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1 Overview

We introduce derivatives of polynomials over Fq. Particularly, we define Hasse derivatives
and generalize the notion of multiplicity to multivariate polynomials. Then, we give a
generalization of the Schwartz-Zippel lemma, which bounds the sum of the multiplicity of
roots of a given polynomial as opposed to the usual statement bounding the number of
roots.

Finally, we apply these ideas to form “bivariate multiplicty codes”, which are bivari-
ate Reed-Muller codes with extra information about derivatives attached to each symbol.
These admit a randomized local correction algorithm with O(

√
n) many queires, where n

is the block length of such codes. Furthermore, these codes have constant rate and relative
distance as n → ∞.

2 Recap: Reed-Muller Codes

We recall some results given in previous lectures.

Definition 1 (Reed-Muller Codes). Let m, k > 0 be integers, q > 0 a prime power, and
n := qm. The Reed-Muller Code RMq(m, k) ⊆ Fn

q is the code defined by

RMq(m, k) :=
{
(f(α) : α ∈ Fm

q ) : f ∈ Fq[x1, . . . , xm], deg(f) < k
}
.

A codeword c ∈ RMq(m, k) will often be indexed by c = (cα)α = (cα)α∈Fm
q
. (Note that

|Fm
q | = qm = n.)

Proposition 2 (Parameters of RMq(m, k)). For m, k, q, n as above with the additional
assumption k < 2q,

R
(
RMq(m, k)

)
=

k

n
=

k

qm
and δ

(
RMq(m, k)

)
≥ 1− k

q
.

Proof (Sketch) The distance bound follows from Schwartz-Zippel. The rate follows since
each codeword is unique because the degree k is small enough.

The Schwartz-Zippel lemma mentioned above is this.

Lemma 3 (Schwartz-Zippel). Let S ⊆ Fq and f ∈ Fq[x1, . . . , xm] with degree d > 0. Then,

#{α ∈ Sm : f(α) = 0} ≤ d|S|m−1.
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3 Derivatives of Polynomials in Fq

Let’s first introduce the usual notion of derivative of polynomials over Fq. These behave
in nearly the exact same way as derivatives of polynomials over R. They are also easier to
compute and it turns out that the majority of the results in this lecture can be expressed us-
ing only these derivatives. (One requires a fancier definition (see next section) to generalize
some results in later sections.)

Definition 4 (Differentiation in Fq). Let bxa11 · · ·xamm ∈ Fq[x1, . . . , xm] be a monomial.
(That is, b ∈ Fq and each ai ≥ 0.) It’s derivative with respect to xi is

∂xi(bx
a1
1 · · ·xamm ) = baix

ai−1
i

m∏
j=1
j ̸=i

x
aj
j .

(Note bai is well-defined here since ai is a nonnegative integer. When ai = 0, the above is
just 0.) In general, ∂xi(f) is defined as the sum of the derivatives of the monomials that
appear in f . We often write ∂xif instead of ∂xi(f).

As a concrete example, ∂xi(x
n
i ) = nxn−1

i for n ≥ 0.
Derivatives of polynomials in Fq[x1, . . . , xm] are analogous to derivatives of polynomials

in R[x1, . . . , xm], and nearly all properties of partial differentiation over R hold over to
differentiation in Fq. (The proofs of all of these are the same as that for polynomials over
R.)

Proposition 5 (Properties of ∂xi). For all i ∈ [m], let ∂xi : Fq[x1, . . . , xm] → Fq[x1, . . . , xm]
be as above. Denote x := (x1, . . . , xm), and let f, g ∈ Fq[x].

1. ∂xi is Fq-linear,

2. (Product rule) ∂xi(fg) = g∂xif + f∂xig,

3. (Clairaut’s theorem) ∂xi∂xj = ∂xj∂xi for all i, j ∈ [m].

Remark For nonzero f ∈ Fq[x], note that ∂x(f) = 0 does not imply that deg(f) = 0.
In particular, if q = pk for prime p > 0 (note q must be a prime power for Fq to be defined),
then p = 0 in Fq, x

p ∈ Fq[x] is nonzero, and

∂x(x
p) = pxp−1 = 0.

Actually, something even worse is true: for any f ∈ Fq[x], ∂
p
x(f) = 0. This is in contrast to

the situation in Q[x], where ∂x(x
n) = 0 iff n = 0. The p above is the characteristic of Fq,

written char(Fq). We’ll see a way around this via something called Hasse derivatives.
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4 Hasse Derivatives

Definition 6 (Hasse Derivatives). Let f ∈ Fq[x1, . . . , xm] =: Fq[x], and let z := (z1, . . . , zm)
be a new set of variables. For i = (i1, . . . , im) ∈ Zm

≥0, the ith Hasse derivative of f is the

coefficient of zi in f(x+ z) ∈ (Fq[x])[z]. Namely,

f(x+ z) =
∑

i∈Zm
≥0

f (i)(x)zi.

For the same concrete example f(x) := xni as in the previous section,

f(x+ z) = (xi + zi)
n =

n∑
j=0

(
n

j

)
xn−j
i zji ,

so that f (ei) = (xni )
(ei) = nxni . When n = 0, we will have f (ei) = 0, but we can still “detect”

that f(x) = xpi is nonzero by noticing that

f(x+ z) = (xi + zi)
p = xpi + zpi ,

implying f (pei) = 1. (So there’s at least one Hasse derivative which is nonzero.)
These Hasse derivatives enjoy the same properties of the typical definition of derivatives.

(Compare with Proposition 5.)

Proposition 7 (Properties of f (i)(x)). For any f, g ∈ Fq[x], the following hold.

1. f ∈ Fq[x] 7→ f (i) ∈ Fq[x] is Fq-linear for all i ∈ Zm
≥0,

2. (Product rule) For any i ∈ Zm
≥0,

(fg)(i) =
∑

j,k∈Zm
≥0

j+k=i

f (j)g(k).

Proof (1) Let a ∈ Fq, then∑
i∈Zm

≥0

(f + ag)(i)(x)zi = (f + ag)(x+ z),

= f(x+ z) + ag(x+ z) =
∑

i∈Zm
≥0

(f (i)(x) + ag(i)(x))zi

Equating coefficients of zi on both sides yields the result.
(2) This follows from equating coefficients in the below.

(fg)(x+ z) =
∑

j∈Zm
≥0

f (j)(x)zj
∑

k∈Zm
≥0

g(k)(x)zj =
∑

i∈Zm
≥0

zi
( ∑

j,k∈Zm
≥0

j+k=i

f (j)(x)g(k)(x)

)
.

Next, we generalize the notion of multiplicity from univarite polynomials to multivariate
polynomials. In one variable, the multiplicity of λ ∈ Fq of f(x) ∈ Fq[x] is the largest k such
that (x− λ)k divides f(x).
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Definition 8 (Multiplicities). Suppose f ∈ Fq[x] is nonzero and α ∈ Fm
q . The multiplicity

of f at α is the smallest integer k ≥ 0 such that there exists i = (i1, . . . , im) ∈ Zm
≥0 with

i1+ · · ·+ im = k and f (i)(α) ̸= 0. Denote this quantity mult(f, α). We put mult(0, α) := ∞
for all α ∈ Fm

q .

Alternatively, mult(f, α) is the minimum degree of a monomial that appears in f(z+α).
Further, mult(f, α) > 0 iff f(α) = 0. The typical Schwartz-Zippel lemma stated above can
be rewritten as ∑

α∈Sm

min{1,mult(f, α)} ≤ d|S|m−1

for S ⊆ Fq and f ∈ Fq[x] of degree d. This can be generalized to take multiplicities into
consideration.

Lemma 9 (Schwartz-Zippel with Multiplicity). Let S ⊆ Fq and f ∈ Fq[x1, . . . , xm] with
degree d > 0. Then, ∑

α∈Sm

mult(f, α) ≤ d|S|m−1.

Proof Use induction on m. When m = 1, we have that g :=
∏

α∈S(x−α)mult(f,α) divides
f . Since f has degree d, we must have deg(g) =

∑
α∈S mult(f, α) ≤ d.

Assume m > 1. Denote x′ := (x1, . . . , xm−1) and define the polynomial

gs(x
′) := f(x′, s) = f(x1, . . . , xm−1, s) ∈ Fq[x

′],

for each s ∈ S. We claim that, for every β ∈ Sm−1 and s ∈ S,

mult(f, (β, s)) ≤ mult(gs, β).

Upon proving this claim, use induction on each gs to obtain∑
α∈Sm

mult(f, α) =
∑
s∈S

∑
β∈Sm−1

mult(f, (β, s)) ≤
∑
s∈S

∑
β∈Sm−1

mult(gs, β),

≤
∑
s∈S

d|S|m−2 = d|S|m−1.

OK, back to proving the claim. Note that mult(f, (β, s)) is the smallest degree of a
monomial appearing in P1(x) := f(x′ + β, xm + s); on the other hand, mult(gs, β) is the
smallest degree of a monomial appearing in P2(x

′) := gs(x
′ + β) = f(x′ + β, s). We have

that P2(x
′) is equal to P1(x) with xm set to zero. So, the minimum degree monomials in

P2 also appear in P1. Hence, the claim holds.

Note that the proof above can be adjusted to work with Fq replaced by any domain R.
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5 Bivariate Multiplicity Codes of Order-2

Of particular interest for us here are a modified bivariate Reed-Muller codes (i.e. of the
form RMq(2, k)). These “multiplicity codes” were first introduced by Swastik Kopparty,
Shubhangi Saraf, and Sergey Yekhanin in 2010.

Definition 10 (Bivariate Multiplicity Code of Order-2). Let d > 0 and q a prime power.
The order-2 multiplicity codeword of a polynomial f ∈ Fq[x, y] with deg(f) < d is

c(2)(f) :=

((
f(α), (∂xf)(α), (∂yf)(α)

)
: α ∈ F2

q

)
∈ (F3

q)
q2 .

(Note: We are treating c(2)(f) as a codeword over the alphabet F3
q with block length |F2

q | =
q2.) The corresponding bivariate multiplicity code of order-2 is the collection of all these
c(f)’s, and is denoted

RM(2)
q (2, d) :=

{
c(f) ∈ (F3

q)
q2 : f ∈ Fq[x, y], deg(f) < d

}
.

Compare RMq(2, d) to the above: for each f ∈ Fq[x, y] with deg(f) < d and α ∈ F2
q , the

αth entry of the corresponding codeword in RMq(2, d) and in RM
(2)
q (2, d) is

f(α) ∈ Fq and (f(α), ∂xf(α), ∂yf(α)) ∈ F3
q ,

respectively. Intuitively, RM
(2)
q (m, d) is obtained from RMq(2, d) by replacing each f(α)

with the 3-tuple (f(α), ∂xf(α), ∂yf(α)).
We’ll focus mostly on the order-2 multiplicity codes defined above, but Kopparty-Saraf-

Yekhanin generalize the above codes to higher order multiplicities by attaching Hasse deriva-
tives of order up to s to each symbol. (The above is with s = 2.)

Let’s compute the parameters of RM
(2)
q (2, d). If d is too large, then it could be that

c(2)(f) = c(2)(g) for some distinct f, g ∈ Fq[x, y] with deg(f),deg(g) < d. We claim that this
cannot happen when d < 2q. First, a lemma about relating multiplicities and derivatives,
which is a slightly more specific result of f(α) = 0 iff mult(f, α) ≥ 1.

Lemma 11. Let f ∈ Fq[x, y] and suppose α = (a, b) ∈ F2
q is such that

f(α) = ∂xf(α) = ∂yf(α) = 0.

Then, mult(f, α) ≥ 2.

Proof By assumption, we have that all three of

mult(f, α) ≥ 1, mult(∂xf, α) ≥ 1, mult(∂yf, α) ≥ 1.

Correspondingly, there exists r, s ∈ Fq such that

f(x+ a, y + b) = rx+ sy + (degree ≥ 2 terms).
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Compute ∂x of the above:

∂x

(
f(x+ a, y + b)

)
= (∂xf)(x+ a, y + b) = r + (degree ≥ 1 terms).

But, mult(∂xf, α) ≥ 1, so r = 0. Similarly, s = 0. Hence, all monomials in f(x + a, y + b)
are of degree ≥ 2.

Now, we prove the claimed bound on k.

Lemma 12. Let f, g ∈ Fq[x, y]. Assume f, g are zero or deg(f), deg(g) < 2q and

f(α) = g(α), ∂xf(α) = ∂xg(α), ∂yf(α) = ∂yg(α)

for all α ∈ F2
q. Then, f = g.

Proof It suffices to show the statement with g = 0. Assume f is nonzero and d :=
deg(f) < 2q. From Lemma 11, we have that mult(f, α) ≥ 2 for all α ∈ F2

q . Use Schwartz-
Zippel with multiplicity (Lemma 9) with S = Fq to obtain

2q2 =
∑
α∈F2

q

mult(f, α) ≤ dq.

Correspondingly, d ≥ 2q, a contradiction.

As a result, for f, g ∈ Fq[x, y] with deg(f),deg(g) < 2q,

c(2)(f) = c(2)(g) implies f = g.

Proposition 13 (Parameters of RM
(2)
q (2, d)). Let q a prime power and d < 2q. Then,

R
(
RM(2)

q (2, d)
)
=

1

3q2

(
d+ 1

2

)
and δ

(
RM(2)

q (2, d)
)
≥ 1− d

2q
.

Proof The mapping f 7→ c(2)(f) over f ∈ Fq[x, y] with deg(f) < d is injective, by the

previous lemma. There are
(
d+1
2

)
monomials in x, y of degree < d. So,

|RM(2)
q (2, d)| = #{f ∈ Fq[x, y] : deg(f) < d} = q(

d+1
2 ) = (q3)

1
3(

d+1
2 ).

Note that the alphabet is F3
q and of size q3. The block length is q2, so the rate is

R
(
RM(2)

q (2, d)
)
=

1

3q2

(
d+ 1

2

)
.

For the distance, note that RM
(2)
q (2, d) is additive. So, it suffices to compute the

minimum weight (over the alphabet F3
q) of a codeword c(2)(f) ∈ RM

(2)
q (2, d). Suppose

f ∈ Fq[x, y] is such that
(f(α), ∂xf(α), ∂yf(α)) = (0, 0, 0)
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for (1 − δ)q2 many α ∈ F2
q . Use Lemma 11 to obtain mult(f, α) ≥ 2 for δq2 many α ∈ F2

q .
By Lemma 9,

2(1− δ)q2 ≤
∑
α∈F2

q

mult(f, α) ≤ (deg(f))q < dq.

Then, δ > 1− d/(2q). Correspondingly, δ(RM
(2)
q (2, d)) > 1− d/(2q).

6 Local Correction of RM(2)
q

Throughout this section, fix δ > 0, and consider the code Cq(δ) := RM
(2)
q (2, 2(1− δ)q). By

Proposition 13,

R
(
Cq(δ)

)
=

1

3q2

(
2(1− δ)q + 1

2

)
≥ 2

3
(1− δ)2 and δ

(
Cq(δ)

)
> δ.

We denote c(f) := c(2)(f) for f ∈ Fq[x, y] and treat c(f) as a function F2
q → F3

q .
To be precise, we solve the following problem for to-be-determined parameters ε, ℓ. We’re

given as input α ∈ F2
q and functions r, rx, ry : F2

q → Fq such that there exists f ∈ Fq[x, y]
with deg(f) < 2(1− δ)q and(

f(γ), ∂xf(γ), ∂yf(γ)
)
=

(
r(γ), rx(γ), ry(γ)

)
for all but≤ εq2 many γ ∈ F2

q . The goal is to compute the triple (f(α), ∂xf(α), ∂yf(α)) using
at most ℓ queires to the value of (r, rx, ry) at points γ ∈ F2

q . Label c(r) := (r, rx, ry) : F2
q →

F3
q . Throughout this section, we’ll fix r, f, α as given here, and determine suitable values

for ℓ, ε.
Loosely, the algorithm will be as follows: Pick a line in F2

q through α uniformly at
random. With high probability, c(f) = c(r) for “most” points on the chosen line. The
restriction of c(f) to a line yields a univariate polynomial h(t) and its derivative h′(t); there
are corresponding functions H(t),H1(t) involving only r, rx, ry such that H(t) = h(t) and
H1(t) = h′(t) for most t ∈ Fq. Turns out, this is enough to recover the polynomials h, h′.

First we justify the choosing of the line. Given β ∈ F2
q , denote Lβ := {α + tβ : t ∈ Fq}

by the line through α in the direction of β and denote L := {Lβ : β ∈ F2
q}. Note that

Lβ = Lβ′ iff β = λβ′ for λ ∈ Fq, so there are q + 1 distinct lines in L. (Namely, L(0,1) and
L(1,λ) for λ ∈ Fq.) Finally, Lβ ∩ Lγ = {α} whenever Lβ, Lγ are distinct lines. To actually
choose the line, see the following lemma.

Lemma 14. Let β ∈ F2
q \ {(0, 0)} be chosen uniformly at random, and let Lβ ⊆ F2

q be the
corresponding line.

1. This is the same as picking a uniformly random line Lβ in L.

2. There are at most 100 lines Lγ ∈ L such that the functions c(f)|Lγ , c(r)|Lγ : Lγ → F3
q

disagree on ≥ εq/50 points in Lγ.
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(The choice of 100 and 50 is arbitrary here: they could be replaced by 2c and c for any
constant c > 1.)

Proof (1) For a given γ ∈ F2
q , the probability that Lβ = Lγ equals the probability that

β, γ are parallel, which is equal to the probability that β ∈ {λγ : λ ∈ Fq \ {0}}. This occurs
with probability (q − 1)/(q2 − 1) = 1/(q + 1) = 1/|L|.

(2) Let N be the number of distinct lines Lγ ∈ L such that c(f)|Lγ ̸= c(r)|Lγ for ≥ εq/50
points. The collection {L \ {α} : L ∈ L} is a partition for F2

q \ {α}. So, we obtain that
c(f) ̸= c(r) disagree on ≥ N(q− 1) · (εq/50) points in F2

q . On the other hand, c(f), c(r) can
only disagree in at most εq2 points in F2

q . So,

N(q − 1) · εq
50

≤ εq2 which implies N ≤ 50q

q − 1
≤ 100

as long as q ≥ 2. (This always happens actually by property of finite fields.)

As a result, the probability that c(f)|Lβ
̸= c(r)|Lβ

for < εq/50 many points is ≥ 1 −
100/(q − 1), which grows close to 1 as q gets large. Such lines Lβ ∈ L (i.e. all except for
the ≤ 100 that yield the behavior in (2) above) are called good lines from here on.

For β = (b1, b2) ∈ F2
q chosen as above with Lβ a good line, define the functions

Hβ(t) := r(α+ tβ) and H∗
β(t) := b1rx(α+ tβ) + b2ry(α+ tβ).

Also define the univariate polynomial hβ(t) := f(α+ tβ). If t is such that [c(f)](α+ tβ) =
[c(r)](α+ tβ), then

Hβ(t) = hβ(t) and H∗
β(t) = ∂thβ(t) = b1∂xf(α+ tβ) + b2∂yf(α+ tβ).

Hence, if Lβ is good, then the pair (Hβ, H
∗
β) agrees with the pair (hβ, ∂thβ) of univariate

polynomials at ≥ (1− ε/50)q many points t ∈ Fq. Note that

deg(hβ) ≤ deg(f) < 2(1− δ)q.

It turns out this is enough to uniquely identify hβ when ε := 50δ. For the next lemma, we
label ∂tg(t) =: g′(t).

Lemma 15. Suppose d < q, and let g, h ∈ Fq[t] with deg(g), deg(h) < 2d if g, h respectively
is nonzero. Assume that

g(λ) = h(λ) and g′(λ) = h′(λ)

for d many points λ ∈ Fq. Then, g = h.

Proof It suffices to show the result with h = 0: so assume g(λi) = g′(λi) = 0 for distinct
λi ∈ Fq with i ∈ [d]. This implies (t− λi)

2 divides g(t) for each i ∈ [d]. Correspondingly,

g(t) = g0(t)
∏
i∈[d]

(t− λi)
2,
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for another polynomial g0. If g is nonzero, then deg(g) ≥ 2d, which is a contradiction.

The above lemma implies that if g with degree < 2(1− δ)q is such that (Hβ, H
∗
β) agrees

with (g, ∂tg), then g = hβ. Via the Berlekamp-Welch algorithm, we can uniquely recover
the polynomial hβ(t) from the evaluations of (Hβ, H

∗
β) on all of Fq. Finally, once we recover

hβ, we can compute

hβ(0) = f(α) and ∂thβ(0) = b1∂xf(α) + b2∂yf(α).

Repeat the test for a different line Lγ ̸= Lβ for some γ = (c1, c2) ∈ F2
q . With high

probability, Lγ is also a good line so that we recover a univariate polynomial hγ(t) such
that

hγ(0) = f(α) and ∂thγ(0) = c1∂xf(α) + c2∂yf(α).

Since Lβ, Lγ are distinct lines, β = (b1, b2) and γ = (c1, c2) are linearly independent.
Correspondingly, the system [

b1 b2
c1 c2

] [
∂xf(α)
∂yf(α)

]
=

[
hβ(0)
hγ(0)

]
has a unique solution (∂xf(α), ∂yf(α)). Thus, we have computed

[c(f)](α) = (f(α), ∂xf(α), ∂yf(α)).

The following theorem summarizes the result.

Theorem 16. Cq(δ) is locally correctable up to a 50δ fraction of error using 2q queires,
which is correct with probability ≥ (1− 100

q−1)
2.

Proof The fraction ε of error we used was ε := 50δ. The 2q queires came from evaluating
the value of (Hβ, H

∗
β)(t) and of (Hγ , H

∗
γ)(t) for each t ∈ Fq: computing both of these

requires the value of c(r) on Lβ and on Lγ . Finally, the algorithm is correct exactly when
both Hβ, Hγ are good lines, which occurs with probability ≥ (1− 100/(q − 1))2.
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