
CS 860 Topics in Coding Theory Oct. 23, 2025

Lecture 13

Lecturer: Elena Grigorescu Scribe: Kelly Dance

1 Tanner Codes

Like previously introduced expander codes, but instead of merely requiring that
∑

i∈N(u) ci =
0 for all u ∈ R, we enforce that our expander graph is d-right regular then require that
c|N(u) ∈ C0 for some fixed smaller code C0 ⊆ Fd

2.

Definition 1 The Tanner code X(G,C0) for some d-right regular biparite graph G = (L∪
R,E) is

X(G,C0) = {c ∈ Fn
2 | ∀u ∈ R, c|N(u)}.

Where c|N(u) denotes projecting c onto the coordinates in N(u).

Observation 2 If C0 is the parity check code, i.e. C0 = {c1c2 . . . cd | ci ∈ F2 such that
∑

ci =
0}, then X(G,C0) is a linear code.

Observation 3 If C0 is linear, then X(G,C0) is linear

Claim 4 dimX(G,C0) = n−m(d− dimC0)

Proof We have d−dimC0 constraints per right vertex, so m(d−dimC0) total constraints.

1

Corollary 5 The rate of X(G,C0) is 1− m
n (d− dimC0)

Theorem 6 If G = (L ∪R,E) is a (n,m,D, γ, α)-expander and d-right regular, and C0 is
[d, l,∆] (denoting [length of codeword, dimension, distance]) linear code, then X(G,C0) has
distance γn if α > D

∆ .

Proof Assume towards a contradiction that there exists some codeword c ∈ X(G,C0)
with wt(c) < γn. Let S = supp(c) ⊂ L be the set of vertices on the left of G corresponding
to the locations of 1s in c.

Observe that |N(u) ∩ S| ≥ ∆ for all u ∈ N(S), since u ∈ N(S) we know that c|N(u) is
non-zero and C0 has distance ∆.

Summing |N(u) ∩ S| ≥ ∆ over all u ∈ N(s) we see that D|S| ≥ ∆|N(S)| since D|S|
is the total number of edges leaving S. However, since G is an (n,m,D, γ, α)-expander
and |S| < γn, we know that |N(S)| ≤ α|S|. It follows that α ≤ D

∆ , contradicting our
assumption.

Recall that expander codes for which a set of size < γn expands by a factor of D(1− ϵ),
achieve a distance of 2γ(1 − ϵ)n. We will see that with Tanner codes we can achieve this
same distance with a much smaller expansion (D → D

d0
where d0 is the distance of C0).

In order to achieve a high rate, we would like m
n (d−dimC0) to be small. So, the number

of constraints m should be small, and dimC0 should be large.
To Achieve this, we will construct Edge Vertex Incidence Graphs.

Definition 7 The Edge Vertex Incidence Graph of a given graph G = (V,E) is a bipartite
graph H0(G) = (L ∪R,E′) such that

• L = E, each node on the left corresponds to an edge of G.

• R = V , each node on the right corresponds to a node from G.

• For each edge e = (u, v) ∈ E, we add the edges (e, u) and (e, v) to E′.

Observation 8 For any graph G, the edge vertex incidence graph H0(G) is 2-left regular.

Observation 9 If a given graph G is d-regular, then H0(G) is d-right regular.

Let’s construct a Tanner code with this. Start with a d-regular graph G with N nodes
and Nd

2 edges. Then

T (G,Co) = X(H0(G), C0) = {c ∈ FNd/2
2 | ∀v ∈ V, c|Γ(u) ∈ C0}.

Where Γ(u) denotes the set of edges adjacent to u in G.

2

2 Spectral Expanders

Definition 10 A graph G = (V,E) is an (n, d, λ)-spectral expander if G is d-regular and
λ = max(λ2, |λn|) where d = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −d are the eigenvalues of the adjacency
matrix of G.

The idea is that all eigenvalues, except for λ1, are sufficiently less than d.

Theorem 11 (Expander Mixing Lemma) For a (n, d, λ)-spectral expander graph G =
(V,E) and all S, T ⊆ V , ∣∣∣∣E(S, T)− d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T |,

where E(S, T) denotes the number of edges with one endpoint in each of S and T with double
counting for edges that have both endpoints in S ∩ T .

Proof omitted.

2.1 Bipartite Expanders from Spectral Expanders

We will convert spectral expanders with λ = o(d) into bipartite expanders with α > 0 using
the double cover of the edge vertex incidence graph.

Definition 12 Given a simple graph G = (V,E), the double cover of G is DC(G) =
(L ∪R,E′) where

• L = {u′ | u ∈ V }

• R = {u′′ | u ∈ V }

• E′ = {(u′, v′′), (u′′, v′) | (u, v) ∈ E}

Observation 13 If G = (V,E) has n vertices and is d-regular, then DC(G) has 2n vertices,
nd edges, and is still d-regular.

3

Theorem 14 Let X be an (n, d, λ)-spectral expander. Let G = H0(DC(X)), that is the
edge vertex incidence graph of the double cover of X. Then, for all β such that λ ≤ β ≤ d,
then G is a d-right regular (N = dn,m = 2n, 2, β(β−λ)

d2
, 2
β)-expander.

Proof omitted.

Theorem 15 Let C0 ⊂ Fd
2 have dist ∆(C0) ≥ δ0d and rate ρ > 1

2 . Let G be an (n, d, λ)-
spectral expander. Let H = H0(DC(G)) be the edge vertex incidence graph of the double
cover of G. Then for large enough d, X(H,C0) has rate at least 2ρ−1 and relative distance
at least δ0(δ0 − λ

d).

Proof By Theorem 14 we have that H is a (N = nd,m = 2n, 2, γ = β(β−λ)
d2

, 2
β)-expander.

So,

dimX(H,C0) ≥ dn− 2n(d− dρ)

= 2ρnd− dn

= (2ρ− 1)nd.

So the rate is at least 2ρ− 1.
Recall that we showed that if G is a d-right regular (n,m,D, γ′, α′)-expander and C0

is [d, l,∆]2 code then X(G,C0) has distance at least γ′n if α′ > D
∆ . So if 2

β > 2
δ0d

(i.e.

β < δ0d), then the distance is at least β(β−λ)
d2

dn and consequently the relative distance is at

least β
d (

β
d + λ

d). In the limit as β → δ0d, the relative distance δ > δ0(δ0 − λ
d).

We can pick ρ > 1− h(δ0) at the GV Bound.
For large d, δ(X(H0(DC(G)), C0)) = δ20 and R(X(H0(DC(G)), C0)) ≥ 2(1−h(δ0))−1 ≥

1− 2h(
√
δ0) > 0 if δ < 0.001.

2.2 Decoding

Sipser-Spielman first found a decoder from
δ20
48 fraction of errors. In 2001, Zémor found a

decoder from
δ20
4 fraction of errors (about 1

4 of the min distance).

Theorem 16 We can decode in O(n) time from (1− ϵ) δ02 (
δ0
2 − λ

d)nd errors.

First, consider the structure of H ′ = H0(DC(G)).

4

We can see that each element of our codeword (a node on the right) is a part of exactly
2 constraints (nodes of the left), each part of separate halves of the left corresponding to
the different copies of G produced when taking the double cover. Call these halves L and
R.

Suppose that we received some codeword y ∈ F|E(H′)|
2 . Then for each v ∈ L in parallel,

we can correct y|N(v) to the nearest codeword in C0. We can do this in parallel since all
v ∈ L are independent. We then repeat the same process for each v ∈ R. We alternate
correcting L and R until no errors remain.

It is possible to prove that we will reduce the number of errors by a constant fraction
during each iteration, so the algorithm will terminate after θ(log n) many iterations.

5

