygo bound: R ≤ 1−H(ρ(δ))
(with Johnson bound for ρ).

We are interested in codes of large distance - constant relative distance δ = ∆(C)/n ∈
(0, 1) and rate R = O(1). We showed that if we pick a random linear binary code, its rate
would approach the GV bound. Can we find such a codes explicitly? Note that it may be
tempting to test if the code has good distance –however, computing the distance of a linear
code is NP-complete problem, so this approach fails.

Theorem 1 (Singleton bound) For every code C ⊆ Σn the dimension is bounded k =
log |C| ≤ n− d+ 1, where d = ∆(C) is the distance. Asymptotically, for a family of codes
of rate R and relative distance δ the rate is bounded R ≤ 1− δ.

Proof Project the code C to the first n − d + 1 coordinates, i.e., π : (c1, . . . , cn) →
(c1, . . . , cn−d+1), denote the new code C ′ = π(C) of length n − d + 1. Note that in the
removed suffix of every code word not more than d − 1 different positions were discarded,
thus ∆(C) = d =⇒ ∆(C ′) ≥ 1, moreover π is injective. Therefore, |C ′| = |C| = Σk ≤
Σn−d+1 =⇒ k ≤ n− d+ 1.

Remark The Singleton bound is independent of the alphabet size. Also, it is worse than
the Hamming bound for binary codes, but better for larger alphabet sizes.

For the next theorem, we will need the following helper lemma.

Lemma 2 If y1, y2, . . . , ym ∈ Rn such that ∀i, yi ̸= 0 and ∀i, j, ⟨yi, yj⟩ ≤ 0, then m ≤ 2n.
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Proof Proving by induction (with a trivial base case), suppose that for all k < m the
claim holds, and consider m vectors.

Rotate all vectors such that ym = (1, 0, . . . , 0), this does not change the inner products.
Say, yi = (αi, vi) with αi ∈ R, vi ∈ Rn−1. Then ⟨yi, ym⟩ = αi ≤ 0 for all 1 ≤ i < m. Also,
observe that ⟨vi, vj⟩ = ⟨yi, yj⟩ − αiαj , for i, j ̸= m.

Observe that at most one of vi for 1 ≤ i < m is the zero vector (prove by contradiction).
Suppose v1 = v2 = 0, then ⟨y1, y2⟩ = α1, α2+ ⟨v1, v2⟩ = α1α2 > 0 as from above αi ≤ 0 and
as y1 ̸= 0, y2 ̸= 0 the product becomes strictly positive α1α2 > 0. This contradicts initial
assumption ⟨yi, yj⟩ ≤ 0.

By above, v1, . . . , vm−2 ̸= 0 and such that ⟨vi, vj⟩ = ⟨yi, yj⟩ − αi, αj ≤ 0, thus by
induction hypothesis, (m− 2) ≤ 2(n− 1) =⇒ m ≤ 2n.

Theorem 3 (Plotkin bound) (i) If a binary code C ⊆ Fn
2 has distance d ≥ n/2 (i.e.,

δ ≥ 1/2), then C has at most |C| ≤ 2n codewords, i.e., k = log |C| ≤ log(2n). (ii) For any
binary code C ⊆ Fn

2 we have k = log |C| ≤ n− 2d+ log(4d). Asymptotically, for any family
of linear codes of rate r and relative distance δ we have R ≤ 1− 2δ.

Proof (i) The argument is based on geometry in Euclidean space. Consider “embedding”

ψ : Fn
2 → Rn, ψ(c1, . . . , cn) = ((−1)c1 , (−1)c2 , . . . , (−1)cn).

Consider the inner product in Rn:

⟨ψ(x), ψ(y)⟩ =
n∑

i=1

(−1)xi+yi = #of agreements between (x, y)−#disagreements =

= n− 2 · (# disagreements) ≤ n− 2∆(C) ≤ 0,

since ∆(C) ≥ n/2. Also the mapping ψ is injective, thus |Im(ψ)| = |C|. So, we ob-
tained a collection of |C| vectors in Rn, such that all pairwise angles are ≥ 90◦(⇔ ∀x, y ∈ C,
⟨ψ(x), ψ(y)⟩ ≤ 0). The Lemma 2 finishes the proof of part (i).

(ii) Project the code C onto first n− 2d coordiantes to obtain C ′ (as a multiset, as the
projection is not injective). Let cspec be the most common string among those in C ′ (or
tied with) and define

C ′′ = {c2 ∈ F2d
2 | (cspec, c2) ∈ C}.

Note that codeword length of C ′′ is 2d and |C ′′| ≥ |C|/2n−2d. Also, the distance is
∆(C ′′) ≥ d since ∆(C) = d and the distance is on the first of n− 2d coordinates. So, in C ′′:
∆(C ′′) = δn length N = 2δn and by part (i) |C ′′| ≤ 2 · 2δn = 4δn =⇒ |C| ≤ 2n−2δn · 4δn
so k ≤ n− 2δn+ log(4δn).

The Plotkin bound shows that there are no codes of positive rate R > 0 and large dis-
tance δ > 1−1/|Σ|. Also, the Plotkin bound is tight for Hadamard code - space orthogonal
to the Hamming code Had = {y | y · c = 0, c ∈ Ham}, |Had| = n + 1 = 2t (more details
next lecture).
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Remark The Plotkin and Hamming upper bounds are each better than the Singleton
bound as a function of δ. But there is even a better upper bound that combines ideas from
both: sphere packing and geometry over R.

What if we draw balls of radius > d/2 around vectors and have more than one codeword
in some of them? Then decoding of the message is ambiguous. However, in practice, with
some side-information, it is conceivable that if the number of possible messages is small,
the actual transmitted message can be disambiguated. In the 1960s Elias and Wozencraft
introduced the list decoding model, to reflect the possibility of decoding beyond the unique
decoding radius.

Definition 4 A code C ⊆ Σn is (e, L)list decodable if ∀x ∈ Σn the ball B(x, e) contains at
most L many codewords of C.

So far, we have discussed (d−1
2 , 1)-list decodability. As L is the worst-case list size,

we want it to be small for an efficient list-decoding algorithm to exist: thus, L should
be a polynomial in the block length n, as otherwise, the algorithm will have to output
a super-polynomial number of codewords and hence, cannot have a polynomial running
time. The Johnson bound below gives bounds the list size at the particular distance ρ =
(1−

√
1− 2δ)/2 (the Johnson radius).

Theorem 5 (Johnson bound) If a binary code C ⊆ Fn
2 with length n has a relative

distance δ, then C is (ρn, poly(n))-list-decodable for ρ = (1−
√
1− 2δ)/2.

We first show how to use Theorem 5 to prove a new upper bound on the rate of any
binary code, namely the Elias-Bassalygo bound.

Theorem 6 (Elias-Bassalygo bound) Every binary code of rate R, relative distance δ
and large enough block length satisfies R ≤ 1−H(ρ(δ)) where ρ(δ) = (1−

√
1− 2δ)/2.

Proof Let L = poly(n) to be the maximum list size at ρ(δ) as given by the Johnson
bound. Observe that if we place balls of radius ρn around each codeword, every w ∈ {0, 1}n
belongs to ≤ L many balls (covering argument as in Hamming bound). So (using the
Johnson bound)∑

x∈C
(Ball(x, ρJSn)) = 2k ·Bn(ρn) ≤ L · 2n = poly(n) · 2n =⇒ 2k · 2H(ρ)n ≤ 2n+O(logn)

so k/n+H(ρ) ≤ 1 +O(1) and R ≤ 1−H(ρ).

Remark Elias-Bassalygo bound is better than Hamming and Plotkin. But later, we will
also see an LP bound that is even better.

Proof [Proof of Theorem5] We have to show that at distance ρ = (1−
√
1− 2δ)/2 there

are at most L = 2n codewords around any received word in {0, 1}n. Let w be the received
word in Fn

2 . Let c1, c2, . . . , ci+1 be such that ∆(ci, w) ≤ ρn and ∆(ci, cj) ≥ d = δn.
As before, consider mapping ψ(x) = 1/

√
n((−1)x1 , (−1)x2 , . . . , (−1)xn), then
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• for ci ̸= cj angles are larger than π/2

⟨ψ(ci), ψ(cj)⟩ ≤
n− 2∆(ci, cj)

n
≤ 1− 2δ ≤ 0

• ∀i angles of ψ(ci) with ψ(w) are smaller than π/2 : ⟨ψ(ci), ψ(w)⟩ ≥ 1− 2ρ ≥ 0

• ⟨ψ(ci), ψ(ci)⟩ = 1 = ⟨ψ(w), ψ(w)⟩

We’ll show that there can’t be too many vectors with small angles to ψ(w) but large
pairwise angles, by scaling ψ(w) as αψ(w) to get

⟨ψ(ci)− αψ(w), ψ(cj)− αψ(w)⟩ ≤ 0 ∀i, j

and apply Plotkin bound to show that there are only L = 2n such vectors. As in the proof
of Plotkin bound, without loss of generality, suppose ψ(w) = (1, 0, . . . , 0). When can we
find α such that ⟨ψ(ci)− αψ(w), ψ(cj)− αψ(w)⟩ ≤ 0? It requires

⟨ψ(ci)− αψ(w), ψ(cj)− αψ(w)⟩ =

⟨ψ(ci), ψ(cj)⟩ − α⟨ψ(w), ψ(cj)⟩ − α⟨ψ(ci), ψ(w)⟩+ α2

≤ 1− 2δ − 2α(1− 2ρ) + α2

to be negative. It is not obvious that such scaling exists. Homework: to verify that for
δ ∈ [0, 1], ρ = (1−

√
1− 2δ)/2 there ∃α ∈ [0, 1] that 1− 2δ − 2α(1− 2ρ) + α2 ≤ 0.

Remark The Johnson bound is interesting for codes with large relative distance, as
∀δ, ρ ≥ δ/2 , and when δ is small, then ρ ≈ δ/2.

Remark The Johnson bound is tight: there are codes such that at distance > ρ(δ)n
there are received words with superpoly many codewords withih ρn distance. An important
followup question is to design an efficient list decoding algorithms that can decode up to
the Johnson bound

The visualization of all the considered so far bounds is shown below.
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