
CS 860 Topics in Coding Theory Oct. 30th, 2025

Lecture 15

Lecturer: Elena Grigorescu Scribe: Kylee Schram

Summary: Introduce Local decoding. Testing membership in Hadamard code → testing
linearity. We also briefly discuss origins of property testing and other applications.

0.1 Local Decoding

The algorithms we have seen so far are for classical codes, and are linear time or worse.
Now we will look at sublinear codes.

Let w be a received word. We can’t read all of it, because maybe that takes too much
time or space. Define A which can query w at an index, and return the value of w at that
index.

We would like to know if a received word w is in the Had code:

• w is δ - far if dist(w,Had) ≥ δ2n

• w is δ - close otherwise

0.2 Property Testing

Definition 1 Code C is (q, 1− ϵ1, ϵ2, δ)-locally testable if ∃ random algorithm A with query
(oracle) access to input w such that:

• Aw makes q queries

• completeness: if w in C then Pr[Awaccepts] ≥ 1− ϵ1

• soundness: if w is δ-far from C then Pr[Awaccepts] ≤ ϵ2

ϵ1 = 0 is one-sided with perfect completeness
A is an adaptive algorithm if query qi depends on prior queries. An algorithm that

makes all queries at once and then looks at all answers together is one-way non-adaptive.

Theorem 2 Had is (3, 1, δ, δ)-locally testable, where
Had={Ca : Fn

2 → F2|Ca(x) =< a, x >}

Proof Idea
WTS: we can make an algorithm A with 3 queries such that:

• if w is a linear function, accept with probability 1

• else if w is δ-far (wrt Hamming distance), then A accepts with probability < δ

1

How can we test for linearity in 3 queries? If w is linear, then f(x) + f(y) = f(x+ y)
Test:
Given query access to function f (let this be w from above, change of notation), pick

x, y ∈ Fn
2 uniformly random.

• check if f(x) + f(y) = f(x+y)

• if so, accept

• else reject

Now we need to show that A has the accept/reject probabilities we want.
We need some ideas from Fourier analysis, which we refresh below.

0.3 Refresh: Fourier Analysis

When looking at C : Fn
2 → F2, it was useful to embed into R, c(x) → (−1)c(x).

Gives ca lin → (−1)ca(x)

ca(x) + ca(y) = ca(x+ y) → (−1)ca(x) + (−1)ca(y) = (−1)ca(x+y)

Now we list some identities/facts we might like to use later:

• Hadamard maps to orthonormal basis

• χa(x) = (−1)x·a

• {χa}a∈Fn
2
is an orthonormal basis R2n

• χ0(x) = 1,∀x

• Ex∈Fn
2
[χa(x)] =

{
1 a = 0

0 else

• linearity of characters:

χa(x)χb(x) = χa+b(x)

χa(x)χa(y) = χa(x+ y)

• f, g : Fn
2 → {±1}

• inner product < f, g >= Ex∈Fn
2
[f(x) · g(x)]

• < f, f >= ∥f∥2

• f(x) =
∑

α∈Fn
2
f̂α · χα(x)

• f̂α =< f, χa >∈ [−1, 1]

• Parsifal: < f, f >= Σαf̂
2
α = E[f2(x)] = 1

2

0.4 Back to the proof

We want to look at the distance between candidate f and the set of all characters for linear
functions.

Claim 3 < f, g >= 1− 2d(f, g)

Proof

< f, g > =
1

2n

∑
(x)g(x) (1)

=
1

2n
(#x|f(x) = g(x))− (#x|f(x) ̸= g(x)) (2)

=
1

2n
(2n − 2(#x|f(x) ̸= g(x))) (3)

= 1− 2d(f, g) (4)

Corollary 4 Distance between f and χα, an arbitrary character:

d(f, {χα}) = min
α

1

2
− 1

2
f̂α (5)

=
1

2
− 1

2
max
α

f̂α (6)

Proof

d(f, χα =
1

2
− 1

2
< f, χα (7)

=
1

2
− 1

2
f̂α (8)

Recall that deciding memebership in Had is the same as deciding if f is a linear function.
Then, we WTS:

Proof Idea
If f is δ-far, Pr[test accepts] < δ
Usually easier to show: If the test accepts wp > δ, then f is δ-close.
Then, we want to write the probability as a function of Fourier coefficients.

Define Iα,β =

{
0 f(α)f(β) = f(α+ β)

1 else

Iα,β = 1
2 − 1

2f(α)f(β)f(α+ β)

If f(α)f(β) = f(α+ β), the product is 1 for the second term, then the result is 0.
Then:

Pr[test reject] = Eα,β[Iα,β] =
1

2
− 1

2
E[f(α)f(β)f(α+ β)] (9)

Now we write Fourier coefficients for the expectation.

3

Claim 5 E[f(α)f(β)f(α+ β)] =
∑

α∈F2
n
f̂3
α

Proof

Eα,β[(
∑
α∈F2

n

f̂aχ(α))(
∑
b

f̂bχb(β))(
∑
c

f̂cχcα+ β)] (10)

= Eα,β

∑
abc

f̂af̂bf̂cχa(α)χb(β)χc(α+ β)

(11)

=
∑
abc

f̂af̂bf̂cEα,β[χa(α)χb(β)χc(α)χc(β)]

(12)

=
∑
abc

f̂af̂bf̂cEα,β[χa+c(α)χb+c(β)] (13)

=
∑
abc

f̂af̂bf̂c(Eαχa+c(α))(Eβχb+c(β))

(14)

From property:

Ex∈Fn
2
[χa(x)] =

{
1 ifa = 0

0 else

1 iff (a +c) = 0, 0 else, and similar for 1 iff (b+c) = 0, 0 else. Then if a ̸= c, everything
is 0, and if b ̸= c, everything is 0. Then the surviving terms are when a=b=c, so we let all
subscripts on the fs be a and finally get:

=
∑
a

f̂3

Recall we WTS if Pr[T rejects] < δ, then d(f, {χa}a) < δ.
Substituting the summation we just made, we can rewrite:

Claim 6 if 1
2

∑
a f̂

3
a < δ, then 1

2 − 1
2 maxa f̂a < δ

Once we prove this claim, we are done.

Proof
maxa f̂a ≥ f̂b∀b
Multiply both sides by f̂2

b :

maxa f̂a
∑

b f̂
2
b ≥ f̂3

b

By parsifal, sum over b term = 1:
maxa f̂a ≥ f̂3

b

4

0.5 Applications of Property Testing and Self Correction

Property testing comes from program verification, where we can ask things like “does the
program do what it’s supposed to” as “does the program have property xyz”. This was the
initial strategy, before the Fourier version.

Definition 7 Self-Correction - Example
f may be equal to a linear function “on-average”. We want to recover the correct value

at points whp.

• repeat and take majority vote:

• for i = 1....s = log 1
p :

– pick y uniform random

– compute f(y) + f(y + α) = ansi

• output maji(ansi)

Claim 8 Pr[Alg output = g(α)] = 1− p

Proof

Pr
y
[f(y) ̸= g(y)] ≤ 1

8
(15)

Pr
y+α

[f(α+ y) ̸= g(α+ y)] ≤ 1

8
(16)

By union bound: (17)

Pr[f(y) + f(α+ y) ̸= g(y) + g(α+ y)] <
1

4
(18)

5

