CS 860	Topics	in	Coding	Theory
--------	--------	----	--------	--------

Nov. 10, 2025

Lecture 18

Lecturer: Elena Grigorescu Scribe: Enver Aman

1 Overview

We introduce derivatives of polynomials over \mathbb{F}_q . Particularly, we define Hasse derivatives and generalize the notion of multiplicity to multivariate polynomials. Then, we give a generalization of the Schwartz-Zippel lemma, which bounds the sum of the multiplicity of roots of a given polynomial as opposed to the usual statement bounding the number of roots.

Finally, we apply these ideas to form "bivariate multiplicty codes", which are bivariate Reed-Muller codes with extra information about derivatives attached to each symbol. These admit a randomized local correction algorithm with $O(\sqrt{n})$ many queires, where n is the block length of such codes. Furthermore, these codes have constant rate and relative distance as $n \to \infty$.

2 Recap: Reed-Muller Codes

We recall some results given in previous lectures.

Definition 1 (Reed-Muller Codes). Let m, k > 0 be integers, q > 0 a prime power, and $n := q^m$. The Reed-Muller Code $\mathrm{RM}_q(m,k) \subseteq \mathbb{F}_q^n$ is the code defined by

$$\mathrm{RM}_q(m,k) := \Big\{ (f(\alpha) : \alpha \in \mathbb{F}_q^m) : f \in \mathbb{F}_q[x_1,\ldots,x_m], \, \deg(f) < k \Big\}.$$

A codeword $c \in \text{RM}_q(m,k)$ will often be indexed by $c = (c_\alpha)_\alpha = (c_\alpha)_{\alpha \in \mathbb{F}_q^m}$. (Note that $|\mathbb{F}_q^m| = q^m = n$.)

Proposition 2 (Parameters of $RM_q(m,k)$). For m,k,q,n as above with the additional assumption k < 2q,

$$R(RM_q(m,k)) = \frac{k}{n} = \frac{k}{q^m} \quad and \quad \delta(RM_q(m,k)) \ge 1 - \frac{k}{q}.$$

Proof (Sketch) The distance bound follows from Schwartz-Zippel. The rate follows since each codeword is unique because the degree k is small enough.

The Schwartz-Zippel lemma mentioned above is this.

Lemma 3 (Schwartz-Zippel). Let $S \subseteq \mathbb{F}_q$ and $f \in \mathbb{F}_q[x_1, \ldots, x_m]$ with degree d > 0. Then,

$$\#\{\alpha \in S^m : f(\alpha) = 0\} \le d|S|^{m-1}.$$

3 Derivatives of Polynomials in \mathbb{F}_q

Let's first introduce the usual notion of derivative of polynomials over \mathbb{F}_q . These behave in nearly the exact same way as derivatives of polynomials over \mathbb{R} . They are also easier to compute and it turns out that the majority of the results in this lecture can be expressed using only these derivatives. (One requires a fancier definition (see next section) to generalize some results in later sections.)

Definition 4 (Differentiation in \mathbb{F}_q). Let $bx_1^{a_1} \cdots x_m^{a_m} \in \mathbb{F}_q[x_1, \dots, x_m]$ be a monomial. (That is, $b \in \mathbb{F}_q$ and each $a_i \geq 0$.) It's derivative with respect to x_i is

$$\partial_{x_i}(bx_1^{a_1}\cdots x_m^{a_m}) = ba_i x_i^{a_i-1} \prod_{\substack{j=1\\j\neq i}}^m x_j^{a_j}.$$

(Note ba_i is well-defined here since a_i is a nonnegative integer. When $a_i = 0$, the above is just 0.) In general, $\partial_{x_i}(f)$ is defined as the sum of the derivatives of the monomials that appear in f. We often write $\partial_{x_i}f$ instead of $\partial_{x_i}(f)$.

As a concrete example, $\partial_{x_i}(x_i^n) = nx_i^{n-1}$ for $n \geq 0$.

Derivatives of polynomials in $\mathbb{F}_q[x_1,\ldots,x_m]$ are analogous to derivatives of polynomials in $\mathbb{R}[x_1,\ldots,x_m]$, and nearly all properties of partial differentiation over \mathbb{R} hold over to differentiation in \mathbb{F}_q . (The proofs of all of these are the same as that for polynomials over \mathbb{R} .)

Proposition 5 (Properties of ∂_{x_i}). For all $i \in [m]$, let $\partial_{x_i} : \mathbb{F}_q[x_1, \dots, x_m] \to \mathbb{F}_q[x_1, \dots, x_m]$ be as above. Denote $\overline{x} := (x_1, \dots, x_m)$, and let $f, g \in \mathbb{F}_q[\overline{x}]$.

- 1. ∂_{x_i} is \mathbb{F}_q -linear,
- 2. (Product rule) $\partial_{x_i}(fg) = g\partial_{x_i}f + f\partial_{x_i}g$,
- 3. (Clairaut's theorem) $\partial_{x_i}\partial_{x_j}=\partial_{x_j}\partial_{x_i}$ for all $i,j\in[m]$.

Remark For nonzero $f \in \mathbb{F}_q[x]$, note that $\partial_x(f) = 0$ does not imply that $\deg(f) = 0$. In particular, if $q = p^k$ for prime p > 0 (note q must be a prime power for \mathbb{F}_q to be defined), then p = 0 in \mathbb{F}_q , $x^p \in \mathbb{F}_q[x]$ is nonzero, and

$$\partial_x(x^p) = px^{p-1} = 0.$$

Actually, something even worse is true: for any $f \in \mathbb{F}_q[x]$, $\partial_x^p(f) = 0$. This is in contrast to the situation in $\mathbb{Q}[x]$, where $\partial_x(x^n) = 0$ iff n = 0. The p above is the *characteristic* of \mathbb{F}_q , written $\operatorname{char}(\mathbb{F}_q)$. We'll see a way around this via something called *Hasse derivatives*.

4 Hasse Derivatives

Definition 6 (Hasse Derivatives). Let $f \in \mathbb{F}_q[x_1, \ldots, x_m] =: \mathbb{F}_q[\overline{x}]$, and let $\overline{z} := (z_1, \ldots, z_m)$ be a new set of variables. For $i = (i_1, \ldots, i_m) \in \mathbb{Z}^m_{\geq 0}$, the *ith Hasse derivative* of f is the coefficient of \overline{z}^i in $f(\overline{x} + \overline{z}) \in (\mathbb{F}_q[\overline{x}])[\overline{z}]$. Namely,

$$f(\overline{x} + \overline{z}) = \sum_{i \in \mathbb{Z}_{>0}^m} f^{(i)}(\overline{x})\overline{z}^i.$$

For the same concrete example $f(\overline{x}) := x_i^n$ as in the previous section,

$$f(\overline{x} + \overline{z}) = (x_i + z_i)^n = \sum_{i=0}^n \binom{n}{j} x_i^{n-j} z_i^j,$$

so that $f^{(e_i)} = (x_i^n)^{(e_i)} = nx_i^n$. When n = 0, we will have $f^{(e_i)} = 0$, but we can still "detect" that $f(\overline{x}) = x_i^p$ is nonzero by noticing that

$$f(\overline{x} + \overline{z}) = (x_i + z_i)^p = x_i^p + z_i^p,$$

implying $f^{(pe_i)} = 1$. (So there's at least one Hasse derivative which is nonzero.)

These Hasse derivatives enjoy the same properties of the typical definition of derivatives. (Compare with Proposition 5.)

Proposition 7 (Properties of $f^{(i)}(\overline{x})$). For any $f, g \in \mathbb{F}_q[\overline{x}]$, the following hold.

- 1. $f \in \mathbb{F}_q[\overline{x}] \mapsto f^{(i)} \in \mathbb{F}_q[\overline{x}]$ is \mathbb{F}_q -linear for all $i \in \mathbb{Z}_{\geq 0}^m$,
- 2. (Product rule) For any $i \in \mathbb{Z}_{>0}^m$,

$$(fg)^{(i)} = \sum_{\substack{j,k \in \mathbb{Z}_{\geq 0}^m \\ j+k=i}} f^{(j)}g^{(k)}.$$

Proof (1) Let $a \in \mathbb{F}_q$, then

$$\sum_{i \in \mathbb{Z}_{\geq 0}^m} (f + ag)^{(i)}(\overline{x})\overline{z}^i = (f + ag)(\overline{x} + \overline{z}),$$

$$= f(\overline{x} + \overline{z}) + ag(\overline{x} + \overline{z}) = \sum_{i \in \mathbb{Z}_{\geq 0}^m} (f^{(i)}(\overline{x}) + ag^{(i)}(\overline{x}))\overline{z}^i$$

Equating coefficients of \overline{z}^i on both sides yields the result.

(2) This follows from equating coefficients in the below.

$$(fg)(\overline{x} + \overline{z}) = \sum_{j \in \mathbb{Z}_{\geq 0}^m} f^{(j)}(\overline{x}) \overline{z}^j \sum_{k \in \mathbb{Z}_{\geq 0}^m} g^{(k)}(\overline{x}) \overline{z}^j = \sum_{i \in \mathbb{Z}_{\geq 0}^m} \overline{z}^i \left(\sum_{\substack{j,k \in \mathbb{Z}_{\geq 0}^m \\ j+k=i}} f^{(j)}(\overline{x}) g^{(k)}(\overline{x}) \right).$$

Next, we generalize the notion of multiplicity from univarite polynomials to multivariate polynomials. In one variable, the multiplicity of $\lambda \in \mathbb{F}_q$ of $f(x) \in \mathbb{F}_q[x]$ is the largest k such that $(x - \lambda)^k$ divides f(x).

Definition 8 (Multiplicities). Suppose $f \in \mathbb{F}_q[\overline{x}]$ is nonzero and $\alpha \in \mathbb{F}_q^m$. The multiplicity of f at α is the smallest integer $k \geq 0$ such that there exists $i = (i_1, \ldots, i_m) \in \mathbb{Z}_{\geq 0}^m$ with $i_1 + \cdots + i_m = k$ and $f^{(i)}(\alpha) \neq 0$. Denote this quantity $\operatorname{mult}(f, \alpha)$. We put $\operatorname{mult}(0, \alpha) := \infty$ for all $\alpha \in \mathbb{F}_q^m$.

Alternatively, $\operatorname{mult}(f,\alpha)$ is the minimum degree of a monomial that appears in $f(\overline{z}+\alpha)$. Further, $\operatorname{mult}(f,\alpha)>0$ iff $f(\alpha)=0$. The typical Schwartz-Zippel lemma stated above can be rewritten as

$$\sum_{\alpha \in S^m} \min\{1, \operatorname{mult}(f, \alpha)\} \le d|S|^{m-1}$$

for $S \subseteq \mathbb{F}_q$ and $f \in \mathbb{F}_q[\overline{x}]$ of degree d. This can be generalized to take multiplicities into consideration.

Lemma 9 (Schwartz-Zippel with Multiplicity). Let $S \subseteq \mathbb{F}_q$ and $f \in \mathbb{F}_q[x_1, \ldots, x_m]$ with degree d > 0. Then,

$$\sum_{\alpha \in S^m} \operatorname{mult}(f, \alpha) \le d|S|^{m-1}.$$

Proof Use induction on m. When m=1, we have that $g:=\prod_{\alpha\in S}(x-\alpha)^{\operatorname{mult}(f,\alpha)}$ divides f. Since f has degree d, we must have $\deg(g)=\sum_{\alpha\in S}\operatorname{mult}(f,\alpha)\leq d$. Assume m>1. Denote $\overline{x}':=(x_1,\ldots,x_{m-1})$ and define the polynomial

$$g_s(\overline{x}') := f(\overline{x}', s) = f(x_1, \dots, x_{m-1}, s) \in \mathbb{F}_q[\overline{x}'],$$

for each $s \in S$. We claim that, for every $\beta \in S^{m-1}$ and $s \in S$,

$$\operatorname{mult}(f,(\beta,s)) \leq \operatorname{mult}(g_s,\beta).$$

Upon proving this claim, use induction on each g_s to obtain

$$\sum_{\alpha \in S^m} \operatorname{mult}(f, \alpha) = \sum_{s \in S} \sum_{\beta \in S^{m-1}} \operatorname{mult}(f, (\beta, s)) \le \sum_{s \in S} \sum_{\beta \in S^{m-1}} \operatorname{mult}(g_s, \beta),$$
$$\le \sum_{s \in S} d|S|^{m-2} = d|S|^{m-1}.$$

OK, back to proving the claim. Note that $\operatorname{mult}(f,(\beta,s))$ is the smallest degree of a monomial appearing in $P_1(\overline{x}) := f(\overline{x}' + \beta, x_m + s)$; on the other hand, $\operatorname{mult}(g_s,\beta)$ is the smallest degree of a monomial appearing in $P_2(\overline{x}') := g_s(\overline{x}' + \beta) = f(\overline{x}' + \beta, s)$. We have that $P_2(\overline{x}')$ is equal to $P_1(\overline{x})$ with x_m set to zero. So, the minimum degree monomials in P_2 also appear in P_1 . Hence, the claim holds.

Note that the proof above can be adjusted to work with \mathbb{F}_q replaced by any domain R.

5 Bivariate Multiplicity Codes of Order-2

Of particular interest for us here are a modified bivariate Reed-Muller codes (i.e. of the form $\mathrm{RM}_q(2,k)$). These "multiplicity codes" were first introduced by Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin in 2010.

Definition 10 (Bivariate Multiplicity Code of Order-2). Let d > 0 and q a prime power. The order-2 multiplicity codeword of a polynomial $f \in \mathbb{F}_q[x,y]$ with $\deg(f) < d$ is

$$c^{(2)}(f) := \left(\left(f(\alpha), (\partial_x f)(\alpha), (\partial_y f)(\alpha) \right) : \alpha \in \mathbb{F}_q^2 \right) \in (\mathbb{F}_q^3)^{q^2}.$$

(Note: We are treating $c^{(2)}(f)$ as a codeword over the alphabet \mathbb{F}_q^3 with block length $|\mathbb{F}_q^2| = q^2$.) The corresponding bivariate multiplicity code of order-2 is the collection of all these c(f)'s, and is denoted

$$RM_q^{(2)}(2,d) := \left\{ c(f) \in (\mathbb{F}_q^3)^{q^2} : f \in \mathbb{F}_q[x,y], \deg(f) < d \right\}.$$

Compare $\mathrm{RM}_q(2,d)$ to the above: for each $f \in \mathbb{F}_q[x,y]$ with $\deg(f) < d$ and $\alpha \in \mathbb{F}_q^2$, the α th entry of the corresponding codeword in $\mathrm{RM}_q(2,d)$ and in $\mathrm{RM}_q^{(2)}(2,d)$ is

$$f(\alpha) \in \mathbb{F}_q$$
 and $(f(\alpha), \partial_x f(\alpha), \partial_y f(\alpha)) \in \mathbb{F}_q^3$

respectively. Intuitively, $\mathrm{RM}_q^{(2)}(m,d)$ is obtained from $\mathrm{RM}_q(2,d)$ by replacing each $f(\alpha)$ with the 3-tuple $(f(\alpha), \partial_x f(\alpha), \partial_u f(\alpha))$.

We'll focus mostly on the order-2 multiplicity codes defined above, but Kopparty-Saraf-Yekhanin generalize the above codes to higher order multiplicities by attaching Hasse derivatives of order up to s to each symbol. (The above is with s=2.)

Let's compute the parameters of $\mathrm{RM}_q^{(2)}(2,d)$. If d is too large, then it could be that $c^{(2)}(f)=c^{(2)}(g)$ for some distinct $f,g\in\mathbb{F}_q[x,y]$ with $\deg(f),\deg(g)< d$. We claim that this cannot happen when d<2q. First, a lemma about relating multiplicities and derivatives, which is a slightly more specific result of $f(\alpha)=0$ iff $\mathrm{mult}(f,\alpha)\geq 1$.

Lemma 11. Let $f \in \mathbb{F}_q[x,y]$ and suppose $\alpha = (a,b) \in \mathbb{F}_q^2$ is such that

$$f(\alpha) = \partial_x f(\alpha) = \partial_y f(\alpha) = 0.$$

Then, $\operatorname{mult}(f, \alpha) \geq 2$.

Proof By assumption, we have that all three of

$$\operatorname{mult}(f, \alpha) \ge 1$$
, $\operatorname{mult}(\partial_x f, \alpha) \ge 1$, $\operatorname{mult}(\partial_y f, \alpha) \ge 1$.

Correspondingly, there exists $r, s \in \mathbb{F}_q$ such that

$$f(x+a, y+b) = rx + sy + (degree > 2 terms).$$

Compute ∂_x of the above:

$$\partial_x \Big(f(x+a,y+b) \Big) = (\partial_x f)(x+a,y+b) = r + (\text{degree} \ge 1 \text{ terms}).$$

But, $\operatorname{mult}(\partial_x f, \alpha) \geq 1$, so r = 0. Similarly, s = 0. Hence, all monomials in f(x + a, y + b) are of degree ≥ 2 .

Now, we prove the claimed bound on k.

Lemma 12. Let $f, g \in \mathbb{F}_q[x, y]$. Assume f, g are zero or $\deg(f), \deg(g) < 2q$ and

$$f(\alpha) = g(\alpha), \quad \partial_x f(\alpha) = \partial_x g(\alpha), \quad \partial_y f(\alpha) = \partial_y g(\alpha)$$

for all $\alpha \in \mathbb{F}_q^2$. Then, f = g.

Proof It suffices to show the statement with g=0. Assume f is nonzero and $d:=\deg(f)<2q$. From Lemma 11, we have that $\operatorname{mult}(f,\alpha)\geq 2$ for all $\alpha\in\mathbb{F}_q^2$. Use Schwartz-Zippel with multiplicity (Lemma 9) with $S=\mathbb{F}_q$ to obtain

$$2q^2 = \sum_{\alpha \in \mathbb{F}_q^2} \operatorname{mult}(f, \alpha) \le dq.$$

Correspondingly, $d \geq 2q$, a contradiction.

As a result, for $f, g \in \mathbb{F}_q[x, y]$ with $\deg(f), \deg(g) < 2q$,

$$c^{(2)}(f) = c^{(2)}(g)$$
 implies $f = g$.

Proposition 13 (Parameters of $RM_q^{(2)}(2,d)$). Let q a prime power and d < 2q. Then,

$$\mathsf{R}\Big(\mathsf{RM}_q^{(2)}(2,d)\Big) = \frac{1}{3q^2}\binom{d+1}{2} \quad and \quad \delta\Big(\mathsf{RM}_q^{(2)}(2,d)\Big) \geq 1 - \frac{d}{2q}.$$

Proof The mapping $f \mapsto c^{(2)}(f)$ over $f \in \mathbb{F}_q[x,y]$ with $\deg(f) < d$ is injective, by the previous lemma. There are $\binom{d+1}{2}$ monomials in x,y of degree < d. So,

$$|\mathrm{RM}_q^{(2)}(2,d)| = \#\{f \in \mathbb{F}_q[x,y] : \deg(f) < d\} = q^{\binom{d+1}{2}} = (q^3)^{\frac{1}{3}\binom{d+1}{2}}.$$

Note that the alphabet is \mathbb{F}_q^3 and of size q^3 . The block length is q^2 , so the rate is

$$\mathsf{R}\Big(\mathsf{RM}_q^{(2)}(2,d)\Big) = \frac{1}{3q^2} \binom{d+1}{2}.$$

For the distance, note that $\mathrm{RM}_q^{(2)}(2,d)$ is additive. So, it suffices to compute the minimum weight (over the alphabet \mathbb{F}_q^3) of a codeword $c^{(2)}(f) \in \mathrm{RM}_q^{(2)}(2,d)$. Suppose $f \in \mathbb{F}_q[x,y]$ is such that

$$(f(\alpha),\partial_x f(\alpha),\partial_y f(\alpha)) = (0,0,0)$$

for $(1 - \delta)q^2$ many $\alpha \in \mathbb{F}_q^2$. Use Lemma 11 to obtain $\operatorname{mult}(f, \alpha) \geq 2$ for δq^2 many $\alpha \in \mathbb{F}_q^2$. By Lemma 9,

$$2(1-\delta)q^2 \leq \sum_{\alpha \in \mathbb{F}_q^2} \operatorname{mult}(f,\alpha) \leq (\operatorname{deg}(f))q < dq.$$

Then, $\delta > 1 - d/(2q)$. Correspondingly, $\delta(\mathrm{RM}_q^{(2)}(2,d)) > 1 - d/(2q)$.

6 Local Correction of $\mathrm{RM}_q^{(2)}$

Throughout this section, fix $\delta > 0$, and consider the code $C_q(\delta) := \text{RM}_q^{(2)}(2, 2(1-\delta)q)$. By Proposition 13,

$$\mathsf{R}\Big(C_q(\delta)\Big) = \frac{1}{3q^2} \binom{2(1-\delta)q+1}{2} \ge \frac{2}{3}(1-\delta)^2 \quad \text{and} \quad \delta\Big(C_q(\delta)\Big) > \delta.$$

We denote $c(f) := c^{(2)}(f)$ for $f \in \mathbb{F}_q[x,y]$ and treat c(f) as a function $\mathbb{F}_q^2 \to \mathbb{F}_q^3$.

To be precise, we solve the following problem for to-be-determined parameters ε, ℓ . We're given as input $\alpha \in \mathbb{F}_q^2$ and functions $r, r_x, r_y \colon \mathbb{F}_q^2 \to \mathbb{F}_q$ such that there exists $f \in \mathbb{F}_q[x, y]$ with $\deg(f) < 2(1 - \delta)q$ and

$$(f(\gamma), \partial_x f(\gamma), \partial_y f(\gamma)) = (r(\gamma), r_x(\gamma), r_y(\gamma))$$

for all but $\leq \varepsilon q^2$ many $\gamma \in \mathbb{F}_q^2$. The goal is to compute the triple $(f(\alpha), \partial_x f(\alpha), \partial_y f(\alpha))$ using at most ℓ queires to the value of (r, r_x, r_y) at points $\gamma \in \mathbb{F}_q^2$. Label $c(r) := (r, r_x, r_y) : \mathbb{F}_q^2 \to \mathbb{F}_q^3$. Throughout this section, we'll fix r, f, α as given here, and determine suitable values for ℓ, ε .

Loosely, the algorithm will be as follows: Pick a line in \mathbb{F}_q^2 through α uniformly at random. With high probability, c(f) = c(r) for "most" points on the chosen line. The restriction of c(f) to a line yields a univariate polynomial h(t) and its derivative h'(t); there are corresponding functions $H(t), H_1(t)$ involving only r, r_x, r_y such that H(t) = h(t) and $H_1(t) = h'(t)$ for most $t \in \mathbb{F}_q$. Turns out, this is enough to recover the polynomials h, h'.

First we justify the choosing of the line. Given $\beta \in \mathbb{F}_q^2$, denote $L_\beta := \{\alpha + t\beta : t \in \mathbb{F}_q\}$ by the line through α in the direction of β and denote $\mathcal{L} := \{L_\beta : \beta \in \mathbb{F}_q^2\}$. Note that $L_\beta = L_{\beta'}$ iff $\beta = \lambda \beta'$ for $\lambda \in \mathbb{F}_q$, so there are q+1 distinct lines in \mathcal{L} . (Namely, $L_{(0,1)}$ and $L_{(1,\lambda)}$ for $\lambda \in \mathbb{F}_q$.) Finally, $L_\beta \cap L_\gamma = \{\alpha\}$ whenever L_β, L_γ are distinct lines. To actually choose the line, see the following lemma.

Lemma 14. Let $\beta \in \mathbb{F}_q^2 \setminus \{(0,0)\}$ be chosen uniformly at random, and let $L_\beta \subseteq \mathbb{F}_q^2$ be the corresponding line.

- 1. This is the same as picking a uniformly random line L_{β} in \mathcal{L} .
- 2. There are at most 100 lines $L_{\gamma} \in \mathcal{L}$ such that the functions $c(f)|_{L_{\gamma}}, c(r)|_{L_{\gamma}} : L_{\gamma} \to \mathbb{F}_q^3$ disagree on $\geq \varepsilon q/50$ points in L_{γ} .

(The choice of 100 and 50 is arbitrary here: they could be replaced by 2c and c for any constant c > 1.)

- **Proof** (1) For a given $\gamma \in \mathbb{F}_q^2$, the probability that $L_{\beta} = L_{\gamma}$ equals the probability that β, γ are parallel, which is equal to the probability that $\beta \in \{\lambda \gamma : \lambda \in \mathbb{F}_q \setminus \{0\}\}$. This occurs with probability $(q-1)/(q^2-1) = 1/(q+1) = 1/|\mathcal{L}|$.
- (2) Let N be the number of distinct lines $L_{\gamma} \in \mathcal{L}$ such that $c(f)|_{L_{\gamma}} \neq c(r)|_{L_{\gamma}}$ for $\geq \varepsilon q/50$ points. The collection $\{L \setminus \{\alpha\} : L \in \mathcal{L}\}$ is a partition for $\mathbb{F}_q^2 \setminus \{\alpha\}$. So, we obtain that $c(f) \neq c(r)$ disagree on $\geq N(q-1) \cdot (\varepsilon q/50)$ points in \mathbb{F}_q^2 . On the other hand, c(f), c(r) can only disagree in at most εq^2 points in \mathbb{F}_q^2 . So,

$$N(q-1) \cdot \frac{\varepsilon q}{50} \le \varepsilon q^2$$
 which implies $N \le \frac{50q}{q-1} \le 100$

as long as $q \geq 2$. (This always happens actually by property of finite fields.)

As a result, the probability that $c(f)|_{L_{\beta}} \neq c(r)|_{L_{\beta}}$ for $< \varepsilon q/50$ many points is $\geq 1 - 100/(q-1)$, which grows close to 1 as q gets large. Such lines $L_{\beta} \in \mathcal{L}$ (i.e. all except for the ≤ 100 that yield the behavior in (2) above) are called *good lines* from here on.

For $\beta = (b_1, b_2) \in \mathbb{F}_q^2$ chosen as above with L_{β} a good line, define the functions

$$H_{\beta}(t) := r(\alpha + t\beta)$$
 and $H_{\beta}^{*}(t) := b_1 r_x(\alpha + t\beta) + b_2 r_y(\alpha + t\beta).$

Also define the univariate polynomial $h_{\beta}(t) := f(\alpha + t\beta)$. If t is such that $[c(f)](\alpha + t\beta) = [c(r)](\alpha + t\beta)$, then

$$H_{\beta}(t) = h_{\beta}(t)$$
 and $H_{\beta}^{*}(t) = \partial_{t}h_{\beta}(t) = b_{1}\partial_{x}f(\alpha + t\beta) + b_{2}\partial_{y}f(\alpha + t\beta).$

Hence, if L_{β} is good, then the pair (H_{β}, H_{β}^*) agrees with the pair $(h_{\beta}, \partial_t h_{\beta})$ of univariate polynomials at $\geq (1 - \varepsilon/50)q$ many points $t \in \mathbb{F}_q$. Note that

$$\deg(h_{\beta}) \le \deg(f) < 2(1 - \delta)q.$$

It turns out this is enough to uniquely identify h_{β} when $\varepsilon := 50\delta$. For the next lemma, we label $\partial_t g(t) =: g'(t)$.

Lemma 15. Suppose d < q, and let $g, h \in \mathbb{F}_q[t]$ with $\deg(g), \deg(h) < 2d$ if g, h respectively is nonzero. Assume that

$$g(\lambda) = h(\lambda)$$
 and $g'(\lambda) = h'(\lambda)$

for d many points $\lambda \in \mathbb{F}_q$. Then, g = h.

Proof It suffices to show the result with h = 0: so assume $g(\lambda_i) = g'(\lambda_i) = 0$ for distinct $\lambda_i \in \mathbb{F}_q$ with $i \in [d]$. This implies $(t - \lambda_i)^2$ divides g(t) for each $i \in [d]$. Correspondingly,

$$g(t) = g_0(t) \prod_{i \in [d]} (t - \lambda_i)^2,$$

for another polynomial g_0 . If g is nonzero, then $\deg(g) \geq 2d$, which is a contradiction.

The above lemma implies that if g with degree $< 2(1 - \delta)q$ is such that (H_{β}, H_{β}^*) agrees with $(g, \partial_t g)$, then $g = h_{\beta}$. Via the Berlekamp-Welch algorithm, we can uniquely recover the polynomial $h_{\beta}(t)$ from the evaluations of (H_{β}, H_{β}^*) on all of \mathbb{F}_q . Finally, once we recover h_{β} , we can compute

$$h_{\beta}(0) = f(\alpha)$$
 and $\partial_t h_{\beta}(0) = b_1 \partial_x f(\alpha) + b_2 \partial_u f(\alpha)$.

Repeat the test for a different line $L_{\gamma} \neq L_{\beta}$ for some $\gamma = (c_1, c_2) \in \mathbb{F}_q^2$. With high probability, L_{γ} is also a good line so that we recover a univariate polynomial $h_{\gamma}(t)$ such that

$$h_{\gamma}(0) = f(\alpha)$$
 and $\partial_t h_{\gamma}(0) = c_1 \partial_x f(\alpha) + c_2 \partial_u f(\alpha)$.

Since L_{β}, L_{γ} are distinct lines, $\beta = (b_1, b_2)$ and $\gamma = (c_1, c_2)$ are linearly independent. Correspondingly, the system

$$\begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix} \begin{bmatrix} \partial_x f(\alpha) \\ \partial_y f(\alpha) \end{bmatrix} = \begin{bmatrix} h_{\beta}(0) \\ h_{\gamma}(0) \end{bmatrix}$$

has a unique solution $(\partial_x f(\alpha), \partial_y f(\alpha))$. Thus, we have computed

$$[c(f)](\alpha) = (f(\alpha), \partial_x f(\alpha), \partial_u f(\alpha)).$$

The following theorem summarizes the result.

Theorem 16. $C_q(\delta)$ is locally correctable up to a 50 δ fraction of error using 2q queires, which is correct with probability $\geq (1 - \frac{100}{g-1})^2$.

Proof The fraction ε of error we used was $\varepsilon := 50\delta$. The 2q queires came from evaluating the value of $(H_{\beta}, H_{\beta}^*)(t)$ and of $(H_{\gamma}, H_{\gamma}^*)(t)$ for each $t \in \mathbb{F}_q$: computing both of these requires the value of c(r) on L_{β} and on L_{γ} . Finally, the algorithm is correct exactly when both H_{β} , H_{γ} are good lines, which occurs with probability $\geq (1 - 100/(q - 1))^2$.