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Lecture 18
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1 Overview

We introduce derivatives of polynomials over F,. Particularly, we define Hasse derivatives
and generalize the notion of multiplicity to multivariate polynomials. Then, we give a
generalization of the Schwartz-Zippel lemma, which bounds the sum of the multiplicity of
roots of a given polynomial as opposed to the usual statement bounding the number of
roots.

Finally, we apply these ideas to form “bivariate multiplicty codes”, which are bivari-
ate Reed-Muller codes with extra information about derivatives attached to each symbol.
These admit a randomized local correction algorithm with O(y/n) many queires, where n
is the block length of such codes. Furthermore, these codes have constant rate and relative
distance as n — co.

2 Recap: Reed-Muller Codes

We recall some results given in previous lectures.

Definition 1 (Reed-Muller Codes). Let m,k > 0 be integers, ¢ > 0 a prime power, and
n = q™. The Reed-Muller Code RMy(m, k) C Fy is the code defined by

RM, (m, k) == {(f(a) Q€ FM): f € Rylwn,..., wm), deg(f) < k}

A codeword ¢ € RMy(m, k) will often be indexed by ¢ = (ca)a = (¢a)acrm. (Note that
Fp| = g™ = n)

Proposition 2 (Parameters of RMy(m,k)). For m,k,q,n as above with the additional
assumption k < 2q,
k k k
R(RMy(m, k) = — = — and §(RMy(m,k)) >1——.
n q q

Proof (Sketch) The distance bound follows from Schwartz-Zippel. The rate follows since
each codeword is unique because the degree k is small enough. H
The Schwartz-Zippel lemma mentioned above is this.

Lemma 3 (Schwartz-Zippel). Let S C F, and f € Fylz1,...,zy] with degree d > 0. Then,

#{a e S™: fla) =0} < d|S[™ "



3 Derivatives of Polynomials in [,

Let’s first introduce the usual notion of derivative of polynomials over F,. These behave
in nearly the exact same way as derivatives of polynomials over R. They are also easier to
compute and it turns out that the majority of the results in this lecture can be expressed us-
ing only these derivatives. (One requires a fancier definition (see next section) to generalize
some results in later sections.)

Definition 4 (Differentiation in Fg). Let bz ---a%m € Fylz1,...,2m,] be a monomial.
(That is, b € F, and each a; > 0.) It’s derivative with respect to x; is

m
Or, (b <) = baga ™ [ .
i=1
J#
(Note ba; is well-defined here since a; is a nonnegative integer. When a; = 0, the above is

just 0.) In general, Oy, (f) is defined as the sum of the derivatives of the monomials that
appear in f. We often write d,, f instead of 0y, (f).

As a concrete example, 0y, (z7) = na?"! for n > 0.

Derivatives of polynomials in Fy[z1, ..., z,] are analogous to derivatives of polynomials
in R[zq,...,2,], and nearly all properties of partial differentiation over R hold over to
differentiation in F,. (The proofs of all of these are the same as that for polynomials over
R.)

Proposition 5 (Properties of 0,,). For alli € [m], let Oy, : Fy[z1,..., 2] = Fglz1,. .., 2]
be as above. Denote T := (x1,...,%m), and let f,g € Fy[z].

1. Oy, 1is Fy-linear,
2. (Product rule) 0,(fg) = g0x, f + 0,9,
3. (Clairaut’s theorem) 9;,0;; = 0,0, for all i,j € [m].

Remark For nonzero f € Fy[z], note that d,(f) = 0 does not imply that deg(f) = 0.
In particular, if ¢ = p* for prime p > 0 (note ¢ must be a prime power for F, to be defined),
then p =0 in Fy, 2P € Fy[z] is nonzero, and

0z (2?) = pxP~l = 0.

Actually, something even worse is true: for any f € F,[z], 95(f) = 0. This is in contrast to
the situation in Q[z], where 0,(z") = 0 iff n = 0. The p above is the characteristic of F,
written char(IF,;). We’ll see a way around this via something called Hasse derivatives.



4 Hasse Derivatives

Definition 6 (Hasse Derivatives). Let f € Fy[z1,...,zn] = Fy[7], and let Z := (21, ..., 2m)
be a new set of variables. For i = (i1,...,4,,) € ZZ,, the ith Hasse derivative of f is the
coefficient of z* in f(Z + %) € (Fy[7])[2]. Namely,

f@+2) Zf

zEZTZ”O
For the same concrete example f(Z) := ] as in the previous section,
f@+2)=(ri+2z)" = Z ( 4)36?_)2?,
i=0 N
so that f(¢) = (27)(¢) = nz?. When n = 0, we will have f(¢) = 0, but we can still “detect”
that f(z ) 2% is nonzero by noticing that

7/
f(@T+72) = (x;+2)P =af + 2P,

implying f®e) = 1. (So there’s at least one Hasse derivative which is nonzero.)
These Hasse derivatives enjoy the same properties of the typical definition of derivatives.
(Compare with Proposition 5.)

Proposition 7 (Properties of f()(%)). For any f,g € Fy[7], the following hold.
1. f €Fglm v [ € Fyla] is Fy-linear for all i € 2T,
2. (Product rule) For any i € 2%,

(fg) = 3 filg®),

JkeLT
jk=i

Proof (1) Let a € Fy, then
Y (f+ag) @7 = (f +ag)(T +2),

i€z,
= f@+2) +ag@+2) = Y (fY@) +ag" (@)
i€y,
Equating coefficients of Z* on both sides yields the result.
(2) This follows from equating coefficients in the below.

(fo)(T+7%) E:j‘ E:gw%@QZZE:Z%:EZ ﬂﬁ@mwa>
jezw, kez?, 1€2, 7,k€ZZ,
- N N J+k=i

|
Next, we generalize the notion of multiplicity from univarite polynomials to multivariate

polynomials. In one variable, the multiplicity of A € I, of f(x) € Fy[xz] is the largest k such
that (x — \)¥ divides f().



Definition 8 (Multiplicities). Suppose f € Fy[z] is nonzero and « € F*'. The multiplicity
of f at a is the smallest integer & > 0 such that there exists i = (i1,...,in) € ZZ; with

i1+ +ipm =kand f®(a) # 0. Denote this quantity mult(f, o). We put mult(0, a) := oo
for all a € F".

Alternatively, mult(f, &) is the minimum degree of a monomial that appears in f(Z+a).
Further, mult(f, ) > 0 iff f(a) = 0. The typical Schwartz-Zippel lemma stated above can
be rewritten as

> " min{1, mult(f,a)} < d[S|™"

aesS™m

for S C F, and f € F,[Z] of degree d. This can be generalized to take multiplicities into
consideration.

Lemma 9 (Schwartz-Zippel with Multiplicity). Let S C Fy and f € Fylzq,. .., 2] with
degree d > 0. Then,
Z mult(f, a) < d|S|™ L.

aesS™

Proof Use induction on m. When m = 1, we have that g := [, .g(z — @)™ ) divides
f. Since f has degree d, we must have deg(g) = > g mult(f, a) < d.
Assume m > 1. Denote T’ := (z1,...,Z,m—1) and define the polynomial

gs(T') = f(T,3) = f(x1,...,2m—1, ) € F[T],

for each s € S. We claim that, for every € S™ ! and s € S,

mult(f, (8,s)) < mult(gs, B).

Upon proving this claim, use induction on each g5 to obtain

Z mult(f, o Z Z mult(f, (8, s) <Z Z mult(gs, 8
aeSm sES pesm—1 s€S gesm—1
<> d|S|m? =dls|m

SES

OK, back to proving the claim. Note that mult(f, (8, s)) is the smallest degree of a
monomial appearing in Py(Z) := f(Z' 4+ B, zm + s); on the other hand, mult(gs, 3) is the
smallest degree of a monomial appearing in P (') := g5(7' + 8) = f(T' + B,s). We have
that Py(Z') is equal to P;(Z) with z,, set to zero. So, the minimum degree monomials in
P, also appear in P;. Hence, the claim holds.

]

Note that the proof above can be adjusted to work with I, replaced by any domain R.



5 Bivariate Multiplicity Codes of Order-2

Of particular interest for us here are a modified bivariate Reed-Muller codes (i.e. of the
form RM,(2,k)). These “multiplicity codes” were first introduced by Swastik Kopparty,
Shubhangi Saraf, and Sergey Yekhanin in 2010.

Definition 10 (Bivariate Multiplicity Code of Order-2). Let d > 0 and ¢ a prime power.
The order-2 multiplicity codeword of a polynomial f € Fylx,y] with deg(f) < d is

1) = ( (@l 0D, @) (@) s a € 72 ) € (F

(Note: We are treating c¢(?)(f) as a codeword over the alphabet F3 with block length |[FZ| =
q*.) The corresponding bivariate multiplicity code of order-2 is the collection of all these
c(f)’s, and is denoted

RM((ZQ)(Zd) = {c(f) € (]Fg)‘f t f € Folz,yl, deg(f) < d}‘

Compare RM,(2,d) to the above: for each f € Fy[z,y] with deg(f) < d and « € F, the
ath entry of the corresponding codeword in RM,(2,d) and in RM((12)(2, d) is

fla)eFy  and  (f(a),0:f(@), 9y f(a)) € Fy,

respectively. Intuitively, RMgz) (m,d) is obtained from RM,(2,d) by replacing each f(«)
with the 3-tuple (f(«), 0. f(c), 0y f(a)).

We’ll focus mostly on the order-2 multiplicity codes defined above, but Kopparty-Saraf-
Yekhanin generalize the above codes to higher order multiplicities by attaching Hasse deriva-
tives of order up to s to each symbol. (The above is with s = 2.)

Let’s compute the parameters of RMgz) (2,d). If d is too large, then it could be that
2 (f) = ¢ (g) for some distinct f,g € F,[z,y] with deg(f),deg(g) < d. We claim that this
cannot happen when d < 2q. First, a lemma about relating multiplicities and derivatives,
which is a slightly more specific result of f(«) = 0 iff mult(f, o) > 1.

Lemma 11. Let f € Fy[z,y] and suppose a = (a,b) € Fg is such that

f(@) = 0:f(a) = 0y f(a) = 0.

Then, mult(f, a) > 2.

Proof By assumption, we have that all three of
mult(f,«) > 1, mult(0,f, ) > 1, mult(dyf, ) > 1.
Correspondingly, there exists r, s € IF, such that

f(x+a,y+0b) =rz+ sy+ (degree > 2 terms).



Compute 0, of the above:
ax(f(ac +a,y+ b)) = (0zf)(x +a,y+b) =1+ (degree > 1 terms).

But, mult(9, f,«) > 1, so r = 0. Similarly, s = 0. Hence, all monomials in f(z + a,y + b)
are of degree > 2. B

Now, we prove the claimed bound on k.

Lemma 12. Let f,g € Fyz,y]. Assume f,g are zero or deg(f),deg(g) < 2q and

f(a) = g(a)7 aa:f(a) = 8xg(a)7 ayf(a) = 8yg(a)
for all a € FZ. Then, f =g.

Proof It suffices to show the statement with ¢ = 0. Assume f is nonzero and d :=
deg(f) < 2¢. From Lemma 11, we have that mult(f,a) > 2 for all @ € F. Use Schwartz-
Zippel with multiplicity (Lemma 9) with S =, to obtain

2¢* = Z mult(f, o) < dgq.

ack?
Correspondingly, d > 2¢q, a contradiction. H

As a result, for f,g € Fy[z,y] with deg(f), deg(g) < 2g,

c(2)(]0) — 2 (9) implies =g

Proposition 13 (Parameters of RMSI2)(2, d)). Let q a prime power and d < 2q. Then,

R<RM<(12)<27d)> = 3(112 (d; 1> and 5<RM52)(2,d)> >1— ;i]

Proof The mapping f +— ¢ (f) over f € F [x,y] with deg(f) < d is injective, by the
d+1

5 ) monomials in z,y of degree < d. So,

previous lemma. There are (

d+1 d+1

[RM®)(2,d)| = #{f € Fyla,y] : deg(f) < d} = ¢("2) = (¢%)5("2").

Note that the alphabet is Fg and of size ¢3. The block length is ¢2, so the rate is

1 (d+1
R(RMgz)(Q,d)):gcﬂ( ; >

For the distance, note that RMgQ)(2,d) is additive. So, it suffices to compute the

minimum weight (over the alphabet Fg) of a codeword c®(f) e RMgQ)(Q,d). Suppose
f € Fylx,y] is such that

(f(@), 02 f(a), 0, f(e)) = (0,0,0)

6



for (1 — 6)q¢? many a € Fg. Use Lemma 11 to obtain mult(f,a) > 2 for 6¢*> many o € Fg.
By Lemma 9,
2(1-4)¢” < Y mult(f,a) < (deg(f))g < dg.

ack?

Then, 6 > 1 —d/(2q). Correspondingly, 5(RM((12)(2, d) >1—-d/(2q). &

6 Local Correction of RMEIQ)

Throughout this section, fix § > 0, and consider the code C,(6) := RM((Jz)(2, 2(1—4)q). By
Proposition 13,

R(C(6)) = 3}(2(1 - g)” 1) > 2(1 ~57 and 6(C,(0)) >4

We denote c(f) := ¢ (f) for f € Fyz,y] and treat c(f) as a function Fg — Fg.

To be precise, we solve the following problem for to-be-determined parameters €, £. We're
given as input « € Fg and functions 7,74, 7y : FZ — [, such that there exists f € F,[z,y]
with deg(f) < 2(1 —d)q and

(£, 020 (3). 0,0 (3)) = (r(3)s72(3). 7, (7))

for all but < eq® many y € F2. The goal is to compute the triple (f(c), 8, f (), 8, f () using
at most ¢ queires to the value of (r,7,,r,) at points v € F2. Label ¢(r) := (r,rg, 1) : F2 —
Fg. Throughout this section, we’ll fix r, f, « as given here, and determine suitable values
for £, ¢e.

Loosely, the algorithm will be as follows: Pick a line in Fg through a uniformly at
random. With high probability, ¢(f) = c(r) for “most” points on the chosen line. The
restriction of ¢(f) to a line yields a univariate polynomial h(t) and its derivative h'(t); there
are corresponding functions H(t), H1(t) involving only r,r,, 7, such that H(t) = h(t) and
Hi(t) = W (t) for most t € F,. Turns out, this is enough to recover the polynomials h, h’.

First we justify the choosing of the line. Given g € Fg, denote Lg :={a+tf:t € Fy}
by the line through o in the direction of 3 and denote £ := {Lg : 3 € F2}. Note that
Lg = Lg iff = A\p' for A € Fy, so there are ¢ + 1 distinct lines in £. (Namely, Lo,1) and
Ly for A € Fy.) Finally, Lg N L, = {a} whenever Lg, L, are distinct lines. To actually
choose the line, see the following lemma.

Lemma 14. Let § € F2\ {(0,0)} be chosen uniformly at random, and let Lg C F2 be the
corresponding line.

1. This is the same as picking a uniformly random line Lg in L.

2. There are at most 100 lines L, € L such that the functions c(f)|L.,c(r)|L,: Ly — Fg
disagree on > £q/50 points in L.,.



(The choice of 100 and 50 is arbitrary here: they could be replaced by 2¢ and ¢ for any
constant ¢ > 1.)

Proof (1) For a given 7 € Fg, the probability that Lg = L, equals the probability that
B, are parallel, which is equal to the probability that 5 € {\y: XA € F,\ {0}}. This occurs
with probability (¢ —1)/(¢®> —1) =1/(¢+ 1) = 1/|L]|.

(2) Let N be the number of distinct lines L., € £ such that c(f)|z, # c(r)|, for > eq/50
points. The collection {L \ {a} : L € L} is a partition for Fg \ {a}. So, we obtain that
c(f) # ¢(r) disagree on > N(q—1) - (eq/50) points in F2. On the other hand, ¢(f), ¢(r) can
only disagree in at most £¢? points in Fg. So,

50
N(g—1)- % <eq? which implies N < q—iql < 100

as long as ¢ > 2. (This always happens actually by property of finite fields.) B

As a result, the probability that c(f)|L, # c(r)|L, for < £¢/50 many points is > 1 —
100/(¢g — 1), which grows close to 1 as ¢ gets large. Such lines Lg € £ (i.e. all except for
the < 100 that yield the behavior in (2) above) are called good lines from here on.

For 8 = (b1,b2) € Fg chosen as above with Lg a good line, define the functions

Hga(t) :=r(a+tp) and HE(t) == birz(a +t8) + bary(a + t5).

Also define the univariate polynomial hg(t) := f(a +¢3). If t is such that [c(f)](a +tB) =
[e(r)](a +tf3), then

Hy(t) = ho(t) and  H5(t) = Qihs(t) = b1, f(a + 18) + bad, f(a + tB).

Hence, if Lg is good, then the pair (Hg, H/’;) agrees with the pair (hg, dshg) of univariate
polynomials at > (1 —¢/50)g many points ¢t € F,. Note that

deg(hg) < deg(f) < 2(1 —d)q.

It turns out this is enough to uniquely identify hg when € := 500. For the next lemma, we
label 0;g(t) =: ¢'(t).

Lemma 15. Suppose d < g, and let g, h € Fy[t] with deg(g),deg(h) < 2d if g, h respectively
is nonzero. Assume that

g =h(N)  and g =K ()
for d many points X € Fy. Then, g = h.

Proof It suffices to show the result with A = 0: so assume g(\;) = ¢’(\;) = 0 for distinct
\; € F, with i € [d]. This implies (¢ — X\;)? divides g(t) for each i € [d]. Correspondingly,

g(t) = go(t) TT (¢ —)*,

1€[d]

8



for another polynomial go. If g is nonzero, then deg(g) > 2d, which is a contradiction. B

The above lemma implies that if g with degree < 2(1 —d)q is such that (Hg, HZ,) agrees
with (g,0:g), then g = hg. Via the Berlekamp-Welch algorithm, we can uniquely recover
the polynomial hs(t) from the evaluations of (Hg, Hj) on all of Fy. Finally, once we recover
hg, we can compute

hg(0) = f(o) and 0thg(0) = 010, f(a) + b20y f ().

Repeat the test for a different line L, # Lg for some v = (c1,¢c2) € IFS. With high
probability, L, is also a good line so that we recover a univariate polynomial h(t) such
that

hy(0) = f(a) and 0Oihy(0) = 10, f(0) + 20y f(a).

Since Lg, L, are distinct lines, § = (b1,b2) and v = (c1,¢2) are linearly independent.
Correspondingly, the system

[bl 52] [@cf(a)} _ {hﬁ(o)]

c1 c2] |Oyf(a) h+(0)

has a unique solution (0, f(), 0y f(a)). Thus, we have computed

[e(H](a) = (f(@), 0 f (@), By f(a)).
The following theorem summarizes the result.

Theorem 16. Cy(0) is locally correctable up to a 500 fraction of error using 2q queires,
which is correct with probability > (1 — %)2.

Proof The fraction ¢ of error we used was € := 508. The 2¢ queires came from evaluating
the value of (Hpg, Hj)(t) and of (H,, H})(t) for each t € Fy: computing both of these
requires the value of ¢(r) on Lg and on L,. Finally, the algorithm is correct exactly when
both Hg, H, are good lines, which occurs with probability > (1 —100/(¢ — 1))?. B



