
CS 860 Topics in Coding Theory Oct. 7, 2025

Lecture 10

Lecturer: Elena Grigorescu Scribe: Jacob Skitsko

Last time:

• Explicit (i.e. efficiently computable) binary codes achieving the Zyablov bound:

R ≥ sup
0≤r≤1−H(δ)−ε

r ·
(
1− δ

H−1(1− r − ε)

)
.

– Accomplished with code concatenation, with a Reed-Solomon code as Cout and
a small binary code at the Gilbert-Varshamov bound as Cin.

Today:

• Decoding concatenated codes.

• Explicit (i.e. with an explicit description) binary codes with good parameters.
(Wozencraft ensembles, and Justesen codes).

1 Decoding Concatenated Codes

First let us review code concatenation, before moving on to some different methods of
decoding concatenated codes. Recall the following pictorial definition:

Cout

x :

(Σout)
kout

(Σout)
nout·kout

Σout = Σkin
inα1

Cin(α1)

Cout(x) :

Figure 1: Code Concatenation Image

where we have an outer and inner code

Cout : Σ
kout
out → Σnout

out and Cin : Σkin
in → Σnin

in .

Note the rate of the concatenated code Cout ◦ Cin is rout · rin and the distance is δout · δin.

1



Now, say we have received some (y1, . . . , yn) ∈ Σnin·nout
in . How should we decode this?

We will assume we have efficient decoders for the inner and outer codes Cin, Cout with
respect to N := ninnout. Note in the construction from the last class we could use a brute
force decoder for the small inner blocks (since they are only of size O(logn)), and then
use the Berlekamp-Welch decoder for the outer Reed-Solomon code, so this assumption is
reasonable.

1.1 A Näıve Decoder

One natural idea is to simply decode the blocks of the inner code individually into some
(α1, . . . , αn) and then decode (α1, . . . , αn) using the outer decoder.

How much error can this natural decoder withstand? Our goal, as always, is to decode
up to half of the minimum distance of the concatenated code, i.e. up to dindout/2 errors.

Observe that the decoder for Cin on block i is correct if there are fewer than din/2
errors, and otherwise the decoder may fail. This means if there are dindout/2 errors, then
the number of blocks the decoder fails on is at most

dindout
2

· 2

din
= dout .

But that’s every block! This näıve decoder fails to decode at dindout/2 errors. However,
with minor adjustments, the above argument does show that the näıve decoder succeeds at
dindout/4 errors.

One may still hope to decode at half the minimum distance. Can we beat the näıve
decoder, if only for the specific code concatenation we talked about last time?

1.2 A Better Decoder

We will discuss an idea called Generalized Minimum Distance Decoding, from Forney 1966.
Idea: the inner code is small enough to brute force compute the nearest codeword to

any given y (this problem is NP-Hard in general, but the inner code has size O(logN)).
Can we use this “soft information” to give us an advantage?

Issues:

• It could be that the nearest codeword to Cin(α), for some α, is at distance > din/2
and no other Cin(β) is within distance din/2. This suggests to us that there were
many errors, and so we should ignore this block. So, we can treat this as an erasure!

• It could be that some block has so much error added to it so that the nearest codeword
to y is some other Cin(β), rather than the transmitted Cin(α). So, we will need to
somehow account for this possibility.

Can we make use of the above information in our outer decoder (for a Reed-Solomon
code)? It turns out yes!

Claim 1 A decoder for RS(n, k) can efficiently and uniquely decode from e errors and s
erasures if

2e+ s < n− k + 1 .

2



Remark In the case s = 0, the above claim exactly states that a decoder for RSq(n, k)
can efficiently and uniquely decode from up to half the minimum distance.

Proof Idea First disregard the erasures. This yields a new Reed-Solomon code, RSq(n−
s, k) of distance n− s− k + 1. Note (n− s− k + 1)/2 > e, so we can do unique decoding.
Then we can do Gaussian elimination afterwards to recover erasures.

Now we can try decoding Cout◦Cin with the additional “soft information” of the distance
of block i to Cin. Let

ui := ∆(yi, Cin(αi)) ,

where αi is the nearest codeword. Recall again that nin = O(logN), so we can brute force
calculate each ui. Then consider the “soft information”

wi := min(din/2, ui) .

We now try to solve the above issues with the following idea. For the outer code:

• if ui > d/2 then we should treat block i as an erasure,

• if ui = 0 then we should leave block i alone,

• otherwise, if ui ≤ d/2 we should treat block i as an erasure with probability wi/(d/2).

Call the resulting blocks ai, and then run the error and erasure decoding on the blocks
(ai)i. We want to show E[2e + s] < n − k + 1, to show this process works in expectation.
Afterwards, we can derandomize this using threshold rounding.

Lemma 2 Let Zerrs, Zeras be random variables counting the number of errors and erasures
respectively, after we pass (ai)i to the outer decoder. Let ei := ∆(yi, Cin(ci)) where ci is the
actual encoded codeword. If ∑

i

ei <
dindout

2

then
E[2Zerrs + Zeras < dout .

Note the expectation is over the random choices in our process to make (ai)i.

Proof We’ll show the statement coordinate-wise. Let Zerrs
i , Zeras

i be 0/1 indicators for
the error or erasure state of block i. Note

Zerrs =
∑
i

Zerrs
i , Zeras =

∑
i

Zeras
i .

Claim 3

E[2Zerrs
i + Zeras

i ] ≤ 2ei
din

.

Proof

3



case 1: Suppose ci = ai, so wi = ei. Then Zerrs
i = 0 and E[Zeras

i ] = 2wi/din = 2ei/din. So,

E[2Zerrs
i + Zeras

i ] = 2ei/din] .

case 2: Suppose ci ̸= ai, so E[Zeras
i ] = 2wi/din and E[Zerrs

i ] = 1− 2wi/din. So,

E[2Zerrs
i + Zeras

i ] = 2− 2wi/din] .

Let us compare 2−2wi/din and 2ei/din, or in other words let us compare d and ei+wi.
Recall ei = ∆(yi, Cin(ci)) and wi = min(din/2, ui). Note that ∆(yi, Cin(αi)) ≥ din/2,
and that Cin(αi) and Cin(ci) have at least distance din. Then we can use the triangle
inequality, and rearrange, to show din ≤ ei +wi. This yields the desired claim in this

Cin(αi) Cin(ci)

yi

ei

≥ din

≥ din/2

Figure 2: Triangle inequality for errors.

case:

E[2Zerrs
i + Zeras

i ] ≤ 2ei
din

Since the inequality holds coordinate wise for each i, we have that it holds overall also.

The above randomized algorithm works in expectation. We can repeat it many times, and
obtain an algorithm that works with high probability. However, we can do better. We can
derandomize our random algorithm for choosing the (ai)i values with the following idea.
It is straightforward to check the following random process will give the same number of
expected errors and erasures.

• Pick some threshold θ (0, 1) uniformly randomly.

• Set ai as an erasure if θ ≤ 2wi/din.

Observe that this algorithm only behaves differently at the threshold points 0, 2w1/din, 2w2/din, . . . , 2wn/din
where wi ∈ {0, 1, . . . , din/2}. So it suffices to check each of these possible θ values explicitly
(and deterministically!).

2 Explicit Good Binary Codes

We will start by giving the following ensemble of codes.

4



2.1 Wozencraft Ensemble

For α ∈ F2k define
Cα
in : x → (x, α.x) ,

where x ∈ Fk
2 is treated as an element of F2k . Note (x, a.x) has 2k bits. It is clear to see

such a Cα
in has rate 1/2.

Theorem 4 Let ε > 0, and fix k. Consider the ensemble of binary codes

Cα1
in , . . . , CαN

in ⊆ F2k
2 ,

where N ≥ 2k − 1 and αi ∈ F2k \ {0} for each i ∈ [N ]. Then for at least (1 − ε)N values
αi, C

αi
in has distance H−1

2 (1/2− ε) (i.e. the GV bound at rate 1/2).

The proof of this is omitted, but it is perhaps not too surprising in retrospect with the
knowledge that random codes are likely at the GV bound.

2.2 Justesen Code

Let k > 0 be the dimension of the inner code in the Wozencraft ensemble. Recall Reed-
Solomon codes took in evaluation points α1, . . . , αn ∈ F∗

2k
and was defined as ⟨f(α1), . . . , f(αn)⟩.

Instead, we can define the following Justensen code(
f(α1), α1f(α1), . . . , f(αn), αnf(αn

)
,

where we remark that each interior block f(α1), α1f(α1) looks like a code from the Wozen-
craft ensemble Cαi

in (f(αi)). So, we are really just concatenating with a different code!
More formally:

Cout = RS2k(F
∗
2k , 2

k − 1, Rout(2
k − 1)

and
C = {⟨Cα

in(f(α))⟩α∈F∗
2k
}

for f ∈ F2k [x], deg f < Rout(2
k − 1).

We remark the Justesen code has rate Rout/2, since each inner block has rate 1/2.

Proposition 5 If the outer code has distance δout, and 1 − Rout ≥ 2ε then the Justesen
code has distance at least (1−Rout − ε) ·H−1

2 (1/2− ε).

This follows from having an ε fraction of non-zero blocks of weight H−1
2 (1/2− ε). Observe

that δ > εH−1
2 (1/2− ε) = Θ(1). So, this code is asymptotically good.

5


