CS 860 Topics in Coding Theory Oct. 7, 2025

Lecture 10

Lecturer: Elena Grigorescu Scribe: Jacob Skitsko

Last time:

e FEaxplicit (i.e. efficiently computable) binary codes achieving the Zyablov bound:
R> sup r (1 — d >
0<r<1-H(8)—¢ HA(1-r—-¢))

— Accomplished with code concatenation, with a Reed-Solomon code as Cyy and
a small binary code at the Gilbert-Varshamov bound as Cjy.

Today:
e Decoding concatenated codes.

e Explicit (i.e. with an explicit description) binary codes with good parameters.
(Wozencraft ensembles, and Justesen codes).

1 Decoding Concatenated Codes

First let us review code concatenation, before moving on to some different methods of
decoding concatenated codes. Recall the following pictorial definition:

— o
= [][] [[][]
lc
— oot
Cout(i):/al/ ‘ / ‘ ‘ \ ‘ \ \ Sout = Tjir

[Cular) | | | | | | |

Figure 1: Code Concatenation Image

where we have an outer and inner code

k: .
Cout : Zhowt — Slowt and Gy 0 Bfn — 570

Note the rate of the concatenated code Cyyut © Ciy 18 Tout * Tin and the distance is dout - Oin.

Now, say we have received some (y1,...,y,) € X" How should we decode this?

We will assume we have efficient decoders for the inner and outer codes Ciy,, Coyy with
respect to N := nijpnout. Note in the construction from the last class we could use a brute
force decoder for the small inner blocks (since they are only of size O(logn)), and then
use the Berlekamp-Welch decoder for the outer Reed-Solomon code, so this assumption is
reasonable.

1.1 A Naive Decoder

One natural idea is to simply decode the blocks of the inner code individually into some
(a1,...,a,) and then decode (o, ..., ay) using the outer decoder.
How much error can this natural decoder withstand? Our goal, as always, is to decode
up to half of the minimum distance of the concatenated code, i.e. up to dindout/2 errors.
Observe that the decoder for Cj, on block i is correct if there are fewer than dj,/2
errors, and otherwise the decoder may fail. This means if there are dindoys/2 errors, then
the number of blocks the decoder fails on is at most

dindou 2
ot — = dout -

2 din
But that’s every block! This naive decoder fails to decode at dindout/2 errors. However,
with minor adjustments, the above argument does show that the naive decoder succeeds at
dindout /4 errors.
One may still hope to decode at half the minimum distance. Can we beat the naive
decoder, if only for the specific code concatenation we talked about last time?

1.2 A Better Decoder

We will discuss an idea called Generalized Minimum Distance Decoding, from Forney 1966.
Idea: the inner code is small enough to brute force compute the nearest codeword to
any given y (this problem is NP-Hard in general, but the inner code has size O(log N)).
Can we use this “soft information” to give us an advantage?
Issues:

e It could be that the nearest codeword to Ci,(«), for some «, is at distance > di,/2
and no other Ci,(f) is within distance di,/2. This suggests to us that there were
many errors, and so we should ignore this block. So, we can treat this as an erasure!

e It could be that some block has so much error added to it so that the nearest codeword
to y is some other Ci,(5), rather than the transmitted Ci,(a). So, we will need to
somehow account for this possibility.

Can we make use of the above information in our outer decoder (for a Reed-Solomon
code)? It turns out yes!

Claim 1 A decoder for RS(n,k) can efficiently and uniquely decode from e errors and s
erasures if
2e+s<n—k+1.

Remark In the case s = 0, the above claim exactly states that a decoder for RS, (n, k)
can efficiently and uniquely decode from up to half the minimum distance.

Proof Idea First disregard the erasures. This yields a new Reed-Solomon code, RS, (n —
s, k) of distance n —s —k+ 1. Note (n —s — k +1)/2 > e, so we can do unique decoding.
Then we can do Gaussian elimination afterwards to recover erasures. B

Now we can try decoding Coyt0Ciy with the additional “soft information” of the distance
of block 7 to Cy,. Let

wi = A(ys, Cin(a)) ,

where «; is the nearest codeword. Recall again that n;, = O(log N), so we can brute force
calculate each u;. Then consider the “soft information”

w; := min(din /2, u;) .
We now try to solve the above issues with the following idea. For the outer code:
e if u; > d/2 then we should treat block i as an erasure,
e if u; = 0 then we should leave block 7 alone,
e otherwise, if u; < d/2 we should treat block ¢ as an erasure with probability w;/(d/2).

Call the resulting blocks a;, and then run the error and erasure decoding on the blocks
(ai)i. We want to show E[2e + s] < n — k + 1, to show this process works in expectation.
Afterwards, we can derandomize this using threshold rounding.

Lemma 2 Let Z°" 7% be random variables counting the number of errors and erasures
respectively, after we pass (a;); to the outer decoder. Let e; :== A(y;, Cin(c;)) where ¢; is the
actual encoded codeword. If
dindout
Z e; < m2 ou

i
then
E[QZ@TTS+ Z@T‘G/S < dout-

Note the expectation is over the random choices in our process to make (a;);.

Proof We’ll show the statement coordinate-wise. Let Z§™, Z¢ be 0/1 indicators for
the error or erasure state of block i. Note

errs __ errs eras ___ eras
zems =N gems | zenes = N zenes

3 2

Claim 3

[\J

€;

E[2Zi€'l”'l”5+ Ziems] S

S8

3

7

Proof

case 1: Suppose ¢; = a;, so w; = e;. Then Z{™ = 0 and E[Z;**] = 2w;/din = 2€;/din. So,

E[2Z8™ + 285 = 2¢; /din] .

case 2: Suppose ¢; # aj, so E[Z] = 2w; /di, and E[Z{™] =1 — 2w;/di,. So,
E[2Z™° 4+ Z7™] = 2 — 2w; /diy) -

Let us compare 2 —2w; /d;, and 2¢;/d;y,, or in other words let us compare d and e; +w;.
Recall e; = A(y;, Cin(c;)) and w; = min(din/2,u;). Note that A(y;, Cin(ay)) > din/2,
and that Cin(«;) and Ci,(¢;) have at least distance dj,. Then we can use the triangle
inequality, and rearrange, to show diy < e; + w;. This yields the desired claim in this

Z din
Cin(ai) Cin(ci)

Z d'm,/2 €i
Yi
Figure 2: Triangle inequality for errors.

case:

[\

€;

E[QZZ'QITS + Zieras] S

&

n

Since the inequality holds coordinate wise for each ¢, we have that it holds overall also. B
The above randomized algorithm works in expectation. We can repeat it many times, and
obtain an algorithm that works with high probability. However, we can do better. We can
derandomize our random algorithm for choosing the (a;); values with the following idea.

It is straightforward to check the following random process will give the same number of
expected errors and erasures.

e Pick some threshold 6 (0,1) uniformly randomly.
e Set a; as an erasure if 6 < 2w; /djy.

Observe that this algorithm only behaves differently at the threshold points 0, 2wy /diy, 2wa /diy, . - . , 2wy, /din
where w; € {0,1,...,din/2}. So it suffices to check each of these possible 6 values explicitly
(and deterministically!).

|

2 Explicit Good Binary Codes

We will start by giving the following ensemble of codes.

2.1 Wozencraft Ensemble
For a € Fyr define
o — (z,0.7),
where z € F} is treated as an element of For. Note (z,a.x) has 2k bits. It is clear to see

such a Cf has rate 1/2.

Theorem 4 Let € > 0, and fiz k. Consider the ensemble of binary codes

o

m "

an 2k
., CON C T2

where N > 28 — 1 and o; € For \ {0} for each i € [N]. Then for at least (1 —)N values
i, O has distance Hy '(1/2 —€) (i.e. the GV bound at rate 1/2).

The proof of this is omitted, but it is perhaps not too surprising in retrospect with the
knowledge that random codes are likely at the GV bound.

2.2 Justesen Code

Let k& > 0 be the dimension of the inner code in the Wozencraft ensemble. Recall Reed-
Solomon codes took in evaluation points a, . . ., an € Fy, and was defined as (f(a1), ..., f(an)).
Instead, we can define the following Justensen code

(Fln)sarf(an).... flan),anf(an)

where we remark that each interior block f(aq), a1 f(aq) looks like a code from the Wozen-
craft ensemble C¥(f(ay)). So, we are really just concatenating with a different code!
More formally:
Cout = RSok (Fj, 28 — 1, Rout (28 — 1)

and
C = {{CL(f(@))aers, }
for f € For[x], deg f < Rout (28 — 1).

We remark the Justesen code has rate Rout/2, since each inner block has rate 1/2.

Proposition 5 If the outer code has distance oy, and 1 — Ryye > 2 then the Justesen
code has distance at least (1 — Ry —€) - Hy *(1/2 — €).

This follows from having an ¢ fraction of non-zero blocks of weight H, '(1/2 —¢). Observe
that § > eH,'(1/2 —¢) = ©(1). So, this code is asymptotically good.

