
A Characterization of Constant-Sample Testable Properties

Eric Blais∗

David R. Cheriton School of Computer Science
University of Waterloo

eric.blais@uwaterloo.ca

Yuichi Yoshida†

National Institute of Informatics
yyoshida@nii.ac.jp

June 12, 2018

Abstract

We characterize the set of properties of Boolean-valued functions f : X → {0, 1} on a finite
domain X that are testable with a constant number of samples (x, f(x)) with x drawn uniformly
at random from X . Specifically, we show that a property P is testable with a constant number
of samples if and only if it is (essentially) a k-part symmetric property for some constant k,
where a property is k-part symmetric if there is a partition X1, . . . , Xk of X such that whether
f : X → {0, 1} satisfies the property is determined solely by the densities of f on X1, . . . , Xk.

We use this characterization to show that symmetric properties are essentially the only graph
properties and affine-invariant properties that are testable with a constant number of samples
and that for every constant d ≥ 1, monotonicity of functions on the d-dimensional hypergrid is
testable with a constant number of samples.

1 Introduction

Property testing [17, 22] is concerned with the general question: for which properties of mathe-
matical objects can we efficiently distinguish the objects that have the property from those that
are “far” from having the same property? This question is formalized as follows. For a finite
set X , let {0, 1}X denote the set of Boolean-valued functions on X endowed with the normal-
ized Hamming distance metric d(f, g) := |{x ∈ X : f(x) 6= g(x)}|/|X |. A property of func-
tions mapping X to {0, 1} is a subset P ⊆ {0, 1}X . A function is ε-close to P if it is in the set
Pε := {f ∈ {0, 1}X : ∃g ∈ P s.t. d(f, g) ≤ ε}; otherwise, it is ε-far from P. An ε-tester for a
property P is a randomized algorithm with error at most 1

3 that accepts functions in P and rejects
those that are ε-far from P.

Most research in property testing has focused on the query-based model, where the tester is able
to query the value of the function on any inputs of its choosing. In this work, however, we focus on
the sample-based model of property testing that was also introduced by Goldreich, Goldwasser, and
Ron in their seminal work [17]. In this model, the testing algorithm observes pairs (x, f(x)) where
x is drawn uniformly at random from X . The sample complexity of an ε-tester in the sample model
is the maximum number of pairs (x, f(x)) that it observes before accepting or rejecting. When P
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is a property where for every ε > 0 there exists an ε-tester whose sample complexity is independent
of the domain size |X |, we say that P is constant-sample testable.

The goal of the present work is to determine which properties are constant-sample testable.
It appears to be a widespread belief within the property testing community that “essentially no
interesting properties” are constant-sample testable. This belief is supported by some results on
individual properties. It is known, for instance, that monotonicity of Boolean functions [16], lin-
earity [3, 18], linear threshold functions [4], and k-colorability of graphs [18] are all properties that
are not constant-sample testable.

It is also known, however, that some non-trivial properties are constant-sample testable. All
symmetric properties are easily seen to be constant-sample testable (see for example the discussion
in [20]). And it is also folklore knowledge that the function identity testing properties—properties
P = {g} that contain a single function—are constant-sample testable as well. More generally, every
property that corresponds to a class of functions which can be learned withO(1) samples is constant-
sample testable [17]. Intuition may suggest that these two classes of properties are essentially the
only ones that are constant-sample testable; i.e., that a property P is constant-sample testable if
and only if it is close to some combination (e.g., the union, intersection, or symmetric difference)
of a symmetric property P ′ and a property P ′′ that corresponds to a class of functions that can
be learned with O(1) samples. This intuition, however, is wrong. Goldreich et al. [17] already
showed that any characterization of constant-sample testability must also include other properties
that are not of this form. Kearns and Ron [21] further showed that there are natural properties of
functions over low-dimensional domains—namely unions of intervals and decision trees—that can
also be tested with a constant number of samples. And, most recently, Berman, Murzabulatov,
and Raskhodnikova [5] showed that convexity and halfspaces are two fundamental properties of
images—which correspond to functions over the domain X = [n] × [n]—that are both constant-
sample testable.

This collection of results shows that the class of constant-sample testable properties may be
richer than is generally believed and that unifying the positive results on constant-sample testability
requires new understanding of the structure of these properties.

1.1 Main result

We show that constant-sample testability is closely tied to a particular notion of symmetry—or
invariance—of properties. Let SX denote the set of permutations on a finite set X , and for any

subset S ⊆ X , let S(S)
X denote the set of permutations on X that preserves the elements in S.

A permutation π ∈ SX acts on functions f : X → {0, 1} in the obvious way: πf is the function
that satisfies (πf)(x) = f(πx) for every x ∈ X . The property P ⊆ {0, 1}X is invariant under
a permutation π ∈ SX if for every f ∈ P, we also have πf ∈ P. P is (fully) symmetric if it is
invariant under all permutations in SX . The following definition relaxes this condition to obtain a
notion of “partial” symmetry.

Definition 1. For any k ∈ N, the property P ⊆ {0, 1}X is k-part symmetric if there is a partition of

X into k parts X1, . . . , Xk such that P is invariant under all the permutations in S(X1)
X ∩· · ·∩S(Xk)

X .

Equivalently, P is k-part symmetric if there exists a partition X1, . . . , Xk of X such that the

event f ∈ P is completely determined by the density |f
−1(1)∩Xi|
|Xi| of f in each of the sets X1, . . . , Xk.

Our main result shows that O(1)-part symmetry is also essentially equivalent to constant-sample
testability.
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Theorem 1. The property P of functions mapping X to {0, 1} is constant-sample testable if and
only if for any ε > 0, there exists a constant k = kP(ε) that is independent of |X | and a k-part
symmetric property P ′ such that P ⊆ P ′ ⊆ Pε.

In words, Theorem 1 says that constant-sample testable properties are the properties P that
can be covered by some O(1)-part symmetric property P ′ that does not include any function that
is ε-far from P. Note that this characterization cannot be replaced with the condition that P
itself is k-part symmetric. To see this, consider the function non-identity property NotEq(g) that
includes every function except some non-constant function g : X → {0, 1}. This property is not
k-part symmetric for any k = O(1), but the trivial algorithm that accepts every function is a valid
ε-tester for NotEq(g) for any constant ε > 0.

Theorem 1 can easily be generalized to apply to properties of functions mapping X to any finite
set Y. We restrict our attention to the range Y = {0, 1} for simplicity and clarity of presentation.
The sample-based property testing model is naturally extended to non-uniform distributions over
the input domain. It appears likely that Theorem 1 can be generalized to this more general setting
as well, though we have not attempted to do so.

1.2 Applications

The characterization of constant-sample testability in Theorem 1 can be used to derive a number
of different corollaries. We describe a few of these.

When X is identified with the
(
n
2

)
pairs of vertices in V , the function f : X → {0, 1} represents

a graph G = (V,E) where E = f−1(1). A graph property is a property of these functions that is
invariant under relabelling of the vertices. This definition corresponds to the dense graph model of
property testing, and a number of basic graph properties are known to be testable with a constant
number of queries in this model when those queries are selected by the algorithm (see [15, §8] and
the references therein). By contrast, samples drawn at random from X appear to yield no useful
information about the structure of a graph since the tester’s observations will correspond to a
collection of disjoint pairs of vertices that are either connected by an edge or not, so we may expect
that no non-symmetric graph property is constant-sample testable. We can use our characterization
to show that this is indeed the case: the only graph properties that are constant-sample testable
are those that are (essentially) fully symmetric.

Corollary 1. For every ε > 0, if P is a graph property that is ε
2 -testable with a constant number

of samples, then there is a symmetric property Psym such that P ⊆ Psym ⊆ Pε.

When X is identified with a finite field Fnq , a property P ⊆ {0, 1}X is affine-invariant if it is
invariant under any affine transformation over Fnq . Theorem 1 can be used to show that symmetric
properties are essentially the only constant-sample testable affine-invariant properties.

Corollary 2. If P is an affine-invariant property of functions f : Fnq → {0, 1} that is ε
2 -testable with

a constant number of samples, then there is a symmetric property Psym such that P ⊆ Psym ⊆ Pε.

Fix a constant d ≥ 1. Two points x, y ∈ [n]d := {1, 2, . . . , n}d satisfy x � y when x1 ≤ y1,
. . ., and xd ≤ yd. The function f : [n]d → {0, 1} is monotone if for every x � y ∈ [n]d, we have
f(x) ≤ f(y). When d = 1, it is folklore knowledge that monotonicity of Boolean-valued functions
on the line is constant-sample testable. Using Theorem 1, we show that the same holds for every
other constant dimension d.
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Corollary 3. For every constant d ≥ 1 and constant ε > 0, we can ε-test monotonicity of functions
f : [n]d → {0, 1} on the d-dimensional hypergrid with a constant number of samples.

Chen, Servedio, and Tan [9] showed that the number of queries (and thus also of samples)
required to test monotonicity of f : [n]d → {0, 1} must depend on d. (The same result for the case
where n = 2 was first established by Fischer et al. [13].) Combined with the result above, this
shows that monotonicity of Boolean-valued functions on the hypergrid is constant-sample testable
if and only if the number of dimensions of the hypergrid is constant.

1.3 Techniques

The proof of Theorem 1 follows the general outline of previous characterizations of the properties
testable in the query-based model (e.g., [2, 7, 27]). As with those results, the most interesting
part of the proof is the direction showing that constant-sample testability implies coverage by an
O(1)-part symmetric property, and this proof is established with a regularity lemma. Our proof
departs from previous results in both the type of regularity lemma that we use and in how we use
it, as discussed below. The full proof of Theorem 1 is presented in Section 2.

Symmetry implies testability. The proof of this direction of the theorem is straightforward
and is obtained by generalizing the following folklore proof that symmetric properties can be tested
with a constant number of samples. Let P be any symmetric property. A tester can estimate
the density Ex∈X [f(x)] up to additive accuracy γ for any small γ > 0 with a constant number of
samples. This estimated density can be used to accept or reject the function based on how close it
is to the density of the functions in P. The validity of this tester is established by showing that a
function can be ε-far from P only when its density is far from the density of every function in P.

Consider now a property P that is k-part symmetric for some constant k. Let X1, . . . , Xk

be a partition of X associated with P. We show that a tester which estimates the densities
µXi(f) := Ex∈Xi [f(x)] for each i = 1, . . . , k and then uses these densities to accept or reject is a
valid tester for P. We do so by showing that any function that is ε-far from P must have a density
vector that is far from those of every function in P.

Testability implies symmetry. To establish the second part of the theorem, we want to show
that the existence of a constant-sample tester T for a property P implies that there is a partition
of X into a constant number of parts for which P is nearly determined by the density of functions
within those parts. We do so by using a variant of the Frieze–Kannan weak regularity lemma [14] for
hypergraphs. An s-uniform weighted hypergraph is a hypergraph G = (V, ξ) on |V | vertices where
ξ : V s → [0, 1] denotes the weight associated with each hyperedge. Given a subpartition V1, . . . , Vk
of V and a multi-index I = (I1, . . . , Is) with I1, . . . , Is ∈ [k], the weight of hyperedges of G in VI is
the average weight of the hyperedges in G with one vertex in each of the parts VI1 , . . . , VIs :

wG(VI) = wG(VI1 , . . . , VIs) =

∑
v1∈VI1 ,...,vs∈VIs

ξ(v1, . . . , vs)∏
j∈[s] |VIj |

.

For any subset S ⊆ V , we define S ∩ VI = (S ∩ VI1 , . . . , S ∩ VIs).
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Lemma 1 (Weak regularity lemma). For every ε > 0 and every s-uniform weighted hypergraph

G = (V, ξ) with ξ : V → [0, 1], there is a partition V1, . . . , Vk of V with k = 2O(log( 1
ε
)/ε2) parts such

that for every subset S ⊆ V ,

∑
I∈[k]s

∏
j∈[s] |S ∩ VIj |
|V |s

∣∣wG(S ∩ VI)− wG(VI)
∣∣ ≤ ε.

This specific formulation of the weak regularity lemma seems not to have appeared previously
in the literature, but its proof is essentially the same as that of usual formulations of the weak
regularity lemma. For completeness, we provide a proof of Lemma 1 in Section 4.

Lemma 1 is best described informally when we consider the special case of unweighted graphs.
In this setting, the weak regularity lemma says that for every graph G, there is a partition of
the vertices of G into k = O(1) parts V1, . . . , Vk such that for every subset S of vertices, the
density of edges between S ∩ Vi and S ∩ Vj is close to the density between Vi and Vj on average
over the choice of Vi and Vj . Regularity lemmas where this density-closeness condition is satisfied
for almost all pairs of parts Vi and Vj are known as “strong” regularity lemmas. To the best of
our knowledge, all previous characterization results in property testing that relied on regularity
lemmas (e.g., [2, 7, 27]) used strong regularity lemmas. This approach unavoidably introduces
tower-type dependencies between the query complexity and the characterization parameters. By
using a weak regularity lemma instead, we get a much better (though still triply-exponential)
dependence between the sample complexity and the partial symmetry parameter.

The second point of departure of our proof from previous characterizations is in how we use the
regularity lemma. In prior work, the regularity lemma was applied to the tested object itself (e.g.,
the dense graphs being tested in [2]) and the testability of the property was used to show that the
objects with the given property could be described by some combinatorial characteristics related
to the regular partition whose existence is promised by the regularity lemma. Instead, in our proof
of Theorem 1, we apply Lemma 1 to a hypergraph associated with the tester itself, not with the
tested object.

Specifically, let T be an s-sample ε-tester for some property P ⊆ {0, 1}X . We associate T
with an s-uniform weighted hypergraph GT on the set of vertices X × {0, 1}. The weight of each
s-hyperedge of GT is the acceptance probability of T when its s observations correspond to the
s vertices covered by the hyperedge. By associating each function f : X → {0, 1} with the subset
S ⊆ X × {0, 1} that includes all 2X vertices of the form (x, f(x)), we see that the probability
that T accepts f is the expected value of a hyperedge whose s vertices are drawn uniformly and
independently at random from the set S. We can use Lemma 1 to show that there is a partition
of V into a constant number of parts such that for each function f with associated set S, this
probability is well approximated by some function of the density of S in each of the parts. We then
use this promised partition of V to partition the original input domain X into a constant number
of parts where membership in P is essentially determined by the density of a function in each of
these parts, as required.

1.4 Related work

Sample-based property testing. The first general result regarding constant-sample testable
properties goes back to the original work of Goldreich, Goldwasser, and Ron [17]. They showed that
every property with constant VC dimension (and, more generally, every property that corresponds
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to a class of functions that can be properly learned with a constant number of samples) is constant-
sample testable. As they also show, this condition is not necessary for constant-sample testability—
in fact, there are even properties that are testable with a constant number of samples whose
corresponding class require a linear number of samples to learn [17, Prop. 3.3.1].

More general results on sample-based testers were obtained by Balcan et al. [4]. In particular,
they defined a notion of testing dimension of a property P in terms of the total variation distance
between the distributions on the tester’s observations when a function is drawn from distributions
πyes and πno essentially supported on P and Pε, respectively. They show that this testing dimension
captures the sample complexity of P up to constant factors, and observe that it can be interpreted
as an “average VC dimension”-type of complexity measure. It would be interesting to see whether
the combinatorial characterization in Theorem 1 could be combined with these results to offer new
insights into the connections between invariance and VC dimension-like complexity measures.

Finally, Goldreich and Ron [18] and Fischer et al. [11, 12] established connections between the
query- and sample-based models of property testing giving sufficient conditions for sublinear -sample
testability of properties. The exact bounds between sample complexity and partial symmetry in
the proof of Theorem 1 yield another sufficient condition for sublinear-sample testability: every
property P that can be ε-covered by an o(log log |X |)-part symmetric function P ′ has sublinear
sample complexity o(|X |). As far as we can tell, these two characterizations are incomparable.

Symmetry and testability. The present work was heavily influenced by the systematic ex-
ploration of connections between the invariances of properties and their testability initiated by
Kaufman and Sudan [20]. (See also [24].) In that work, the authors showed that such connections
yield new insights into the testability of algebraic properties in the query-based property testing
model, and advocated for further study of the invariance of properties as a means to better under-
stand their testability. Invariances and symmetry have also played a key role in the study of the
query complexity for testing other properties as well, including for example in the study of graph
properties [19] and properties of functions over finite fields [6]. Theorem 1 provides evidence that
this approach is a critical tool in the study of sample-based property testing model as well.

The notion of partial symmetry and its connections to computational efficiency has a long
history—it goes back at least to the pioneering work of Shannon [23]. Partial symmetry also ap-
peared previously in a property testing context in the authors’ joint work with Amit Weinstein
on characterizing the set of functions for which isomorphism testing is constant-query testable [8].
However, it should be noted that the notion of partial symmetry considered in [8] does not cor-
respond to the notion of k-part symmetry studied here. In fact, as mentioned in the conference
version of that paper, there are 2-part symmetric functions for which isomorphism testing is not
constant-query testable, so the two characterizations inherently require different notions of partial
symmetry.

1.5 Organization

The proof of Theorem 1 is presented in Section 2. The proofs of the application results are in
Section 3. Finally, since the weak regularity lemma that we use in the proof of Theorem 1 is not
completely standard, we include its proof in Section 4 for completeness.
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2 Proof of Theorem 1

We prove the two parts (sufficiency and necessity) of Theorem 1 in Sections 2.1 and 2.2, respectively.
In the proofs, the density of a function f : X → {0, 1} in a set S ⊆ X is µS(f) = Ex∈S [f(x)], the
expected value of f(x) when x is drawn uniformly at random from S.

2.1 Symmetry implies testability

We begin the proof of Theorem 1 with the easy direction.

Lemma 2. Let P ⊆ {0, 1}X be a property where for every ε > 0, there exists a constant k = kP(ε)
that is independent of |X | and a k-part symmetric property P ′ such that P ⊆ P ′ ⊆ Pε. Then P is
constant-sample testable.

Proof. Fix ε > 0. We show that we can distinguish functions in P from functions that are ε-far
from P with a constant number of samples. From the premise of the lemma, there exists a k-part
symmetric property P ′ with P ⊆ P ′ ⊆ Pε/2 for some k = kP(ε/2). Let X1, . . . , Xk be a partition
of X such that whether a function f : X → {0, 1} satisfies P ′ is determined by µX1(f), . . . , µXk(f).
For a set S ⊆ X , let cS(f) = µS(f)|S| be the number of x ∈ S with f(x) = 1.

Our algorithm for testing P is as follows. For each i ∈ [k], we draw q := O(k2 log k/ε2) samples

x1, . . . , xq and compute the estimates c̃Xi(f) := |X |
q

∑
j∈[q]:xj∈Xi f(xj) for each i ∈ [k]. We accept

if there exists g ∈ P ′ such that ∑
i∈[k]

|c̃Xi(f)− cXi(g)| < ε

4
|X |,

and reject otherwise.
Let us now establish the correctness of the algorithm. By Hoeffding’s bound, for each i ∈ [k],

we have |cXi(f)− c̃Xi(f)| < ε
4k |X | with probability at least 1− 1

3k by choosing the hidden constant
in the definition of q sufficiently large. By union bound, with probability at least 2/3, we have
|cXi(f)− c̃Xi(f)| < ε

4k |X | for every i ∈ [k]. In what follows, we assume this inequality holds.
If f ∈ P, then the algorithm accepts f because

∑
i∈[k] |c̃Xi(f)−cXi(f)| < ε

4 |X | and f ∈ P ⊆ P ′.
If f is ε-far from satisfying P, then for any g ∈ P ′, the triangle inequality and the fact that

P ′ ⊆ Pε/2 imply that∑
i∈[k]

|c̃Xi(f)− cXi(g)| ≥
∑
i∈[k]

(
|cXi(f)− cXi(g)| − |c̃Xi(f)− cXi(f)|

)
>
ε

2
|X | − ε

4
|X | = ε

4
|X |

and, therefore, the algorithm rejects f .

2.2 Testability implies symmetry

Suppose that a property P is testable by a tester T with sample complexity s. We want to show
that for any ε > 0, there exists a k-part symmetric property P ′ for k = k(ε) such that P ⊆ P ′ ⊆ Pε

For any x = (x1, . . . , xs) ∈ X s, we define f(x) =
(
f(x1), . . . , f(xs)

)
and we let T (x, f(x)) ∈ [0, 1]

denote the acceptance probability of the tester T of f when the samples drawn are x. The overall
acceptance probability of f by T is

pT (f) = E
x

[T (x, f(x))].
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We show that there is a family S of a constant number of subsets of X such that, for every
function f : X → {0, 1}, the acceptance probability pT (f) is almost completely determined by the
density of f on the subsets in S.

Lemma 3. For any γ > 0 and any s-sample tester T , there is a family S = {S1, . . . , Sm} of
m ≤ 2O(22s/γ2) subsets of X and a function ϕT : [0, 1]m → [0, 1] such that for every f : X → {0, 1},∣∣pT (f)− ϕT

(
µS1(f), . . . , µSm(f)

)∣∣ ≤ γ.
Proof. Consider the weighted hypergraph G = (V, ξ) defined by setting V = X ×{0, 1} and letting
ξ be constructed by adding a hyperedge ((x1, y1), . . . , (xs, ys)) of weight T (x,y) for each x =
(x1, . . . , xs) ∈ X s and y = (y1, . . . , ys) ∈ {0, 1}s. Let V1, . . . , Vk be the partition of V guaranteed
to exist by Lemma 1 with the approximation parameter ε = γ/2s.

A function f : X → {0, 1} corresponds to the subset U ⊆ V defined by U := {(x, f(x)) | x ∈ X}.
The probability that T accepts f is

pT (f) = E
x∈X s

[T (x, f(x))] = E
v∈V s

[ξ(v) | v ∈ U s] = E
v∈Us

[ξ(v)]

where the last expectation is over the uniform distribution of v in U s. Since |U | = |V |/2, we
observe that

E
v∈Us

[ξ(v)] =
∑
I∈[k]s

∏
i∈I |Vi ∩ U |
|U |s

wG(U ∩ VI) = 2s
∑
I∈[k]s

∏
i∈I |Vi ∩ U |
|V |s

wG(U ∩ VI).

Using the conclusion of Lemma 1, we then obtain∣∣∣∣∣∣pT (f)− 2s
∑
I∈[k]s

∏
i∈I |Vi ∩ U |
|V |s

wG(VI)

∣∣∣∣∣∣ ≤ 2s
∑
I∈[k]s

∏
i∈I |Vi ∩ U |
|V |s

|wG(U ∩ VI)− wG(VI)| ≤ γ.

For every part Vi, let V 1
i = {x ∈ X : (x, 1) ∈ Vi} and let V 0

i = {x ∈ X : (x, 0) ∈ Vi}.
Then the value of 2s

∑
I∈[k]s

∏
i∈I |Vi∩U |
|V |s wG(VI) is completely determined by the density of f on

V 1
1 , V

0
1 , V

1
2 , V

0
2 , . . . , V

1
k , V

0
k .

We are now ready to complete the second part of the proof of Theorem 1.

Lemma 4. Fix any property P ⊆ {0, 1}X and any ε > 0. If there is an ε-tester for P with sample

complexity s ≥ 1, then there exists a value k = 222
O(s)

and a k-part symmetric property P ′ such
that P ⊆ P ′ ⊆ Pε.

Proof. Let T be an ε-tester for P with sample complexity s and let γ be any constant that is
less than 1

6 . By Lemma 3 applied with the parameter γ, there is a family S = {S1, . . . , Sm} with

m = 2O(22s/γ2) sets such that for every f : X → {0, 1},

|pT (f)− ϕT (µS1(f), . . . , µSk(f))| ≤ γ. (1)

Define

P ′ = {f : X → {0, 1} : ∃g ∈ P s.t. (µS1(f), . . . , µSk(f)) = (µS1(g), . . . , µSk(g))}.
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This construction trivially guarantees that P ′ ⊇ P. Furthermore, the inequality (1) guarantees
that for every f ∈ P ′, if we let g ∈ P be one of the elements with the same density profile as f ,

pT (f) ≥ ϕT (µS1(f), . . . , µSk(f))− γ = ϕT (µS1(g), . . . , µSk(g))− γ ≥ pT (g)− 2γ.

Since T is an ε-tester for P and g ∈ P, we must have pT (g) ≥ 2
3 . By our choice of γ < 1/6, this

means that we also have pT (f) > 2
3 − 2 · 1

6 = 1
3 and so, again using the fact that T is an ε-tester

for P, we must have that f ∈ Pε.
Let S′1, . . . , S

′
k be the family of sets obtained by taking intersections and complements of

S1, . . . , Sm. Note that S′1, . . . , S
′
k forms a partition of X and µS1 , . . . , µSm is completely determined

by µS′1 , . . . , µS′k . Furthermore, k = O(2m). Hence, P ′ is a k-part symmetric property induced by
the partition S′1, . . . , S

′
k with P ⊆ P ′ ⊆ Pε.

Theorem 1 follows immediately from Lemmas 2 and 4.

3 Applications

Corollaries 1 and 2 regarding constant-sample testable graph properties and affine-invariant prop-
erties, respectively, both follow directly from a more general result concerning constant-sample
testable properties that are invariant under “mixing” sets of permutations. We present the general
result in Section 3.1 and the proofs of the two corollaries in Sections 3.2 and 3.3. The proof of
Corollary 3 regarding monotonicity testing is presented in Section 3.4.

3.1 Properties invariant under mixing groups of permutations

Definition 2. A group Π of permutations on a finite set X is (γ, τ, δ)-mixing if for every set S ⊆ X
of cardinality |S| ≥ δ|X | and every function f : X → {0, 1},

Pr
π∈Π

[
|µS(πf)− µX (f)| > τ

]
< γ.

Theorem 2. Fix ε > 0 and s ≥ 1, and let k = 222
O(s)

be the constant in Lemma 4. Let Π be
a ( 1

2k ,
ε
8 ,

ε
4k )-mixing group of permutations over the set X . Then for every Π-invariant property

P ⊆ {0, 1}X that is ε
2 -testable with s samples, there exists a symmetric property Psym that satisfies

P ⊆ Psym ⊆ Pε.

Proof. By Lemma 4, there is a partition S1, . . . , Sk of X with k parts and a property P ′ that is
invariant under permutations of S1, . . . , Sk such that P ⊆ P ′ ⊆ Pε/2. Define Psym = {g : ∃f ∈
P s.t. µX (f) = µX (g)} to be the closure of P over all permutations of X . By construction, this
property is symmetric and contains P. To complete the proof, we want to show that every g ∈ Psym

is also contained in Pε.
Fix any function f ∈ P and any function g : X → {0, 1} that satisfies µX (f) = µX (g). For any

part Si of size |Si| ≥ ε
4k |X |, the mixing property of Π guarantees that

Pr
π∈Π

[
|µSi(πf)− µSi(πg)| > ε

4

]
≤ Pr

π∈Π

[
|µSi(πf)− µX (f)| > ε

8

]
+ Pr
π∈Π

[
|µSi(πg)− µX (g)| > ε

8

]
<

1

k
.

9



By the union bound,

Pr
π∈Π

 ∧
i≤k : |Si|≥ ε

4k
|X |

∣∣µSi(πf)− µSi(πg)
∣∣ ≤ ε

4

 > 1− k · 1

k
= 0

so there must exist a permutation π? ∈ Π for which

k∑
i=1

|Si|
|X |
∣∣µSi(π?f)− µSi(π?g)

∣∣ ≤ ∑
i≤k: |Si|< ε

4k
|X |

|Si|
|X |
· 1 +

∑
i≤k: |Si|≥ ε

4k
|X |

|Si|
|X |
· ε

4
≤ k · ε

4k
+
ε

4
=
ε

2
.

For each i ∈ [k], we can find a permutation σi on X that is the identity outside of Si for which
Prx∈Si [σiπ

?f (x) 6= π?g(x)] = |µSi(π?f) − µSi(π
?g)|. Define h = σkσk−1 · · ·σ1π

?f . Since P ′ is
invariant under permutations of S1, . . . , Sk, and π?f ∈ P ⊆ P ′, the function h is in P ′. Also, the
definition of h guarantees that Prx∈Si [h(x) 6= π?g(x)] = |µSi(π?f)− µSi(π?g)| for every i ∈ [k], so

d(π?g, h) = Pr
x∈X

[π?g(x) 6= h(x)] =
k∑
i=1

Pr
x∈X

[x ∈ Si] · Pr
x∈Si

[π?g(x) 6= h(x)]

=
k∑
i=1

|Si|
|X |
·
∣∣µSi(π?f)− µSi(π?g)

∣∣ ≤ ε

2

and π?g is ε
2 -close to P ′. Therefore, π?g is ε-close to P. The property P is Π-invariant, so g ∈ Pε

as well.

3.2 Graph properties

A permutation π : V → V on the set of vertices acts on a graph G = (V,E) over the same set
of vertices by having πG = (V, πE) be the graph with edge set πE = {(πu, πv) : (u, v) ∈ E}. A

property P ⊆ {0, 1}(
V
2) is a graph property if for every G ∈ P and every permutation π : V → V

of the vertex set, πG ∈ P as well. The density of a graph G = (V,E) in a set S ⊆
(
V
2

)
is denoted

µS(G) = |E∩S|
|S| and the overall density of G is µ(G) := µ(V2)(G) = |E|/

(|V |
2

)
.

Corollary 1 follows immediately from the following result.

Corollary 4. For every ε > 0 and any integer s ≥ 1, there is a positive integer n0 = n0(ε, s) such
that for every n ≥ n0, if P is a graph property on graphs over |V | ≥ n0 vertices that is ε

2 -testable
with s samples, then there is a symmetric property Psym such that P ⊆ Psym ⊆ Pε.

Proof. By Theorem 2, it suffices to show that the group Π of permutations on
(
V
2

)
defined by the

set of vertex permutations is ( 1
2k ,

ε
8 ,

ε
4k )-mixing. Set n0 = d1024k2

ε3
e+2, and fix any graph G = (V,E)

with at least n0 vertices and any set S ⊆
(
V
2

)
of cardinality |S| ≥ ε

4k

(|V |
2

)
. The expected density of

πG in S is

E
π

[µS(πG)] = |S|−1
∑
e∈E

Pr
π

[πe ∈ S] = |S|−1 · |E| · |S|(|V |
2

) = µ(G).
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The expected value of the square of the density of πG in S satisfies

E
π

[µS(πG)2] = |S|−2
∑
e,e′∈E

Pr
π

[πe ∈ S ∧ πe′ ∈ S]

= |S|−2
(∑
e∈E

Pr
π

[πe ∈ S] +
∑

(u,v),(u,v′)∈E: v 6=v′
Pr
π

[(πu, πv) ∈ S ∧ (πu, πv′) ∈ S]

+
∑

(u,v),(u′,v′)∈E: u,u′,v,v′ all distinct

Pr
π

[(πu, πv) ∈ S ∧ (πu′, πv′) ∈ S]
)
.

For every edge e ∈ E, Prπ[πe ∈ S] = |S|/
(|V |

2

)
. For every distinct u, v, v′ ∈ V , the path (πv, πu, πv′)

of length two is distributed uniformly among all |V |(|V | − 1)(|V | − 2) paths of length two in
(
V
2

)
.

Since there are at most |S| · (|V | − 2) paths of length two in S,

Pr
π

[(πu, πv) ∈ S ∧ (πu, πv′) ∈ S] ≤ |S| · (|V | − 2)

|V |(|V | − 1)(|V | − 2)
=
|S|

2
(|V |

2

) .
Finally, for any distinct u, u′, v, v′ ∈ V , we can use the identity

(
n
2

)
/
(
n−2

2

)
= 1 + 2

n−2 to obtain

Pr
π

[(πu, πv) ∈ S ∧ (πu′, πv′) ∈ S] ≤ |S|(|S| − 1)(|V |
2

)
·
(|V |−2

2

) ≤ |S|2(|V |
2

)2(1 +
2

|V | − 2

)
.

Therefore,

Var[µS(πG)2] = E
π

[µS(πG)2]− E
π

[µS(πG)]2

≤ |S|−2
(
|E| · |S|(|V |

2

) + |E|(|V | − 2) · |S|
2
(|V |

2

) + |E|2 |S|
2(|V |

2

)2 (1 +
2

|V | − 2

))
− µ(G)2

=
µ(G) |V |

2|S|
+

2µ(G)2

|V | − 2
≤ |V |

2|S|
+

2

|V | − 2
≤ 8k

ε(n0 − 2)
≤ ε2

128k
.

Then by Chebyshev’s inequality, Prπ
[
|µS(πG)− µ(G)| > ε

8

]
< 1

2k and the group Π of vertex per-
mutations satisfies the desired mixing condition.

3.3 Affine-invariant properties

For an affine transformation A : Fnq → Fnq and a function f : Fnq → {0, 1}, we define Af : Fnq → {0, 1}
to be the function that satisfies Af(x) = f(Ax) for every x ∈ Fnq . We define the action of an affine
transformation A on a property P of functions mapping Fnq → {0, 1} to be AP = {Af : f ∈ P}. A
property P of functions f : Fnq → {0, 1} is affine-invariant if AP = P for every affine transformation
A. The density of a function f : Fnq → {0, 1} is µ(f) = |f−1(1)|/|Fnq |.

Corollary 2 follows immediately from the following result.

Corollary 5. For every ε > 0, any prime power q, and any integer s ≥ 1, there is a positive
integer n0 = n0(ε, q, s) such that for every n ≥ n0, if P is an affine-invariant property of functions
f : Fnq → {0, 1} that is ε

2 -testable with s samples, then there is a symmetric property Psym such that
P ⊆ Psym ⊆ Pε.

11



Proof. By Theorem 2, it suffices to show that the group of affine transformations on Fnq is ( 1
2k ,

ε
8 ,

ε
4k )-

mixing. Set n0 to be the smallest integer that satisfies qn0 > 512k2

ε3
, and fix any function f : Fnq →

{0, 1} with n ≥ n0 and any set S ⊆ Fnq of cardinality |S| ≥ ε
4k |F

n
q |. When A is drawn uniformly at

random from the set of affine transformations on Fnq , the expected value of the density of Af in S
is

E
A

[µS(Af)] = |S|−1
∑

x∈f−1(1)

Pr
A

[Ax ∈ S] = |S|−1 · |f−1(1)| · |S|
|Fnq |

= µ(f)

and the expected value of the squared density of Af on S satisfies

E
A

[
µS(Af)2

]
= |S|−2 E

A

[
|(Af)−1(1) ∩ S|2

]
= |S|−2

∑
x,x′∈f−1(1)

Pr
A

[Ax ∈ S ∧Ax′ ∈ S]

= |S|−2
( ∑
x∈f−1(1)

Pr[Ax ∈ S] +
∑

x 6=x′∈f−1(1)

Pr
A

[Ax ∈ S ∧Ax′ ∈ S]
)
.

The uniform distribution over the set of all affine transformations has the property that every pair

of elements x 6= x′ ∈ Fnq satisfies PrA[Ax ∈ S] = |S|
|Fnq |

and PrA[Ax ∈ S ∧ Ax′ ∈ S] =
(
|S|
|Fnq |

)2
so the

variance of µS(Af) is bounded above by

Var
A

[µS(Af)] = E
A

[
µS(Af)2

]
− E

A

[
µS(Af)

]2
≤ 1

|S|2

(
|f−1(1)| · |S|

|Fnq |
+ |f−1(1)|2 ·

(
|S|
|Fnq |

)2
)
− µ(f)2 =

µ(f)

|S|
≤ 1

|S|
≤ 4k

εqn0
.

Then by Chebyshev’s inequality, PrA
[
|µS(Af)− µ(f)| > ε

8

]
< 1

2k and the group of affine transfor-
mations over Fnq satisfies the desired mixing condition.

3.4 Testing monotonicity

With Theorem 1, to show that monotonicity of functions f : [n]d → {0, 1} is constant-sample
testable, it suffices to identify an O(1)-part symmetric function that covers all the monotone func-
tions and does not include any function that is far from monotone. This is what we do below.

Corollary 3 (Restated). For every constant d ≥ 1 and constant ε > 0, we can ε-test monotonicity
of functions f : [n]d → {0, 1} on the d-dimensional hypergrid with a constant number of samples.

Proof. For any ε > 0, fix k = dd/εe and let R be a partition of the space [n]d into kd subgrids of
side length (at most) bεnc each. We identify the parts in R with the points in [k]d. For an input
x ∈ [n]d, let φR(x) denote the part of R that contains x.

Given some function f : [n]d → {0, 1}, define the R-granular representation of f to be the
function fR : [k]d → {0, 1, ∗} defined by

fR(x) =


0 if ∀y ∈ [n]d with φR(y) = x, f(y) = 0

1 if ∀y ∈ [n]d with φR(y) = x, f(y) = 1

∗ otherwise.
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Let P = {f : [n]d → {0, 1} : ∃ monotone g s.t. fR = gR} be the property that includes every
function whose R-granular representation equals that of a monotone function. By construction P
includes all the monotone functions and is invariant under any permutations within the O(1) parts
of R. To complete the proof of the corollary, we want to show that every function in P is ε-close
to monotone.

Fix any f ∈ P and let g : [n]d → {0, 1} be a monotone function for which fR = gR. The distance
between f and g is bounded by

d(f, g) ≤
|g−1
R (∗)|
kd

.

Now consider the poset P on [k]d where x ≺ y iff xi < yi for every i ∈ [d]. We first observe that
the set g−1

R (∗) forms an antichain on this poset, i.e. no two elements x, y ∈ g−1
R (∗) satisfy x ≺ y or

y ≺ x. Indeed, if there exist x, y ∈ [k]d with x ≺ y and g(x) = g(y) = ∗, then there exist x′, y′ ∈ [n]d

such that φR(x′) = x, φR(y′) = y, g(x′) = 1, and g(y′) = 0. But this contradicts the monotonicity
of g because x′ ≤ y′ holds from x ≺ y.

For x ∈ [k]d, let xmax = maxi∈[d] xi and xmin = mini∈[d] xi. Define 1 = (1, 1, 1, . . . , 1) ∈ [k]d

and S = {x ∈ [k]d : xmin = 1}. We can partition [k]d into |S| = kd − (k − 1)d ≤ dkd−1 chains
(x, x+1, x+2 ·1, . . . , x+(xmax−1) ·1), one for each x ∈ S. Since every antichain in P can contain
at most one element from each of these chains, all the antichains in P have cardinality at most
dkd−1. In particular, this bound holds for the antichain g−1(∗) so d(f, g) ≤ dkd−1

kd
= d

k ≤ ε.

4 Proof of the weak regularity lemma

4.1 Information theory

The proof we provide for Lemma 1 is information-theoretic. In this section, we will use bold fonts
to denote random variables. The Shannon entropy of a discrete random variable x over the finite
domain X is H(x) = −

∑
x∈X Pr[x = x] log2 Pr[x = x], a value that is always bounded above

by H(x) ≤ log2 |X |. The conditional entropy of x given y is H(x | y) = H(x,y) − H(y). The
mutual information between x and y is I(x ; y) = H(x) − H(x | y) and the conditional mutual
information of x and y given a third random variable z is I(x ; y | z) = H(x | z) − H(x | y, z).
The chain rule for mutual information states that for any random variables x, y, and z we have
I(x ; y, z) = I(x ; y) + I(x ; z | y). For a more detailed introduction to information theory, we
recommend [10].

The one non-basic information-theoretic inequality that we use in the proof is an inequality
established by Tao [25] and later refined by Ahlswede [1].

Lemma 5 (Tao [25], Ahlswede [1]). Let y, z, and z′ be discrete random variables where y ∈ [−1, 1]
and z′ = φ(z) for some function φ. Then

E
z

[∣∣E
y

[y | z′]− E
y

[y | z]
∣∣] ≤√2 ln 2 · I(y ; z | z′).

Tao originally used his inequality to offer an information-theoretic proof of Szemerédi’s (strong)
regularity lemma. The proof we offer below follows (a simplified version of) the same approach.
The fact that Tao’s proof of the strong regularity lemma can also be applied (with simplifications)
to prove the Frieze–Kannan weak regularity lemma was observed previously by Trevisan [26].
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4.2 Proof of Lemma 1

For any partition V = (V1, . . . , V`) of V , let ψV : V s → [`]s be the function that identifies the parts
that contain each of its arguments. I.e., for every index set I ∈ [`]s, ψ−1

V (I) = VI1 × · · · × VI` .
Define the irregularity of a set S ⊆ V with respect to a partition V of V with ` parts and a

weighted hypergraph G = (V, ξ) to be

irregG,V(S) =
∑
I∈[`]s

∏
j∈[s] |S ∩ VIj |
|V |s

∣∣wG(S ∩ VI)− wG(VI)
∣∣.

Proposition 1. For any weighted hypergraph G = (V, ξ), any partition V = (V1, . . . , V`) of V , and
any set S ⊆ V , if v ∈ V s is drawn uniformly at random and V ′ = (V1 ∩S, V1 \S, . . . , V` ∩S, V` \S)
then

irregG,V(S) ≤
√

2 ln 2 I
(
ξ(v) ; ψV ′(v) | ψV(v)

)
.

Proof. The irregularity of S with respect to G and V is bounded above by

irregG,V(S) ≤
∑

b∈{0,1}s

∑
I∈[`]s

∏
j∈[s] |Sbj ∩ VIj |
|V |s

∣∣wG(Sb ∩ VI)− wG(VI)
∣∣

where we set S0 = S, S1 = V \ S, and Sb = (Sb1 , . . . , Sbs): the irregularity of S is equal to
the inner sum when b = 0s and all the other terms in the outer sum are non-negative. For any

I ∈ [`]s and b ∈ {0, 1}s,
∏
j∈[s] |Sbj∩VIj |
|V |s = Prv [ψV(v) = I ∧ 1S(v) = b] , where 1S : V s → {0, 1}s

is the indicator function for S. Similarly, wG(Sb ∩ VI) = Ev[ξ(v) | ψV(v) = I, 1S(v) = b] and
wG(VI) = Ev[ξ(v) | ψV(v) = I], so

irregG,V(S) ≤ E
ψV (v),1S(v)

[∣∣∣E
v

[
ξ(v) | ψV(v), 1S(v)

]
− E

v

[
ξ(v) | ψV(v)

]∣∣∣] .
The proposition follows from the Tao–Ahlswede inequality with y = ξ(v), z = (ψV(v), 1S(v)), and
z′ = ψV(v) along with the observation that the random variable (ψV(v), 1S(v)) encodes the same
information as ψV ′(v).

We are now ready to complete the proof of the regularity lemma.

Proof of Lemma 1. For τ > 0, we say that a weighted hypergraph is τ -granular if the weight of each
hyperedge is a multiple of τ . When proving Lemma 1, we can assume that the given hypergraph is
ε
3 -granular. To see this, let G′ = (V, ξ′) be the hypergraph obtained from G = (V, ξ) by rounding the
weight of each hyperedge to a multiple of ε

3 . Then for any set S ⊆ V and partition V = (V1, . . . , Vk)
of V ,

irregV,G(S) =
∑
I∈[k]s

∏
j∈[s] |S ∩ VIj |
|V |s

|wG(S ∩ VI)− wG(VI)|

≤
∑
I∈[k]s

∏
j∈[s] |S ∩ VIj |
|V |s

(
|wG′(S ∩ VI)− wG′(VI)|+

2ε

3

)
≤ irregV,G′(S) +

2ε

3
.
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To complete the proof of the lemma, it therefore suffices to show that for every ε
3 -granular graph

G′, there is a partition V with k = 2O( 1
ε2

log 1
ε
) parts where every set S ⊆ V has irregularity at most

ε
3 with respect to G′ and V. In the following, let G′ be any ε

3 -regular hypergraph.
Let V0,V1, . . . ,Va be a sequence of partitions of V defined by the following process. We first set

V0 = (V ) to be the trivial partition of V . This partition has 1 = 20 parts. When we have generated
V0, . . . ,Vi−1, with Vi−1 = (V1, . . . , V2i−1), we proceed as follows. If every set S ⊆ V has irregularity
irregVi−1,G′(S) ≤ ε

3 , then we terminate the process and set a = i− 1. Otherwise, we choose any set
Ti ⊆ V with irregularity irregVi−1,G′(Ti) >

ε
3 and define Vi = (V1∩Ti, V1\Ti, . . . , V2i−1∩Ti, V2i−1\Ti).

The resulting partition has 2i parts. The final partition Va in this process has 2a parts and satisfies
the regularity condition of the lemma; to complete the proof we want to show that the process
always terminates with a = O( 1

ε2
log 1

ε ).
Define the information value of a partition V with respect G′ to be infoG′(V) = I

(
ξ(v) ; ψV(v)

)
where v is drawn uniformly at random from V s. The information value of V0 is infoG′(V0) = 0.
And by the chain rule for mutual information, for every 0 < i ≤ a, the information value of Vi
satisfies

infoG′(Vi) = I
(
ξ(v) ; ψVi(v)

)
= I
(
ξ(v) ; ψVi−1(v), 1Ti(v)

)
= I
(
ξ(v) ; ψVi−1(v)

)
+ I
(
ξ(v) ; 1Ti(v) | ψVi−1(v)

)
= I
(
ξ(v) ; ψVi−1(v)

)
+ I
(
ξ(v) ; ψVi(v) | ψVi−1(v)

)
.

By Proposition 1 and the definition of Vi, I
(
ξ(v) ; ψVi(v) | ψVi−1(v)

)
≥

irregG,Vi−1
(Ti)

2

2 ln 2 > ε2

18 ln 2 and

infoG′(Vi) > infoG′(Vi−1) +
ε2

18 ln 2
≥ i · ε2

18 ln 2
.

Since G′ is ε
3 -granular, every partition V of V has information value infoG′(V) ≤ H(ξ(v)) ≤ log(3

ε )

so the partition refinement process must stop with a ≤ 18 ln 2
ε2

log(3
ε ), as we wanted to show.
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