CS 860 Topics in Coding Theory

Lecture 13

Lecturer: Elena Grigorescu

Oct. 23, 2025

Scribe: Kelly Dance

1 Tanner Codes

Like previously introduced expander codes, but instead of merely requiring that), N(u) Ci =
0 for all v € R, we enforce that our expander graph is d-right regular then require that

¢|N(u) € Co for some fixed smaller code Cy C F g.

[+

b

Al

d

\\(\J'-CCAWWA. in some loase cole G & F?,

Definition 1 The Tanner code X (G,Cy) for some d-right regular biparite graph G = (LU

R.E) is

X(G,Co) ={ceF; |Vu € R, cinw}-

Where ¢y denotes projecting c onto the coordinates in N (u).

Observation 2 If Cy is the parity check code, i.e. Cy = {cica...cq | ci € Fy such that > ¢; =

0}, then X(G,Cy) is a linear code.
Observation 3 If Cy is linear, then X(G,Cy) is linear

Claim 4 dim X(G,Cy) = n — m(d — dim Cp)

Proof We have d—dim Cj constraints per right vertex, so m(d—dim Cj) total constraints.

Corollary 5 The rate of X(G,Cp) is 1 — 7*(d — dim Cp)

Theorem 6 If G = (LUR,E) is a (n,m,D,~,a)-ezpander and d-right regular, and Cy is
[d,l,A] (denoting [length of codeword, dimension, distance]) linear code, then X (G, Cy) has
distance yn if o > %.

Proof Assume towards a contradiction that there exists some codeword ¢ € X(G, Cp)
with wt(c) < yn. Let S = supp(c) C L be the set of vertices on the left of G corresponding
to the locations of 1s in c.

Observe that [N(u) N S| > A for all u € N(S), since u € N(S5) we know that ¢y, is
non-zero and Cy has distance A.

Summing |N(u) N S| > A over all u € N(s) we see that D|S| > A|N(S)| since D|S|
is the total number of edges leaving S. However, since G is an (n,m, D,~, a)-expander
and |S| < yn, we know that |N(S)| < a|S|. It follows that o < £, contradicting our
assumption. H

Recall that expander codes for which a set of size < yn expands by a factor of D(1 —¢),
achieve a distance of 2y(1 — ¢)n. We will see that with Tanner codes we can achieve this
same distance with a much smaller expansion (D — % where dj is the distance of Cj).

In order to achieve a high rate, we would like ”* (d —dim Cp) to be small. So, the number
of constraints m should be small, and dim Cj should be large.

To Achieve this, we will construct Edge Vertex Incidence Graphs.

Definition 7 The Edge Vertex Incidence Graph of a given graph G = (V, E) is a bipartite
graph Hy(G) = (LU R, E') such that

e . =F, each node on the left corresponds to an edge of G.
e R =1V, each node on the right corresponds to a node from G.

e For each edge e = (u,v) € E, we add the edges (e,u) and (e,v) to E’.

"=
(7N L \

(u,w) w

Observation 8 For any graph G, the edge vertez incidence graph Hy(G) is 2-left reqular.
Observation 9 If a given graph G is d-regular, then Ho(G) is d-right regular.

Let’s construct a Tanner code with this. Start with a d-regular graph G with N nodes
and NTd edges. Then

T(G,Cy) = X (Ho(G), Co) = {c € FY* | Vv € V, ¢jpu € Co}-
Where I'(u) denotes the set of edges adjacent to u in G.

2 Spectral Expanders

Definition 10 A graph G = (V, E) is an (n,d, \)-spectral expander if G is d-regular and
A = max(Ag, |Ap|) where d = X1 > Ao > -+ > A\, > —d are the eigenvalues of the adjacency
matriz of G.

The idea is that all eigenvalues, except for A1, are sufficiently less than d.

Theorem 11 (Expander Mixing Lemma) For a (n,d, \)-spectral expander graph G =

(V,E) and all S,T C V,
E(S,T) — ASNITI MIS[T,
n

where E(S,T) denotes the number of edges with one endpoint in each of S and T with double
counting for edges that have both endpoints in SNT.

Proof omitted.

2.1 Bipartite Expanders from Spectral Expanders

We will convert spectral expanders with A = o(d) into bipartite expanders with a > 0 using
the double cover of the edge vertex incidence graph.

Definition 12 Given a simple graph G = (V, E), the double cover of G is DC(G) =
(LUR,E") where

o L={u|ueV}
e R={u"|ueV}

o F' ={(u,v"), (" V)] (u,v) € E}

:lll.

N o

. ,.5 3“

Observation 13 IfG = (V, E) has n vertices and is d-reqular, then DC(G) has 2n vertices,
nd edges, and is still d-regular.

W -

Theorem 14 Let X be an (n,d, \)-spectral expander. Let G = Ho(DC(X)), that is the

edge vertex incidence graph of the double cover of X. Then, for all 8 such that A < 8 < d,

then G is a d-right reqular (N = dn,m = 2n, 2, B([jl;)‘), %)—expander.

Proof omitted.

Theorem 15 Let Co C F$ have dist A(Cp) > dod and rate p > 3. Let G be an (n,d,\)-
spectral expander. Let H = Ho(DC(QG)) be the edge vertex incidence graph of the double
cover of G. Then for large enough d, X (H,Cy) has rate at least 2p—1 and relative distance
at least dp(0g — %)

Proof By Theorem 14 we have that H is a (N = nd,m = 2n,2,vy = B(@;A), %)—expander.
So,

dim X (H, Cy) > dn — 2n(d — dp)
= 2pnd — dn
= (2p— 1)nd.
So the rate is at least 2p — 1.

Recall that we showed that if G is a d-right regular (n,m, D,~’, a/)-expander and Cy
is [d,1,A]> code then X (G,Cp) has distance at least v'n if o/ > R. So if % > 50% (i.e.

B < dpd), then the distance is at least B(L;)‘)dn and consequently the relative distance is at
d
least %(g + %) In the limit as § — dod, the relative distance & > dp(dg — %) [|

We can pick p > 1 — h(dy) at the GV Bound.
For large d, §(X (Ho(DC(G)), Cy)) = 62 and R(X (Ho(DC(Q)), Cp)) > 2(1—h(d))—1 >
1 — 2h(v/dy) > 0 if § < 0.001.

2.2 Decoding

2
Sipser-Spielman first found a decoder from j—% fraction of errors. In 2001, Zémor found a

2
decoder from %0 fraction of errors (about + of the min distance).
Theorem 16 We can decode in O(n) time from (1 — 6)%0(%0 - %)nd errors.

First, consider the structure of H' = Hy(DC(G)).

] “{_’H

We can see that each element of our codeword (a node on the right) is a part of exactly
2 constraints (nodes of the left), each part of separate halves of the left corresponding to
the different copies of G produced when taking the double cover. Call these halves L and
R.

Suppose that we received some codeword y € IF'ZE(H/”. Then for each v € L in parallel,
we can correct yjn(,) to the nearest codeword in Cp. We can do this in parallel since all
v € L are independent. We then repeat the same process for each v € R. We alternate
correcting L and R until no errors remain.

It is possible to prove that we will reduce the number of errors by a constant fraction
during each iteration, so the algorithm will terminate after #(logn) many iterations.

