
A Mathematical Model of

Performance-Relevant Feature Interactions

Yi Zhang
University of Waterloo

y825zhan@uwaterloo.ca

Jianmei Guo
East China University of
Science and Technology
gjm@ecust.edu.cn

Eric Blais
University of Waterloo

eric.blais@uwaterloo.ca

Krzysztof Czarnecki
University of Waterloo

kczarnec@gsd.uwaterloo.ca

Huiqun Yu
East China University of
Science and Technology
yhq@ecust.edu.cn

ABSTRACT
Modern software systems have grown significantly in their size and
complexity, therefore understanding how software systems behave
when there are many configuration options, also called features,
is no longer a trivial task. This is primarily due to the poten-
tially complex interactions among the features. In this paper, we
propose a novel mathematical model for performance-relevant, or
quantitative in general, feature interactions, based on the theory
of Boolean functions. Moreover, we provide two algorithms for
detecting all such interactions with little measurement effort and
potentially guaranteed accuracy and confidence level. Empirical
results on real-world configurable systems demonstrated the feas-
ibility and effectiveness of our approach.

CCS Concepts
•Software and its engineering ! Software design techniques;
Software development process management; Language features;
•Mathematics of computing ! Discrete mathematics; •Theory
of computation ! Formalisms;

Keywords
feature interactions, performance, Boolean functions, Fourier trans-
form

1. INTRODUCTION
Modern software systems have become highly customizable via

their configuration options, which we refer to as features. Given a
finite number of Boolean features that users can either turn on or
off, any combination of these features could give rise to a particular
configuration of the system, which in turn, given a fixed workload,
produces a particular performance measure, for example execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’16, September 16 - 23, 2016, Beijing, China
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4050-2/16/09. . . $15.00
DOI: http://dx.doi.org/10.1145/2934466.2934469

time, of the system.
If all features of a software system are completely independent,

the performance of any particular configuration of the software sys-
tem would be easily predictable: it would be the “simple sum” of
the performance of the configurations where only a single feature to
be composed is selected. However, since modern software systems
commonly and inevitably involve complex relationships among the
parts of the source code responsible for different features, the actual
performance of a configuration rarely fits such a simple formula.

Performance-relevant feature interactions (PRFIs) [18] are the
configurations’ significant deviations between their actual perform-
ance and their “simple sum” performance. In a real scenario of
performance analysis, a straightforward way to understand a fea-
ture’s performance influence is to measure the performance of the
configuration activating the feature only. Normally, we aggregate
each selected feature’s performance influence to compute a partic-
ular configuration’s performance. However, PRFIs would break
such a “simple sum” prediction, because two or more features may
interact if their simultaneous presence in a configuration leads to
an unexpected performance result (that might be caused by unex-
pected behavior, shared resources, etc.), whereas their individual
presences do not.

PRFIs are the key to performance prediction and tuning. Users
can predict a configuration’s performance more accurately if they
understand how the combined presence of multiple features influ-
ences performance. Furthermore, they can focus on features in-
volved in the most influential PRFIs when reconfiguring to improve
performance or to avoid undesirable PRFIs. Traditional studies
on feature interactions have been largely focusing on the aspect
of functional behavior [1, 4, 6] and have proposed various detec-
tion methods through, for example, code analysis for better feature-
oriented design and specification [3, 13]. Although there have been
recent studies on predicting performance of configurable software
systems [8, 18, 19], building a complete and rigorous understand-
ing of the impact of features and feature interactions on software
performance in addition to learning the performance values them-
selves is still important and needed.

A key challenge in the performance analysis of highly configur-
able systems is that, as the number of features in software systems
increases and their complexities grow, the number of configurations
could explode exponentially. Given that the cost of a single meas-
urement may already be high (e.g. executing a complex bench-
mark), measuring the performance of all configurations of a soft-
ware system becomes practically infeasible. Hence, this exponen-
tial growth presents a challenge for detecting PRFIs, namely the

need to identify and quantify PRFIs from as few sample measure-
ments of configurations as possible.

To formalize the problem, we consider a software system to-
gether with its performance, as an abstract Boolean function in the
form of:

f : {0, 1}n ! R (1)

Take execution time as an example, and given four features (i.e.,
n = 4), the function f represents the performance of a particu-
lar configurable software system. The statement f(1011) = 4.8s
means that the system with the first, third and fourth features turned
on and the second feature off has an average execution time of 4.8
seconds when running a certain fixed benchmark for performance
measurement. In this way, the performance aspect of a software
system becomes equivalent to a Boolean function that maps any
configuration to a real number representing its performance. We
will hereafter refer to the function as a performance function, since
we are concerned with the performance aspect of software systems.

Given the notion of a performance function, we propose a novel
and rigorous approach that establishes the correspondence between
theoretical properties of Boolean functions and PRFIs of software
systems, such that we not only give a formal definition and inter-
pretation of PRFIs that complies with and extends the notion pro-
posed by Batory et al. [4], but also provide two algorithms that cal-
culate all such feature interactions with little measurement effort.
In brief, we give a precise definition of a PFRI as a partial derivat-
ive (of a mathematical function). First-order partial derivative is the
contribution of one feature (all features turned off and one turned
on). Higher-order partial derivatives are higher-order feature inter-
actions. For example, the interaction between features f1 and f2

would be the performance change caused to the contribution of f1
by turning on f2, or vice versa; if there is no interaction between
f1 and f2, the second-order partial derivative would be zero.

Furthermore, since our approach is based on the abstraction of
Boolean functions, both the mathematical analysis and the detec-
tion algorithms generalize to any quantitative measure (a.k.a. qual-
ity attribute or non-functional property) of software systems that
is associated with a configuration, such as required memory space
or the number of bugs. Since we currently do not have available
datasets to evaluate our approach with respect to different types of
quantitative measures, we focus our analysis and evaluation on per-
formance in this paper. We are confident that the proposed theory
can be readily applied to other quantitative measures of configur-
able software systems.

To the best of our knowledge, our approach is the first to detect
PRFIs with an upper bound on error. The main contributions of this
paper include:

• a mathematical formulation of PRFIs in terms of Boolean
functions;

• two algorithms for automatic detection of PRFIs with a small
random sample of measured configurations.

The rest of this paper is organized as follows. Section 2 intro-
duces the mathematical background of Boolean functions and their
relationships to configurable software systems. Section 3 presents
the two algorithms of detecting PRFIs. Sections 4 evaluates and
discusses the experimental results of the algorithms on five real-
world software systems. The paper concludes after outlining the
related work.

2. MATHEMATICAL FORMALIZATION
This section introduces the notions of Fourier transform and de-

rivatives of Boolean functions in the form of equation (1) as altern-
ative representations of the performance function of a configurable

Table 1: Truth table of a Boolean function f

x1 x2 . . . x

n

f(x)

0 0 . . . 0 y1

1 0 . . . 0 y2

0 1 . . . 0 y3

...
...

...
... y

i

1 1 . . . 1 y2n

software system. For coherence, we will always refer to the per-
formance function as f . For completeness, we recall equations (2)
to (8) from our previous work [20].

2.1 Fourier Transform
Consider a Boolean function f of the form:

f : {0, 1}n ! R
where f(x) = f(x1, x2, . . . , xn

) = y 2 R

A natural way of visualizing f is through a “truth table” that
specifies what f(x) is on every input x 2 {0, 1}n as shown in
Table 1.

However, f can be viewed from a different perspective through
its Fourier transform. Given a function f : {0, 1}n ! R, it can be
rewritten as follows:

f(x) :=

X

z2{0,1}n

ˆ

f(z)�

z

(x) (2)

where ˆ

f(z) 2 R are the Fourier coefficients of f , and �

z

(x) are
the character functions defined as:

�

z

(x) :=

(
+1 if

P
n

i=1 zixi

= 0 mod 2

�1 if
P

n

i=1 zixi

= 1 mod 2

(3)

This Fourier transform [15] essentially decomposes the function
f into the sum of 2n “basis functions”, namely the character func-
tions, indexed by the 2n vectors z of length n, in the space {0, 1}n.

From (2), a function f is completely determined by its 2n Four-
ier coefficients. In other words, the set of 2n Fourier coefficients
uniquely determines the function values f(x) for all x. Perhaps less
trivially, the converse is also true [15] as shown in (8), namely all
Fourier coefficients can be uniquely calculated from the function f

itself.
Given the usual inner product defined on Boolean functions f, g :

{0, 1}n ! R as:

hf, gi := 1

2

n

X

x2{0,1}n
f(x)g(x), (4)

the set of character functions as defined in equation (3) forms an or-
thonormal basis of the class of functions from {0, 1}n to R. Here,
an orthonormal basis for an inner product space V with finite di-
mension is a basis for V whose vectors are all unit vectors and
orthogonal to each other. Thus:

h�
z1 ,�z2i =

(
1 if z1 = z2

0 otherwise
(5)

Then, we derive the formula for calculating a given Fourier coef-

ficient ˆ

f(z

⇤
):

hf,�
z

⇤i =
*

X

z2{0,1}n

ˆ

f(z)�

z

,�

z

⇤

+

=

X

z2{0,1}n

ˆ

f(z) h�
z

,�

z

⇤i

=

ˆ

f(z

⇤
) h�

z

⇤
,�

z

⇤i

=

ˆ

f(z

⇤
)

(6)

by the orthonormality of the character functions.
In summary, the equivalence between the Fourier coefficients

and the function values of f can be established as follows:
• For any point x 2 {0, 1}n, its value can be calculated using

the set of Fourier coefficients:

f(x) =

X

z2{0,1}n

ˆ

f(z)�

z

(x) (7)

• For any vector z 2 {0, 1}n, its corresponding Fourier coef-
ficient can be calculated using the function values:

ˆ

f(z) = hf,�
z

i = 1

2

n

X

x2{0,1}n
f(x)�

z

(x), (8)

2.2 Partial Derivatives
Given a function f : {0, 1}n ! R, treating the input as an n-

dimensional vector, we can define the partial derivatives of f in the
natural way:

@f

@x

i

(x) :=

f(x

i!1)� f(x

i!0)

1� 0

= f(x

i!1)� f(x

i!0) (9)

where x

i!1 denotes the input x with the i-th coordinate forced to
be 1, and similarly for x

i!0. Therefore, the derivative of f along a
particular direction or coordinate i is the difference of f evaluated
at x between when x

i

is 1 and when it is 0.
From this definition of partial derivatives, we deduce the follow-

ing properties:

1.
@f

@x

i

(x) does not actually depend on x

i

, therefore all second
or higher order derivatives on the same coordinate are trivi-
ally 0. For all x 2 {0, 1}n and all i:

@

2
f

@x

i

@x

i

(x) = (f(x

i!1)� f(x

i!0))�

(f(x

i!1)� f(x

i!0))

=0

(10)

2. The partial differentiation operator
@

@x

i

here is a linear oper-
ator, and we have commutativity over it, i.e. for any coordin-
ates i and j, we have:

@

2
f

@x

i

@x

j

=

@

2
f

@x

j

@x

i

. (11)

3. Since taking derivatives along different directions is com-

mutative, we use the shorthand notation
@f

@x

↵

where ↵ 2
{0, 1}n for the derivative of f along all directions i where
↵

i

= 1. For example:

@f

@x1011
:=

@

3
f

@x1@x3@x4
. (12)

With a well-defined notion of derivatives, we are able to define
yet another representation of a Boolean function, through its Taylor
expansion. Thus, given a Boolean function f : {0, 1}n ! R, we
have its Taylor expansion around the origin 0:

f(x) = f(x1, x2, . . . , xn

)

= f(0) +
nX

i=1

@f

@x

i

����
0

· x
i

+

1

2

nX

i=1

nX

j=1

@

2
f

@x

i

@x

j

����
0

· x
i

x

j

+ · · ·

(13)

From equation (10), we know that any term involving either
second- and higher-order derivatives or any x

i

= 0 will vanish.

Furthermore, f(0) can be viewed as
@f

@x0

����
0

. Therefore, the equa-

tion (13) can be simplified to:

f(x) = f(x1, x2, . . . , xn

)

= f(0) +
X

↵2{0,1}n

1

|↵|! · |↵|!
@f

@x

↵

����
0

·
Y

i : ↵i=1

x

i

=

X

↵2{0,1}n
↵x

@f

@x

↵

����
0

(14)

where ↵ x means ↵
i

 x

i

for all i, and |↵| is the number of 1’s
in the vector ↵.

Intuitively, the equation (14) can be interpreted as a representa-
tion of f(x) that consists of a “base value”, f(0), and a collection
of increments from the appropriate directions or coordinates. For
example, f(1011) can be expressed as:

f(1011) = f(0) +
@f

@x1000

����
0

+

@f

@x0010

����
0

+

@f

@x0001

����
0

+

@f

@x1010

����
0

+

@f

@x1001

����
0

+

@f

@x0011

����
0

+

@f

@x1011

����
0

(15)

The set of all 2n derivatives
@f

@x

↵

����
0

, indexed by all vectors in

{0, 1}n, is a third equivalent representation of the function f , in
the sense that all values of f can be constructed from the derivat-
ives through Taylor expansion in equation (14) and all derivatives
can be calculated from the function values using a combination of
equations (9) and (11).

Furthermore, there is a direct relationship between the set of de-
rivatives and the set of Fourier coefficients [15]. The derivatives
evaluated at the origin can be calculated from the Fourier coeffi-
cients by:

@f

@x

i

����
0

= �2 ·
X

z2{0,1}n
zi=1

ˆ

f(z) (16)

i.e. the derivative with respect to the i-th coordinate is directly
proportional to the sum of all Fourier coefficients whose indices
contain the i-th coordinate.

By the linearity of the differential operator and induction, deriv-
atives evaluated at the origin with respect to multiple directions can
be calculated by:

@f

@x

↵

����
0

= (�2)

|↵| ·
X

z2{0,1}n
z�↵

ˆ

f(z) (17)

Figure 1: Three equivalent representations of f

where again z � ↵ means z
i

� ↵

i

for all i, and |↵| is the number
of 1’s in ↵.

2.3 Feature Interactions
We now have three different but equivalent ways of expressing

the same Boolean function f , namely the function values, the Four-
ier coefficients, and the partial derivatives evaluated at the origin.
These three representations encode the same information about f ,
and can be freely and easily transformed between one another, as
illustrated in Figure 1.

In their corresponding software system terms, firstly, the original
function values represent the performance of each configuration of
the system.

Secondly, although the set of Fourier coefficients does not dir-
ectly translate to a measurable quantity of software systems, each
individual coefficient is a measure of disparities between the per-
formance of particular types of configurations. Furthermore, the
set of all Fourier coefficients is shown to be potentially structured
and thus useful in testing and learning the function values [20].

Thirdly, the partial derivatives evaluated at the origin correspond
to the degrees of feature interactions, or PRFIs particularly in the
context of software performance.

DEFINITION 2.1. Given a set of features (identified by their in-
dices) F = {i : feature i is selected}, we say the vector ↵ 2
{0, 1}n where ↵

i

= 1 if and only if i 2 F is the indicator vec-
tor of the feature set F .

As in our early example, the indicator vector for features one,
three and four would be 1011.

DEFINITION 2.2. Given a set of features (again, identified by
their indices) F = {i : feature i is selected}, and ↵ being its in-
dicator vector, we define the feature interaction (FI) of F to be the
partial derivative with respect to ↵ evaluated at 0, namely:

FI(F) :=

@f

@x

↵

����
0

(18)

Our definition of feature interactions can be understood more
intuitively by a comparison between the example of (15) and the
example given by Batory et al. [4], as shown below:

F⇥ G⇥ H = F · G · H · F#G · F#H · G#H · F#G#H (19)

In their notation, and also in the context of software performance,
F⇥G⇥H would be the performance of the system with the features
F, G and H selected, the dot composition · is essentially independent
addition and # denotes feature interactions. For example, F#G
represents the pair-wise feature interaction between the features F
and G, and similarly F#G#H represents the triple-wise interaction
among the three.

As shown in the example of (15), our description of the per-
formance of a system configuration through its Taylor expansion
bears close similarities to the feature composition notation in [4].
The key difference is that, in our representation, we have explicitly
carved out the abstract quantity f(0) that can be intuitively inter-
preted as the “base value” or the “core measure” that the system
produces with the minimal configuration, most likely when only
mandatory features and no optional features are selected. If all fea-
tures considered in a software system are configurable, the execu-
tion time of the system with no features selected is most likely to
be 0, which then puts the two definitions of feature interactions es-
sentially identical to each another.

Although our definition and Batory’s notation [4] capture the
same conceptual idea, our more mathematical representation bet-
ter serves our purpose from two distinct angles. Firstly, it provides
a more theoretical and rigorous insight of what PRFIs are in terms
of their abstraction and a general framework, under which the fea-
ture interactions can be estimated via learning and the additional
effects of single and multiple features are treated alike.

Secondly, our representation comes with two algorithms for es-
timating and detecting PRFIs, one through learning the function
values, potentially by existing performance prediction methods via
statistical machine learning such as [8], and the other through dir-
ectly learning the Fourier coefficients, potentially as a byproduct
of our previous work [20]. Both methods will estimate the degrees
of PRFIs of all sets of features, namely all partial derivatives of
the performance function, by measuring a small random sample of
configurations.

3. THE ALGORITHMS
The two algorithms of detecting PRFIs come in similar flavors.

They both start by taking a random sample of the software con-
figurations and measure their performance on a fixed benchmark.
Then, the algorithms use an oracle for estimating all function val-
ues or all Fourier coefficients respectively. Finally, they both reach
the partial derivatives from their respective paths via the formulas
introduced in Sections 2.1 and 2.2.

3.1 Preliminaries
In order to estimate the PRFIs of all sets of features, namely all

2

n partial derivatives, we first learn either the set of function values,
or the set of Fourier coefficients, as the two routes of inferring the
partial derivatives as shown in Figure 1.

The function values can be obtained from a small sample using,
for instance, Classification And Regression Tree (CART) method
as presented in [8]. CART gives a symbolic representation of the
values as a decision tree. On the other hand, the set of Fourier
coefficients can be learned, also from a random sample, via Fourier
transform as shown in [20].

Of course, any algorithm that can approximate these sets of val-
ues can be readily plugged in and used as an oracle for our methods,
such as the ones in [12, 14], which we will discuss in Section 5.
Here, we use the two approaches mentioned above for our analysis
and evaluation. The oracles are listed in Table 2.

3.2 PRFI Detection

Table 2: Oracles for PRFI Detection

Oracle 1 Obtaining function values
Input Sample function values

Output Estimated all 2n function values f(x)

Oracle 2 Obtaining Fourier coefficients
Input Sample function values

Output Estimated all 2n Fourier coefficients ˆ

f(z)

Algorithm 1 Feature Interaction Detection 1
1: Input: n: dimension of f .
2: Output: {FI(F) : F ⇢ {1, 2, . . . , n}}.

3: Initialization:
4: Take random sample of configurations
5: Measure all sample configurations.

6: Obtaining all function values:
7: Use Oracle 1 to obtain all function values:
8: {f(x) : x 2 {0, 1}n}

9: Transformation:
10: Use (9) and (11) to calculate all derivatives:
11: {FI(F) : F ⇢ {1, 2, . . . , n}}

Algorithm 2 Feature Interaction Detection 2
1: Input: n: dimension of f .
2: Output: {FI(F) : F ⇢ {1, 2, . . . , n}}.

3: Initialization:
4: Take random sample of configurations
5: Measure all sample configurations.

6: Obtaining all Fourier coefficients:
7: Use Oracle 2 to obtain all Fourier coefficients:
8: { ˆf(z) : z 2 {0, 1}n}

9: Transformation:
10: Use (17) to calculate all derivatives:
11: {FI(F) : F ⇢ {1, 2, . . . , n}}

With the oracles at hand, we present the PRFI detection algorithms
in full to make them self-explanatory. Algorithm 1 first takes meas-
urements of a random sample of configurations to construct an es-
timated performance function of the entire system using Oracle 1.
Then, the performance values are transformed to the derivatives us-
ing equations (9) and (11). Similarly, Algorithm 2 obtains an estim-
ation of the set of Fourier coefficients via Oracle 2, and transforms
them to the derivatives via equation (17).

Besides being easy to understand and easy to implement, our al-
gorithms have the following nice properties. Firstly, from a software-
engineering point of view, the algorithms are modular, in that they
are made of independent steps that can be readily substituted by
other subroutines. With more developed methods for predicting
function values or advanced techniques for learning Fourier coef-
ficients, the PRFI detection algorithms can take full advantage of
their speed, accuracy and efficiency. Secondly, previous perform-

Table 3: Summary of Subject Software Systems

System Domain Lang. Configs n m

Apache Web Server C 192 8 29
LLVM Compiler C++ 1,024 10 62
x264 Encoder C 1,152 13 81

Berkeley DB Database C 2,560 16 139
Berkeley DB Database Java 180 17 48

Lang. = Language of the software system.
Configs = Number of valid configurations.
n = Number of features after preprocessing.

m = Number of configurations taken for experiment.

ance prediction methods such as [8, 18, 16] did not have expli-
cit guarantees on their prediction accuracies, whereas the Fourier
learning algorithm [20] provides upper bounds on the error it ex-
hibits when learning the Fourier coefficients. Therefore, based on
the Fourier learning method, Algorithm 2 is the first algorithm that
is able to detect PRFIs with theoretically bounded accuracies.

4. EVALUATION
In this section, we present the experimental results of the two

algorithms on five real-world software systems as well as evaluate
our algorithms.

4.1 Subject Systems
To demonstrate our approach to PRFI detection, we ran both

of our algorithms on the public datasets of five real-world soft-
ware systems across different domains and written in different lan-
guages, as previously used in [8, 18, 20]. We have purposely left
out one system from the original dataset, SQLite, due to its incom-
plete data. A summary of the systems is shown in Table 3.

We have pre-processed the datasets and eliminated all mandat-
ory features in all systems, since they have no influence on their
respective performance functions. When we hereafter refer to sys-
tems as “large” or “small”, it would be in terms of their number of
features. We will also hereafter abbreviate the Berkeley DB sys-
tems to BDBC for the C version and BDBJ for the Java version
respectively.

4.2 Experimental Setup
We ran both algorithms on the five subject systems. For Al-

gorithm 1, we ran the experiment 10 times and took the average
result. We used the same size m of random samples as introduced
in [18] for performance prediction, an important parameter in their
algorithm to make sure of a minimum feature coverage. The same
size was also used in [8], so it makes our results comparable to the
previous work.

For Algorithm 2, since these example systems are relatively small,
the Fourier learning algorithm required a larger sample size than
the total number of valid configurations [20]. Thus, we used the
whole population to calculate the actual Fourier coefficients and
performed the transformation to the derivatives. Given that the
whole population has been used to learn the derivatives, the res-
ults from Algorithm 2 then serve as benchmarks for assessing the
accuracies of Algorithm 1. Had we had access to datasets with lar-
ger numbers of features, we would have been able to evaluate the

Figure 2: PRFIs of Apache

accuracy of Algorithm 2 as well.
The algorithms were implemented in Java 7 and the experiments

were carried out on a single Ubuntu 14.04 machine with Intel Core
i7 CPU 2.2 GHz and 8 GB of RAM.

4.3 Detection Accuracy
We first present the detected PRFIs from all subject systems. The

estimated and actual PRFIs from Algorithm 1 and 2 respectively are
illustrated in Figures 2 to 6. The top graph in each figure shows all
PRFIs in the corresponding software system, indexed by all sets of
features and ranked in increasing order of the number of features
involved, namely from none to all. The bottom graph reorders the
most significant, namely the largest, PRFIs in decreasing order of
their magnitude. Here, the impact or magnitude of a PRFI is the
value of a partial derivative for a given feature indicator vector.

As shown in the figures, the estimated PRFIs, namely partial de-
rivatives, are generally quite accurate, especially for larger systems
like the Berkeley DB systems. From the top graph of each sys-
tem, we can see that it is difficult to draw a decisive conclusion on
whether small sets of features or large sets tend to interact more
with each other. Most of PRFIs for x264, for instance, involve a re-
latively small number of features as shown towards the left side of
the graph, whereas the Berkeley DB systems tend to display more
of a periodic pattern.

Using the same normalized sum square error as in [20], namely
if g(↵) are the set of actual derivatives and h(↵) are the estimated
ones, the accuracy is given by:

accuracy = 1�
P

↵2{0,1}n (g(↵)� h(↵))

2

P
↵2{0,1}n g(↵)

2
, (20)

we summarized the detection accuracies in Table 4.

Figure 3: PRFIs of LLVM

Figure 4: PRFIs of x264

Figure 5: PRFIs of BDBC

Figure 6: PRFIs of BDBJ

Table 4: PRFI Detection Accuracies

System Detection Accuracy

Apache 33.3%

LLVM 21.3%

x264 90.9%

BDBC 99.7%

BDBJ 98.6%

Table 5: Significant PRFIs: BDBC

PRFIs Feature Indicator Vector
�301.60 1000000111111111

290.67 1000000011111111

277.22 1000000101111111

�266.29 1000000001111111

260.49 1000000110111111

�249.55 1000000010111111

�236.11 1000000100111111

226.27 1000000111110111

226.20 1000000111111011

226.19 1000000111111110

Table 4 confirms the intuitive observations from the figures. Al-
gorithm 1 works much better on relatively larger systems, and the
two smallest systems produced the lowest accuracies, most likely
due to the disproportionate sample size we have adopted from [18].

As presented in Algorithms 1 and 2, the accuracy of PRFIs we
detect depends on the accuracy of the oracle we use for estimating
the function values or Fourier coefficients. Tracing back to the per-
formance prediction accuracies of CART in [8], we could see for
example that it did not do particularly well on Apache, which also
partially explains the low accuracy on Apache here.

4.4 Significant PRFIs
We chose two representative systems, BDBC and LLVM, one

large and one relatively small, and we explicitly listed out the 10
most significant PRFIs and their corresponding feature sets repres-
ented by their feature indicator vectors in Tables 5 and 6 respect-
ively. Here, we quantify the significance in terms of the absolute
value of the PRFIs, i.e. the magnitude of the partial derivative for
a given feature indicator vector. A positive PRFI number means
extra execution time, thus a negative impact on the software per-
formance, and vice versa.

From Tables 5 and 6, we observe that there are usually some key
features involved in many significant interactions. For example the
third and the last features in LLVM are present in all top 10 most
significant interactions, so are the first, eleventh and twelfth fea-
tures in BDBC. At the same time, there seem to be features that are
more independent and do not interact with others intensively, for
example the second through the sixth features in BDBC, and the
second feature in LLVM. Furthermore, note the all 0 feature indic-
ator vector in Table 6, representing a high base line of LLVM’s ex-
ecution time and relatively low impact of feature interactions com-
paring to the base line. In this way, our approach statistically re-
commends the potential features that are most or least relevant to
performance.

Table 6: Significant PRFIs: LLVM

PRFIs Feature Indicator Vector
210.44 0000000000

�78.80 1011001011

�77.53 0011100111

�76.54 1011000111

�75.29 1011011111

75.03 0011000111

�74.60 1011000001

74.07 1011001111

73.44 0011000001

�73.43 0010101111

Table 7: Detection Coverages of Software Systems

System Detection Coverage

Apache 40%

LLVM 10%

x264 100%

BDBC 90%

BDBJ 90%

Note that not all derivatives are significant PRFIs in practice
since most derivatives are negligible (close to zero). The threshold
of significant PRFIs is up to the particular application context. Users
can set a lower threshold and compute more derivatives to improve
accuracy.

4.5 Detection Coverage
Detecting the PRFIs accurately is only one aspect of the require-

ment. In many real-life situations, identifying the particular feature
sets where interactions are significant might be arguably more im-
portant than quantifying the interactions themselves. Table 7 sum-
marizes the overlap between the estimated feature indicator vectors
that have the top 10 most significant PRFIs from Algorithm 1 and
the actual feature indicator vectors that have the 10 most significant
PRFIs, namely the estimated and actual second column as in Tables
5 and 6 for each system. We refer to this quantity as the detection
coverage. In other words, it measures whether the identified fea-
ture indicator vectors including significant PRFIs have real impact
on the system’s performance.

Given the relatively poor detection accuracies on the two smaller
systems, Apache and LLVM, there is no surprise that the detection
coverages on them are also lower. However in the Apache case, the
fact that 4 of the top 10 detected feature sets are in fact significant
is still quite helpful in understanding the performance impact of the
features involved.

4.6 Execution Time
The transformation process itself completes within minutes even

for a system as large as BDBJ, which has 131, 072 Fourier coeffi-
cients and the same number of derivatives.

For PRFI detection purposes, the execution time of our algorithms
is typically not an important concern. Instead, the data gathering
and measurement phase typically requires much more effort, hence
making the number of required configurations for measurement a

Figure 7: Sum of PRFIs involving a certain feature in x264

Figure 8: Sum of PRFIs involving a certain feature in BDBJ

much more important factor, which again depends on the oracles
we use.

4.7 Comparative Analysis
There has been few previous studies on PRFI detection, and the

only published experimental results on the same subject systems
are from Siegmund et al. [18] where a few heuristics of detecting
frequent PRFIs were proposed. However, they measured the per-
formance of a few configurations according to their heuristics for
performance prediction purposes and did not systematically detect
all potential feature interactions. Without access to their intermedi-
ate results, we are not able to make a direct comparison with them
on the level of PRFIs. However, with our theoretical model and al-
gorithms of calculating all PRFIs of all features, we could provide a
deeper understanding of their heuristics and thus guide further use
of them.

The first heuristic claims that pair-wise interactions, i.e., interac-
tions involving two features are the most common and most signi-
ficant. From the top graph of Figures 2, 3 and 5, it is evident that
this is possibly not universal for all systems. To quantify it, the
total magnitude of pair-wise interactions only account for 10.02%,
3.53%, 2.72%, 0.02%, 0.01% respectively of all PRFIs in the five
systems. Thus, even though this heuristic might work well for some
systems, it does not appear to be universal, especially on larger sys-
tems.

Another heuristic asserts the existence of “hot-spot features”,
namely a small number of features that interact with many features.

In other words, we can interpret this as the fact that a large propor-
tion of interactions are concentrated on a small number of features.
Tables 5 and 6 have given us a few candidates for such hot-spot
features.

Furthermore, for each feature, we calculated the sum of the PRFIs
of all feature indicator vectors containing that feature, and plotted
them in decreasing order in Figures 7 and 8 for two of the systems.
As shown in the figures, there does seem to be a “knee” in Fig-
ure 7 for x264, suggesting potential hot-spot features in the first
six. However, sometimes the jump comes relatively late, showing
broadly even degree of interactions for most features except only
a few less active ones, as shown in Figure 8. Thus, the second
heuristic may also need more careful examination.

As to a comparison between the two algorithms themselves, they
are very similar in their line of approach. Given that the accuracies
of the algorithms almost entirely depend on the learning oracles
they use, a choice between them is very much up to the choice of
their respective underlying oracles.

Algorithm 1 makes use of oracles that solve a more conventional
machine learning problem, hence has a large number of choices,
whereas Algorithm 2 takes advantage of particular sets of oracles
that might be more efficient and potentially offer better error bounds
in the particular Fourier domain.

4.8 Threats to Validity and Limitations
As mentioned in Section 1, our theoretical approach to feature

interaction detection can smoothly generalize to any quantitative
measure of software systems that fits the abstraction of Boolean
functions. Therefore, except for the common threats to validity in-
herited from the used oracles, our algorithms do not suffer from
obvious external threats to validity, in the sense that their correct-
ness and effectiveness are independent of the systems that were
used for our experiments and the particular conditions under which
they were run.

However, our current approach still suffer from the following
limitations. First of all, we have mostly considered Boolean fea-
tures and ignored features of other types. Although it has been
shown that discrete features can be easily transformed to Boolean
features [18, 20], it is still very much an inconvenience. For ex-
ample, an optional feature that can take values A, B or C can be
split into three Boolean features, isA, isB and isC. This obviously
increases the number of features in the system and introduces more
complexity.

Furthermore, in many real-life software systems, not all possible
feature combinations are valid. We still face the task of generating
a random sample of valid configurations from the feature model of
a software system, which may not at all be trivial. In addition, in
Algorithm 2, we have implicitly taken the execution time of invalid
configurations to be 0, which makes intuitive sense, but may lead to
feature interaction values with large variances. This is however not
a concern for Algorithm 1 if the function values are learned through
CART, since CART learns a total function based on the measured
sample. As a practical consequence, users may not be able to recon-
figure the system as suggested by a feature interaction (e.g. given a
strong negative feature interaction among three features, it may not
be possible to disable one of the features because of constraints)
and may need to try other interactions. For developers diagnosing
undesired feature interactions, they will have to be investigating
the interactions in some feasible configurations that exhibit them
(rather than infeasible ones).

5. RELATED WORK
The related work of our study primarily comes from three angles:

feature interaction detection, software performance prediction, and
theoretical learning algorithms.

Most of the previous work on feature interaction have been fo-
cusing on their behavioral aspect [5]. On the software system and
practical side, Apel et al. [2] and Liu et al. [13] both proposed
white-box methods for modeling and detecting behavioral feature
interactions through source code analysis. The latter also explored
a different notion of derivatives that looks at software changes with
respect to the change of features, which might have the potential to
be mathematically formalized. Calder et al. [6] approaches behavi-
oral feature interaction from the perspective of formal methods and
logic. Apel et al. [3] studied feature interactions in the context of
feature-based design and specification.

On a more abstract level, attempts to theoretically formalize fea-
ture interactions in terms of feature algebra have come a long way
[9, 10, 2], and the feature composition notation in Batory et al. [4]
has gained wide acceptance and recognition in recent years, whose
model we compared against in Section 2.3.

Siegmund et al. [18] presented the first study to coin the no-
tion of PRFIs following the definition of [4] and predict a config-
uration’s performance by detecting PRFIs using sampling heurist-
ics targeting different feature-coverage criteria. Further heuristic-
based performance-influence models were also proposed in their
follow-up work [17]. In contrast, we detect PFRIs using a general
method without any heuristics, which can be applied to arbitrary
samples. Guo et al. [8], Valov et al. [19] and Sarkar et al. [16], on
the other hand, employed statistical machine learning methods to
achieve performance prediction from random samples, the first of
which we adopted as an oracle in our Algorithm 1.

As for the learning algorithms themselves, the learning and test-
ing of Boolean functions have been well studied. Our mathemat-
ical model is based on the theory of Boolean functions analyzed
in [15]. The Fourier learning method [20] used a trivial exponen-
tial time algorithm since the faster polynomial time algorithm from
Kushilevitz and Mansour [11] unfortunately only applied to com-
plete functions where all possible configurations are valid. Linial
et al. [12] proposed a faster variation of it, which had even stricter
requirements on the target function. Other similar algorithms and
applications [7, 14] also exist.

6. CONCLUSION
With growing complexity in modern software systems, detecting

significant PRFIs between multiple features and foreseeing poten-
tially unexpected performance deviations of configurations is be-
coming increasingly important as well as challenging. In this work,
we have proposed a mathematical model of viewing software sys-
tems as Boolean functions and their PRFIs as partial derivatives.
This abstraction not only led to natural algorithms for detecting all
PRFIs, potentially with small sample size, guaranteed accuracy and
bounded confidence level, but also allowed general feature interac-
tions with respect to any quantitative measure of software systems
beyond their performance to be analyzed and detected in the same
rigorous manner. By experiments, we demonstrated the effective-
ness of our approach. Moreover, we provided new insights on the
heuristics used for detecting PRFIs [18] and thus guide further use
of them.

In future work, expanding our formulation of software feature
interactions to wider forms of feature specifications, for example
numerical features, would be a significant next step forward. Trans-
forming software behavior to measurable quantities might be diffi-
cult, but we would also attempt to generalize our model to behavi-
oral feature interactions in an appropriate way.

7. ACKNOWLEDGMENTS
This work was partially supported by the Natural Science Found-

ation of China (61173048, 61300041, 61375053), and a Special-
ized Research Fund for the Doctoral Program of Higher Education
of China (20130074110015).

8. REFERENCES
[1] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An

algebraic foundation for automatic feature-based program
synthesis. Science of Computer Programming, 75(11):1022 –
1047, 2010.

[2] S. Apel, W. Scholz, C. Lengauer, and C. Kästner. Detecting
dependences and interactions in feature-oriented design. In
Software Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on, pages 161–170, Nov 2010.

[3] S. Apel, A. von Rhein, T. Thüm, and C. Kästner.
Feature-interaction detection based on feature-based
specifications. Computer Networks, 57(12):2399 – 2409,
2013.

[4] D. Batory, P. Höfner, and J. Kim. Feature interactions,
products, and composition. In Proceedings of the 10th ACM
International Conference on Generative Programming and
Component Engineering, GPCE ’11, pages 13–22. ACM,
2011.

[5] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature interaction: a critical review and
considered forecast. Computer Networks, 41(1):115 – 141,
2003.

[6] M. Calder and A. Miller. Feature interaction detection by
pairwise analysis of LTL properties – a case study. Formal
Methods in System Design, 28(3):213–261, 2006.

[7] O. Goldreich and L. A. Levin. A hard-core predicate for all
one-way functions. In Proceedings of the Twenty-first Annual
ACM Symposium on Theory of Computing, STOC ’89, pages
25–32, New York, NY, USA, 1989. ACM.

[8] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and
A. Wasowski. Variability-aware performance prediction: A
statistical learning approach. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 301–311, 2013.

[9] P. Höfner, R. Khedri, and B. Möller. Feature algebra. In
Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors,
FM 2006: Formal Methods, volume 4085 of Lecture Notes in
Computer Science, pages 300–315. Springer Berlin

Heidelberg, 2006.
[10] P. Höfner, R. Khedri, and B. Möller. An algebra of product

families. Software & Systems Modeling, 10(2):161–182,
2011.

[11] E. Kushilevitz and Y. Mansour. Learning decision trees using
the fourier spectrum. SIAM Journal on Computing,
22(6):1331–1348, 1993.

[12] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
fourier transform, and learnability. J. ACM, 40(3):607–620,
1993.

[13] J. Liu, D. Batory, and S. Nedunuri. Modeling interactions in
feature oriented software designs. In FIW, pages 178–197,
2005.

[14] Y. Mansour. Learning boolean functions via the Fourier
transform. In Theoretical advances in neural computation
and learning, pages 391–424. Springer, 1994.

[15] R. O’Donnell. Analysis of Boolean Functions. Cambridge
University Press, 2014.

[16] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czarnecki.
Cost-efficient sampling for performance prediction of
configurable systems. In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on,
pages 342–352, Nov 2015.

[17] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner.
Performance-influence models for highly configurable
systems. In In Proceedings of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE),
2015, 2015.

[18] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel,
D. Batory, M. Rosenmuller, and G. Saake. Predicting
performance via automated feature-interaction detection. In
Software Engineering (ICSE), 2012 34th International
Conference on, pages 167–177, 2012.

[19] P. Valov, J. Guo, and K. Czarnecki. Empirical comparison of
regression methods for variability-aware performance
prediction. In Proceedings of the 19th International
Conference on Software Product Line, SPLC ’15, pages
186–190, 2015.

[20] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki. Performance
prediction of configurable software systems by Fourier
learning. In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, pages
365–373, Nov 2015.

