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1 Introduction

What computational problems can we solve when we only have time to look at a tiny fraction of
the data? This general question has been studied from many different angles in statistics. More
recently, with the recent proliferation of massive datasets, it has also become a central question
in computer science as well. Essentially all of the research on this question starts with a simple
observation: except for a very small number of special cases, the only problems that can be solved
in this very restrictive setting are those that admit approximate solutions.

In this chapter, we focus on a formalization of approximate solutions that has been widely
studied in an area of theoretical computer science known as property testing. Let X denote the
underlying dataset, and consider the setting where this dataset represents a combinatorial object.
Let P be any property of this type of combinatorial object. We say that X is ε-close to having
property P if we can modify at most an ε fraction of X to obtain the description X ′ of an object that
does have property P ; otherwise we say that X is ε-far from having the property. A randomized
algorithm A is an ε-tester for P if it can distinguish with large constant probability1 between
datasets that represent objects with the property P from those that are ε-far from having the same
property. (The algorithm A is free to output anything on inputs that don’t have the property P
but are also not ε-far from having this property; it is this leeway that will enable property testers
to be so efficient.)

There is a close connection between property testing and the general parameter estimation. Let
X be a dataset and θ = θ(X) be any parameter of this dataset. For every threshold t, we can
define the property of having θ ≤ t. If we have an efficient algorithm for testing this property, we
can also use it to efficiently obtain an estimate θ̂ that is close to θ in the sense that θ̂ ≤ θ and
the underlying object X is ε-close to another dataset X ′ with θ(X ′) = θ̂. Note that this notion of
closeness is very different from the notions usually considered in parameter estimation; instead of
determining it as a function L(θ, θ̂) of the true and estimated values of the parameter itself, here
the quality of the estimate is a function of the underlying dataset.

Clustering: an illustrative example. Let X be a set of n points in Rd. A fundamental
question is how well the points in X can be clustered. This question can be formalized as follows.

1That is: with probability 1− δ for some fixed constant δ < 1
2
. With standard techniques, the success probability

of a tester can easily be boosted to any arbitrary amount, so throughout this chapter we will simply fix δ to be a
small enough constant (say, δ = 1

3
) and write “with large constant probability” to mean with probability 1 − δ.
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Let r > 0 be a fixed radius, and let θr be the minimum number of clusters of radius r that are
required to capture all the points in X. The problem of determining θr exactly is NP-hard, as is
the problem of estimating its value up to any constant factor [23, 40, 20]. But Alon, Dar, Parnas
and Ron [1] show that the closely related problem of distinguishing datasets that can be clustered
into at most k clusters of radius r from those that are far from having this property can be solved
in time that is independent of the number of points in X.2

Theorem 1 (Alon et al. [1]). There is an algorithm that examines at most Õ(k·dε ) points in X and
with large probability (i) accepts if the points in X can be grouped into at most k clusters of radius
r and (ii) rejects if no subset of (1− ε)n points in X can be grouped into k clusters.

The testing algorithm for clustering can be used to obtain an efficient estimator of the clustering
parameter θr in the following sense.

Corollary 1. There is an algorithm that examines at most Õ( θr·dε ) points in X and returns a value

θ̂r such that with large probability θ̂r ≤ θr and all but at most εn points in X can be partitioned
into θ̂r clusters of radius r.

We reiterate that, unlike in the standard parameter estimation setting, we have no guarantee
on the closeness of θr and the estimate θ̂r returned by the algorithm. Instead, we are guaranteed
that most of the points can be clustered in θ̂r clusters. This notion of approximation has a number
of advantages.

First, it is robust to noise. Adding a small number of outlier points can have a significant
impact on the clustering parameter θr of a dataset. However, since the algorithm only examines a
constant number of points, with high probability it does not observe any of the outliers and so these
noisy points do not affect the estimator. Furthermore, many of the property testing algorithms can
be made robust to higher noise rates so that even if outliers are observed, they do not affect the
result by much. Similarly, the algorithm is appropriate when the underlying dataset is constantly
changing; the same robustness means that the estimate changes smoothly as points are added and
removed from the dataset.

A second advantage is that it leads to extremely efficient algorithms. The algorithms are so
efficient that they can be used as a preprocessing step, even in situations where more accurate
estimates of the clustering parameter are required. This is the case, for example, in settings where
we are interested in learning how well the data can be clustered; here, the testing algorithm can be
used in a preprocessing step to quickly identify point sets that are not even close to being clusterable
into a reasonable number of clusters. In the case that the preprocessing algorithm identifies such a
point set, alternative learning algorithms can be applied to those datasets instead.

The study of property testing was initiated in [6, 56, 26] and has been extremely active ever since.
In the rest of this survey, we highlight some of the properties of point sets, graphs, and functions
that can be tested efficiently. Our goal is simply to provide a glimpse of the results that can be
obtained with the tools that have been developed in this research area. More detailed discussions on
these topics can be found in many other more comprehensive surveys [12, 34, 24, 51, 52, 53, 55, 54].

2Here and throughout the rest of the chapter, running times are in the model where samples or queries to X are
completed in a constant amount of time. We will also use the tilde notation Õ(m) to hide polylog factors in m for
clarity of presentation.
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2 Testing Properties of Point Sets

A common machine learning problem involves extracting structural information from a set X of
points. As we have already seen in the introduction, sublinear-time algorithms can be used to
efficiently perform preprocessing tasks for these problems. In fact, sublinear-time algorithms have
been shown to be useful in testing properties of both finite sets of points and (implicit representa-
tions of) infinite sets of points as well. To illustrate the former, we revisit the clustering problem
in a bit more detail; for the latter, we show how sublinear-time algorithms can be used to estimate
the surface area of continuous sets.

2.1 Clustering

Let us return to the problem of clustering points. To illustrate the variety of formalizations of this
problem that are efficiently testable, let us now consider the setting where X is a set of points
in a general metric space and we bound the diameter of the clusters (i.e., the maximum distance
between any two points in the cluster) by some parameter d.

We can test if X can be clustered into at most k clusters of diameter d very efficiently in the
following way.

Theorem 2 (Alon et al. [1]). Let X be a set of points in a metric space. There is an algorithm that
queries O(k log kε ) points in X and with large constant probability (i) accepts if X can be clustered
into k clusters of diameter d and (ii) rejects if we cannot cluster the points into k clusters of
diameter 2d even if we remove an ε fraction of the points in X.

The algorithm that achieves the bound in Theorem 1 maintains a set of cluster centers by
repeatedly picking a sample point that is not covered by previously chosen cluster centers. If more
than k cluster centers are chosen by this process, then the algorithm rejects, otherwise it accepts.
The work of [1] shows that this simple algorithm satisfies the theorem’s requirements. Note that if
the point set cannot be clustered into k clusters of diameter d, but can be clustered into k clusters
of diameter 2d if less than ε fraction of the points are thrown out, then it is ok for the algorithm
to either accept or reject.

In many situations, we might know that the points are not clusterable into k clusters, but would
still like to know if a very large fraction of the points can be clustered into k clusters. Note that
our standard definition of property testers is of no use in this tolerant version of the clustering
problem. The tolerant problem is in general more difficult, but several tolerant clustering problems
can also be solved with sublinear-time algorithms [49, 12]. For example, there is a tolerant analogue
of Theorem 2.

Theorem 3 (Parnas, Ron, and Rubinfeld [49]). Given 0 < ε1 < ε2 < 1. Let X be a set of points in
a metric space. There is an algorithm that queries at most Õ( k

(ε2−ε1)2 ) points in X, and with large

constant probability (i) accepts if at least (1 − ε1) fraction of X can be clustered into k clusters of
diameter d, and (ii) rejects if we cannot cluster more than (1 − ε2) fraction of the points into k
clusters of diameter 2d.

For more variants of the clustering problem considered in the property testing framework, see
for example [1, 41, 11, 49, 12].
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2.2 Surface Area

The property testing framework can also be applied to settings where the dataset represents a
subset of a continuous space. Let S ⊆ [0, 1]n be a subset of the unit n-dimensional hypercube, and
consider any representation X of this subset for which algorithms can query an input x ∈ [0, 1]n

and observe whether x ∈ S or not.

A fundamental parameter of the set S is its surface area, defined by surf(S) = limδ→0
|∂S(δ/2)|

δ

where ∂S(δ/2) ⊆ [0, 1]n is the set of points at distance at most δ/2 from the boundary of S. In the
one-dimensional case, S ⊆ [0, 1] is a union of intervals and surf(S) corresponds to the number of
disjoint intervals in S. And when n = 2, surf(S) corresponds to the perimeter of the set S.

Since the surface area of a set S can always be increased by an arbitrary amount while modifying
S itself on a set of measure 0, it is impossible to estimate the surface area of S within any additive
or multiplicative factor with any finite (or even countable) number of queries. We can, however,
test whether S has small surface area with a small number of queries.

Theorem 4 (Neeman [42]). Fix any 0 < α < 1. There is an algorithm that queries at most O(1/ε)
points and with large probability (i) accepts S when it has surface area at most α, and (ii) rejects
S when every set S′ that differs from S on at most an ε measure has surface area surf(S′) > α.

Neeman’s theorem [42] was obtained by improving the original analysis of an algorithm due to
Kothari, Nayyeri, O’Donnell, and Wu [32], who were in turn building on previous work of Kearns
and Ron [31] and Balcan et al. [3]. The algorithm itself works in a way that is conceptually similar
to Buffon’s classic needle problem: it drops a (virtual) needle onto the space [0, 1]n and queries
the two endpoints of the needles. If exactly one of those endpoints is in S, then we know that the
needle crossed the boundary of S. Computing the probability of this event gives us a measure of
the noise sensitivity of S, and connections between the surface area and noise sensitivity then lead
to the proof of correctness of the algorithm.

3 Testing Properties of Graphs

The setting in which the underlying dataset X represents a graph G is particularly well suited for
the design of sublinear-time algorithms. In this section, we explore two problems—a connectivity
problem and an optimization problem—to illustrate what sublinear-time algorithms can do.

3.1 Diameter

The famous small world theory states that in any social group, every two members of the group
are connected to each other via a short chain of acquaintances [13]. In particular, the six degrees of
separation theory posits that everyone on Earth is connected by a chain of acquaintances of length
at most 6. (See [16] for an introduction to these and many other interesting topics on graphs.)
How efficiently can we test the small world theory on a given social network?

The study of the small world theory can be formalized in terms of the diameter of graphs.
Let G be a graph where each person in the social group corresponds to a vertex, and an edge is
placed between vertices that correspond to people that know each other. The diameter of G is the
maximum distance between any two vertices in the graph. We can test whether the small world
theory holds for the social group represented by G by testing whether the diameter of this graph is
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small. Parnas and Ron have shown that we can perform this task in the property testing framework
with a number of queries that is independent of the size of the graph.

Theorem 5 (Parnas, Ron [47]). Let G be a graph with maximum degree d. There is an algorithm
that queries Õ

(
ε−3
)

edges in G and with large probability (i) accepts if G has diameter at most D,
and (ii) rejects if every subgraph G′ obtained by removing at most an ε fraction of the vertices in
G has diameter greater than 2D.

This result should look at least a little surprising at first glance: with a number of queries that
is sublinear in n, we can’t even determine the distance between any two fixed vertices v, w in G.
So any algorithm for testing the diameter of a graph must instead test G for some other global
property that distinguishes graphs with diameter D from those that are far from having diameter
2D. That’s what the algorithm in [47] does. Specifically, the algorithm estimates the expansion of
G by sampling several start vertices, performing O(1/ε) steps of a breadth-first search from each
of these vertices, and estimating the size of the neighborhoods around the vertices that have been
sampled.

The algorithm for testing small-diameter graphs can also be used to estimate the diameter θdiam
of a graph G.

Corollary 2. Let G be a graph with n vertices and maximum degree d. For every γ > 1, there
is an algorithm that queries at most Õ

(
ε−3 logγ θdiam

)
edges of G and outputs an estimate θ̂diam

such that with large probability θ̂diam ≤ θdiam and every subgraph G′ with at least (1− ε)n nodes has

diameter at least θ̂diam
2γ .

Sublinear time algorithms for several variants of the diameter task, including tolerant versions,
have been considered in [47, 7].

3.2 Vertex Cover

A vertex cover of the graph G = (V,E) is a subset V ′ ⊆ V such that every edge in E is adjacent to
some vertex in V ′. Let θVC = θVC(G) denote the size of the minimum vertex cover of G. While the
vertex cover problem is NP-complete [30], there is a linear-time algorithm which always outputs
an estimate θ̂VC that is at most twice as large as the true value of the minimum vertex cover of
G. (This algorithm was independently discovered by Gavril and Yannakakis. See, e.g., [46] for the
details.)

When the input graph G has maximum degree at most d, Parnas and Ron [48] have shown
that there is an algorithm which can approximate θVC even more efficiently. Specifically, for every
ε > 0, there is an algorithm which returns an estimate θ̂VC that satisfies θVC ≤ θ̂VC ≤ 2θVC + ε|V |
and that runs in time that depends only on d and ε, but not on the size of the graph G. This result
has since been sharpened, yielding the following testing algorithm.

Theorem 6 (Onak et al. [44]). There is an Õ(d) · poly(1/ε) time algorithm which on input a
graph G = (V,E) of average degree d and a parameter ε, outputs an estimate θ̂VC which with large
constant probability satisfies θVC ≤ θ̂VC ≤ 2θVC + ε|V |.

The original vertex cover estimator of Parnas and Ron [48] was obtained by establishing and ex-
ploiting a fundamental connection between distributed computation and sublinear-time algorithms:
if there is a k-round distributed computation for a graph problem where the degree of the input
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graph is bounded by d, then—since the output of a particular node can depend only on nodes that
are within a radius of at most k—the distributed computation can be simulated in sequential time
dO(k). This connection has since become an important and widely used source of techniques in
the design of sublinear-time algorithms. In recent years, distributed computation has made great
strides in finding local distributed algorithms, which are algorithms that run in O(1) rounds [33].
Such algorithms have been found for approximate vertex cover, approximate matching, approxi-
mated packing and covering problems [48, 19, 18, 36]. All of these algorithms can be turned into
sublinear-time algorithms which estimate the corresponding parameter of the input graph.

The later improvements that led to Theorem 6 were obtained by a different technique introduced
by Nguyen and Onak [43]. They showed that greedy algorithms can be simulated in a local fashion.
This connection has also proven to be very influential in the design of sublinear-time algorithms,
leading to the design of algorithms for the approximate vertex cover, approximate matching, ap-
proximate set cover, approximated packing and covering problems [43, 57, 45, 28, 44, 37, 38, 36, 50].

4 Testing Properties of Functions

The last setting we consider is the one where the dataset represents a function f : X1×· · ·×Xn → Y
mapping n features to some value in a (finite or infinite) set Y. (We will be particularly interested
in the situation where X1 = · · · = Xn = Y = {0, 1}, in which case f : {0, 1}n → {0, 1} is a Boolean
function.) A common task in this scenario is the (supervised) machine learning problem, where f
is a target function, and the learning algorithm attempts to identify a hypothesis function h that is
close to f while observing the value of f(x1, . . . , xn) (i.e., the label of the example (x1, . . . , xn)) on
as few inputs as possible. In the following subsections, we examine some sublinear-time algorithms
that prove to be particularly useful for this general problem.

4.1 Feature Selection

One of the preliminary tasks when learning functions over rich feature sets is to identify the set of
features that are relevant. A corresponding parameter estimation task is to determine the number
of relevant features for a given target function. This task has been formalized in the property
testing framework as the junta testing problem.

The function f : {0, 1}n → {0, 1} is a k-junta if there is a set J ⊆ [n] of at most k coordinates
such that the value of f(x) is completely determined by the values {xi}i∈J . The coordinates in
the minimal set J that satisfies this condition are called relevant to f ; the remaining coordinates
are irrelevant. Fischer et al. [21] showed that we can test whether f is a k-junta with algorithms
that have a running time that is independent of the total number n of coordinates. This result was
further sharpened in [4, 5], yielding the following result.

Theorem 7 (Blais [5]). There is an algorithm that queries the value of f : {0, 1}n → {0, 1} on
Õ(kε ) inputs and with large constant probability (i) accepts when f is a k-junta, and (ii) rejects
when f is ε-far from k-juntas.

With the same reduction that we have already seen with the parameter estimation tasks for
point sets and graphs, we can use the junta testing algorithm to obtain a good estimate of the
number θjunta of relevant features for a given function.
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Corollary 3. There is an algorithm that queries the value of f : {0, 1}n → {0, 1} on Õ(
θjunta
ε )

inputs and returns an estimate θ̂junta such that with large probability θ̂junta ≤ θjunta and f is ε-close

to being a θ̂junta-junta.

The same result also applies to the much more general setting where f : X1 × · · · × Xn → Y
is a function mapping n-tuples where each attribute comes from any finite set and where Y is an
arbitrary range. See [5] for the details.

4.2 Model Selection

Another ubiquitous preliminary task in machine learning is determining which is the right learning
algorithm to use for a given target function. This problem is known as model selection. The model
selection task is often completed by using domain-specific knowledge (e.g., by using algorithms
that have successfully learned similar functions in the past), but sublinear-time algorithms can also
provide useful tools for this task when such knowledge is not available.

Consider for example the algorithms for learning decision tree representations of Boolean func-
tions. A decision tree is a full binary tree with indices in [n] associated with each internal node,
the labels 0, 1 associated with the two edges that connect an internal node with its two children,
and a Boolean value associated with each leaf. Every input x ∈ {0, 1}n determines a unique path
from the root to one of the leaves in a decision tree by following the edge labelled with xi from an
internal node labelled with i, and the function fT : {0, 1}n → {0, 1} corresponds to a decision tree
T if for every input x ∈ {0, 1}n, the leaf reached by x is labelled with fT (x). The size of a decision
tree is the number of nodes it contains, and the decision tree (size) complexity of a function is
the size of the smallest decision tree that represents it. Decision tree learning algorithms are most
appropriate for functions with small decision tree complexity. As Diakonikolas et al. [14] showed,
we can test whether a function has small decision tree complexity with a number of queries that
is independent of the total number n of features. Chakraborty, Garćıa-Soriano, and Matsliah [9]
later improved the query complexity to obtain the following tight bounds on its query complexity.

Theorem 8 (Chakraborty, Garćıa-Soriano, Matsliah [9]). Fix s ≥ 1 and ε > 0. There is an
algorithm that queries the value of f : {0, 1}n → {0, 1} on Õ( s

ε2
) inputs and with large constant

probability (i) accepts if f has decision tree complexity at most s, and (ii) rejects if f is ε-far from
having decision tree complexity s.

Diakonikolas et al. [14] obtained the first result on testing small decision tree complexity by
introducing a new technique called testing by implicit learning. The idea of this technique is that
for many classes of functions, there are extremely efficient algorithms for learning the high-level
structure of the function without identifying which are the relevant features. In the case of functions
with small decision tree complexity, this means that we can learn the shape of the decision tree
that represents the target function—but not the labels associated with each node in the tree—with
a running time that is independent of n. This technique is quite powerful, and it has been used to
test many other properties as well, including the circuit complexity, minimum DNF size complexity,
and Fourier degree of Boolean functions.

The same algorithms can also be used to provide good estimates θ̂DT of the decision tree
complexity θDT of Boolean functions.
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Corollary 4. There is an algorithm that queries the value of f : {0, 1}n → {0, 1} on Õ( θDT
ε2

) inputs

and returns an estimate θ̂DT such that with large probability θ̂DT ≤ θDT and f is ε-close to being
representable with a decision tree of size θ̂DT.

There are also other models that can be tested very efficiently using completely different tech-
niques. For example, another well-known learning model is that of linear threshold functions (or
halfspaces). The function f : {0, 1}n → {0, 1} is a linear threshold function if there are real-valued
weights w1, . . . , wn and a threshold t ∈ R such that for every x ∈ {0, 1}n, f(x) = sign(

∑n
i=1wixi−t).

Matulef et al. [39] showed that we can test whether a function is a linear threshold function using
a constant number of queries.

Theorem 9 (Matulef et al. [39]). Fix ε > 0. There is an algorithm that queries the value of
f : {0, 1}n → {0, 1} on poly(1/ε) inputs and with large constant probability (i) accepts if f is a
linear threshold function, and (ii) rejects if f is ε-far from being a linear threshold function.

4.3 Data Quality

Collected data is notorious for being very noisy, and, in particular, containing entries that are
erroneous for various reasons. Can we estimate the quality of a dataset? Here are some instances
in which sublinear algorithms can be of assistance.

Lipschitz property. One common property of many datasets is a controlled rate of change. For
example, a sensor measuring the ambient temperature will not observe extreme fluctuations within
short time scales. However, in noisy datasets, the noisy entries often break this property. So one
test we can do on a dataset to evaluate its quality is whether it has this property.

Formally, the property of having a bounded rate of change is known as the Lipschitz property.
The function f : {1, . . . , n} → R is t-Lipschitz for some t ≥ 0 if for every x, x′ ∈ [n], we have
|f(x)− f(x′)| ≤ t · |x−x′|. As Jha and Raskhodnikova showed [29], we can test whether a function
is Lipschitz with sublinear-time algorithms.

Theorem 10 (Jha, Raskhodnikova [29]). Fix any t > 0. There is an algorithm that queries
f : {1, 2, . . . , n} → R on O(1ε log n) inputs and with large constant probability (i) accepts f when it
is t-Lipschitz, and (ii) rejects f when it is ε-far from t-Lipschitz.

One natural idea for testing the Lipschitz property of a function f may be to select some
neighboring indices i, i+ 1 ∈ [n], verify that |f(i)− f(i+ 1)| ≤ t, and repeat this test some number
of times. This idea, however, will not work: a function that has a single, enormous jump in value
will appear to be Lipschitz on any pair that does not cross the jump even though it is very far
from Lipschitz. Jha and Raskhodnikova bypass this possible barrier by considering a completely
different testing algorithm, based on the monotonicity testing algorithms we describe below. They
also show how the algorithm can be extended to test the Lipschitz property for functions over many
other domains as well.

Monotonicity. A second property that is common to many types of non-noisy datasets is mono-
tonicity. For example, data that represents the cumulative flow that has passed through a sensor
will be a non-decreasing monotone sequence. Formally, f : [n] → R is monotone if f(1) ≤ f(2) ≤
· · · ≤ f(n). We can also test the monotonicity of a function with a sublinear-time algorithm.
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Theorem 11 (Ergün et al. [17]). There is an algorithm that queries f : {1, 2, . . . , n} → R on
O(1ε log n) inputs and with large constant probability (i) accepts f when it is monotone, and (ii)
rejects f when it is ε-far from monotone.

As was the case with the Lipschitz-testing problem, the idea of choosing neighboring pairs
i, i + 1 ∈ [n] and verifying f(i) ≤ f(i + 1) does not lead to a valid sublinear-time algorithm for
testing monotonicity. Another natural idea is to choose m elements uniformly at random from
[n], call them i1 ≤ . . . ≤ im ∈ [n] and verify that f(i1) ≤ · · · ≤ f(im). This approach does lead
to a sublinear-time algorithm, but one that is not nearly as efficient as the one which gives the
bound in Theorem 11. It can be shown that this approach requires Ω(

√
n) queries to correctly

reject all the functions that are far from monotone. Ergün et al. [17] obtained an exponentially
more efficient monotonicity tester by taking a completely different approach in which the tester
simulates a binary search. It chooses i ∈ [n] uniformly at random, queries f(i), and then searches
for the value f(i) in the sequence f(1), . . . , f(n) under the assumption that f is monotone. When
f is indeed monotone, this binary search correctly leads to i. Interestingly, for any function that is
far from monotone, this binary search simulation will identify a witness of non-monotonicity (that
is, a pair i < j ∈ [n] of indices for which f(i) > f(j)) with reasonably large probability.

There are also sublinear-time algorithms for testing the monotonicity of functions over many
other domains. For some of the results in this direction, see [25, 15, 22, 8, 10].

4.4 Alternative Query and Sampling Models

The results described in this section have all been in the setting where the algorithm can query
the value of the target function on any inputs of its choosing. This setting corresponds to the
membership query model in machine learning. For many applications in machine learning, however,
the membership query model is unrealistic and algorithms must operate in more restrictive query
models. Two alternative query models have received particular attention in the machine learning
community: the (passive) sampling model and the active query model. In the sampling model,
the inputs on which the algorithm observes the value of the target function are drawn at random
from some fixed distribution. In the active query model, a larger number of inputs are drawn from
some distribution over the function’s domain, and the algorithm can query the value of the target
function on any of the points that were drawn.

Many efficient learning algorithms have been devised for both the sampling and active query
models. Similarly, sublinear-time algorithms have been introduced to test fundamental properties
of Boolean functions (and other combinatorial objects) in the sampling and active query models as
well. For example, linear-threshold functions can be tested with a sublinear number of samples or
active queries.

Theorem 12 (Balcan et al. [3]). Fix ε > 0. There is an algorithm that observes the value of
f : Rn → {0, 1} on Õ(

√
n)·poly(1/ε) inputs drawn independently at random from the n-dimensional

standard normal distribution and with large constant probability (i) accepts if f is a linear threshold
function, and (ii) rejects if f is ε-far from being a linear threshold function.

For more on sublinear-time algorithms and on their limitations in the sampling and active query
models, see [26, 3, 2, 27].
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5 Other Topics

A related area of study is how to understand properties underlying a distribution over a very
large domain, when given access to samples from that distribution. This is a scenario that is well
studied in statistics, information theory, database algorithms, and machine learning algorithms.
For example – it may be important to understand whether the distribution has certain properties,
such as being close to uniform, Gaussian, high entropy, or independent. It may also be important
to learn parameters of the distribution, or to learn a concise representation of an approximation
to the distribution. Recently, surprising bounds on the sample complexity of these problems have
been achieved. Although we do not mention these problems in any further detail in this survey,
we point the reader to the surveys of [35, 54] and to the chapter entitled “Learning Structured
Distributions” by Ilias Diakonikolas in this volume.
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