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Abstract In recent work, Kalai, Klivans, Mansour, and Servedio (2005) studied a vari-

ant of the “Low-Degree (Fourier) Algorithm” for learning under the uniform probabil-

ity distribution on {0, 1}n. They showed that the L1 polynomial regression algorithm

yields agnostic (tolerant to arbitrary noise) learning algorithms with respect to the class

of threshold functions — under certain restricted instance distributions, including uni-

form on {0, 1}n and Gaussian on Rn. In this work we show how all learning results

based on the Low-Degree Algorithm can be generalized to give almost identical agnos-

tic guarantees under arbitrary product distributions on instance spaces X1×· · ·×Xn.

We also extend these results to learning under mixtures of product distributions.

The main technical innovation is the use of (Hoeffding) orthogonal decomposition

and the extension of the “noise sensitivity method” to arbitrary product spaces. In

particular, we give a very simple proof that threshold functions over arbitrary prod-

uct spaces have δ-noise sensitivity O(
√
δ), resolving an open problem suggested by

Peres (2004).
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1 Introduction

In this paper we study binary classification learning problems over arbitrary instance

spaces X = X1×· · ·×Xn. In other words, each instance has n “categorical attributes”,

the ith attribute taking values in the set Xi. For now we assume that each Xi has

cardinality at most poly(n).1

It is convenient for learning algorithms to encode instances from X as vectors

in {0, 1}|X1|+···+|Xn| via the “one-out-of-k encoding”; e.g., an attribute from X1 =

{red, green, blue} is replaced by one of (1, 0, 0), (0, 1, 0), or (0, 0, 1). Consider now the

following familiar learning algorithm:

Given m examples of training data (x1, y1), . . . , (xm, ym) ∈ X × {−1, 1},

1. Expand each instance xi into a vector from {0, 1}|X1|+···+|Xn| via the

“one-out-of-k” encoding.

2. Consider “features” which are products of up to d of the new 0-1

attributes.

3. Find the linear function W in the feature space that best fits the

training labels under some loss measure `: e.g., squared loss, hinge

loss, or L1 loss.

4. Output the hypothesis sgn(W − θ), where θ ∈ [−1, 1] is chosen to

minimize the hypothesis’ training error.

We will refer to this algorithm as “degree-d polynomial regression (with loss `)”.

When ` is the hinge loss, this is equivalent to the soft margin SVM algorithm with

the degree-d polynomial kernel and no regularization [CV95].2 When ` is the squared

loss and the data is drawn i.i.d. from the uniform distribution on X = {0, 1}n, the

algorithm is effectively equivalent to the Low-Degree Algorithm of Linial, Mansour, and

Nisan [LMN93] — see [KKMS05]. Using techniques from convex optimization (indeed,

linear programming for L1 or hinge loss, and just basic linear algebra for squared

loss), it is known that the algorithm can be performed in time poly(m,nd). For all

known proofs of good generalization for the algorithm, m = nΘ(d)/ε training examples

are necessary (and sufficient). Hence we will view the degree-d polynomial regression

algorithm as requiring poly(nd/ε) time and examples. (Because of this, whether or not

one uses the “kernel trick” is a moot point.)

Although SVM-based algorithms are very popular in practice, the scenarios in

which they provably learn successfully are relatively few (see Section 1.2 below) —

especially when there is error in the labels. Our goal in this paper is to broaden the class

of scenarios in which learning with polynomial regression has provable, polynomial-time

guarantees.

1.1 The learning framework

We study binary classification learning in the natural “agnostic model” [KSS94] (some-

times described as the model with arbitrary classification noise). We assume access to

1 Given real-valued attributes, the reader may think of bucketing them into poly(n) buckets.
2 Except for the minor difference of choosing an optimal θ rather than fixing θ = 0.
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training data drawn i.i.d. from some distribution D on X , where the labels are provided

by an arbitrary unknown “target” function t : X → {−1, 1}. The task is to output a

hypothesis h : X → {−1, 1} which is a good predictor on future examples from D. We

define the “error of h” to be err(h) = Prx∼D[h(x) 6= t(x)].3 We compare the error of an

algorithm’s hypothesis with the best error achievable among functions in a fixed class

C of functions X → {−1, 1}. Define Opt = inff∈C err(f). We say that an algorithm

A “agnostically learns with respect to C” if, given ε > 0 and access to training data,

it outputs a hypothesis h which satisfies E[err(h)] ≤ Opt + ε. Here the expectation is

with respect to the training data drawn.4 The running time (and number of training

examples) used are measured as functions of n and ε.

Instead of an instance distribution D on X and a target t : X → {−1, 1}, one

can more generally allow a distribution D′ on X × {−1, 1}; in this case, err(h) =

Pr(x,y)∼D′ [h(x) 6= y]. Our learning results also hold in this model just as in [KKMS05];

however we use the simpler definition for ease of presentation, except in Section 5.3.

In the special case when t is promised to be in C we are in the scenario of PAC

learning [Val84]. This corresponds to the case Opt = 0. Since C is usually chosen (by

necessity) to be a relatively simple class, the PAC model’s assumption that there is

a perfect classifier in C is generally considered somewhat unrealistic. This is why we

work in the agnostic model.

Finally, since strong hardness results are known [KSS94,LBW95,KKMS05,GR06]

for agnostic learning under general distributions D, we are forced to make some dis-

tributional assumptions. The main assumption in this paper is that D is a product

probability distribution on X ; i.e., the n attributes are independent. For a discussion of

this assumption and extensions, see Section 1.3.

1.2 When polynomial regression works

Although the SVM algorithm is very popular in practice, the scenarios in which it

provably learns successfully are relatively few. Let us consider the SVM algorithm

with degree-d polynomial kernel. The traditional SVM analysis is predicated on the

assumption that the data is perfectly linearly separable in the polynomial feature space.

Indeed, the heuristic arguments in support of good generalization are predicated on the

data being separable with large margin. Even just the assumption of perfect separation

may well be unreasonable. For example, suppose the target t is the very simple function

given the by intersection of two homogeneous linear threshold functions over Rn; i.e.,

t : Rn → {−1, 1}, t(x) = sgn(w1 · x) ∧ sgn(w2 · x).

It is known [MP69] that this target cannot be classified by the sign of a degree-d

polynomial in the attributes for any finite d; this holds even when n = 2. Alterna-

tively, when t is the intersection of two linear threshold functions over {0, 1}n, it is

not currently known if t can be classified by the sign of a degree-d polynomial for any

d < n− 1. [OS03]

3 In this paper, boldface denotes random variables.
4 The definition of agnostic learning is sometimes taken to require error at most Opt + ε

with high probability, rather than in expectation. However this is known [KKMS05] to require
almost negligible additional overhead.
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Because of this problem, one usually considers the “soft margin SVM algorithm” [CV95].

As mentioned, when this is run with no “regularization”, the algorithm is essentially

equivalent to degree-d polynomial regression with hinge loss. To show that this algo-

rithm even has a chance of learning efficiently, one must be able to show that simple

target functions can at least be approximately classified by the sign of low-degree poly-

nomials. Of course, even stating any such result requires distributional assumptions.

Let us make the following definition:

Definition 1.1 Let D be a probability distribution on {0, 1}N and let t : {0, 1}N → R.

We say that t is ε-concentrated up to degree d (under D) if there exists a polynomial

p : {0, 1}N → R of degree at most d which has squared loss at most ε under D; i.e.,

Ex∼D[(p(x)− t(x))2] ≤ ε.

It is well known that under the above conditions, h := sgn(p) has classification error

at most ε under D. Further, it is relatively easy to show that if C is a class of functions

each of which is ε-concentrated up to degree d, then the degree-d polynomial regression

algorithm with squared loss will PAC-learn C to accuracy O(ε) under D.

The first result along these lines was due to Linial, Mansour, and Nisan [LMN93]

who introduced the “Low-Degree Algorithm” for PAC-learning under the uniform dis-

tribution on {0, 1}n. They showed that if f : {0, 1}n → {−1, 1} is computed by a circuit

of size s and depth c then it is ε-concentrated up to degree (O(log(s/ε)))c under the

uniform distribution. Some generalizations of this result [FJS91,H̊as01] are discussed

in Section 4.

Another result using this idea was due to Klivans, O’Donnell, and Servedio [KOS04].

They introduced the “noise sensitivity method” for showing concentration results under

the uniform distribution on {0, 1}n. In particular, they showed that any t : {0, 1}n →
{−1, 1} expressible as a function of k linear threshold functions is ε-concentrated up

to degree O(k2/ε2) under the uniform distribution.

These works obtained PAC learning guarantees for the the polynomial regres-

sion algorithm — i.e., guarantees only holding under the somewhat unrealistic as-

sumption that Opt = 0. A significant step towards handling noise was taken in

[KKMS05]. Therein it was observed that low-degree L2
2-approximability bounds im-

ply L1-approximability bounds (and hinge loss bounds), and further, such bounds

imply that the polynomial regression algorithm works in the agnostic learning model.

Specifically, their work contains the following theorem:

Theorem 1.2 ([KKMS05]) Let D be a distribution on {0, 1}N and let C be a class of

functions {0, 1}N → {−1, 1} each of which is ε2-concentrated up to degree d under D.

Then the degree-d polynomial regression algorithm with L1 loss (or hinge loss [Kal06])

uses poly(Nd/ε) time and examples, and agnostically learns with respect to C under D.

Thus one gets agnostic learning algorithms under the uniform distribution on {0, 1}n
with respect to the class of AC0 circuits (time npolylog(n/ε)) and the class of functions

of k thresholds (time nO(k2/ε4)) — note that the latter is polynomial time assuming k

and ε are constants. Kalai et al. also obtained related results for agnostically learning

with respect to single threshold functions under Gaussian and log-concave distributions

on Rn.
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1.3 Overview of our learning results

We view the work of [KKMS05] as the first provable guarantee that one can learn in-

teresting, broad classes of functions under the realistic noise model of agnostic learning

(and in particular, that SVM-type methods can have this guarantee). One shortcoming

of the present state of knowledge is that we have good concentration bounds for classes

essentially only with respect to the uniform distribution on {0, 1}n and the Gaussian

distribution on Rn.5

In this work we significantly broaden the class of distributions for which we can

prove good concentration bounds, and hence for which we can prove the polynomial

regression algorithm performs well. Roughly speaking, we show how to generalize any

concentration result for the uniform distribution on {0, 1}n into the same concentration

result for arbitrary product distributions D on instance spaces X = X1 × · · · ×Xn.

We believe this is a significant generalization for several reasons. First, even just

for the instance space {0, 1}n the class of arbitrary product distributions is much

more reasonable than the single distribution in which each attribute is 0 or 1 with

probability exactly 1/2. Our results are even stronger than this, though: they give on

algorithm that works simultaneously for any product distribution over any instance

space X = X1 × · · · ×Xn where each |Xi| ≤ poly(n).

Because we can handle non-binary attributes, the restriction to product spaces

becomes much less severe. A common criticism of learning results under the uniform

distribution or product distributions on {0, 1}n is that they make the potentially un-

reasonable assumption that attributes are independent. However with our results, one

can somewhat circumvent this. Suppose one believes that the attributes X1, . . . , Xn
are mostly independent, but some groups of them (e.g., height and weight) have mu-

tual dependencies. One can then simply group together any dependent attribute sets

Xi1 , . . . , Xit into a single “super-attribute” set (Xi1 × · · · ×Xit). Assuming that this

eliminates dependencies — i.e., the new (super-)attributes are all independent — and

that each |Xi1 × · · · ×Xit | is still at most poly(n), one can proceed to use the polyno-

mial regression algorithm. Here we see the usefulness of being able to handle arbitrary

product distributions on arbitrary product sets.

In many reasonable cases our results can also tolerate the attribute sets Xi hav-

ing superpolynomial size. What is really necessary is that the probability distribution

on each Xi is mostly concentrated on polynomially many attributes. Indeed, we can

further handle the common case when attributes are real-valued. As long as the proba-

bility distributions on real-valued attributes are not extremely skewed (e.g., Gaussian,

exponential, Laplace, Pareto, chi-square, . . . ) our learning results go through after

doing a naive “bucketing” scheme.

Finally, being able to learn under arbitrary product distributions opens the door

to learning under mixtures of product distributions. Such mixtures — especially mix-

tures of Gaussians — are widely used as data distribution models in learning theory.

We show that agnostic learning under mixtures can be reduced to agnostic learning

under single product distributions. If the mixture distribution is precisely known to the

algorithm, it can learn even under a mixture of polynomially many product distribu-

5 [FJS91] gives bounds for AC0 under constant-bounded product distributions on {0, 1}n;
[KKMS05] gives inexplicit bounds for a single threshold function under log-concave distribu-
tions on Rn.
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tions. Otherwise, when the mixture is unknown, we first need to use an algorithm for

learning (or clustering) a mixture of product distributions from unlabeled examples.

This is a difficult but well-studied problem. Using results of Feldman, O’Donnell, and

Servedio [FOS05,FOS06] we can extend all of our agnostic learning results to learning

under mixtures of constantly many product distributions with each |Xi| ≤ O(1) and

constantly many (axis-aligned) Gaussian distributions.

1.4 Outline of technical results

In Section 2 we recall the orthogonal decomposition of functions on product spaces,

as well as the more recently-studied notions of concentration and noise sensitivity on

such spaces. In particular, we observe that if one can prove a good noise sensitivity

bound for a class C under a product distribution Π, then [KKMS05] implies that the

polynomial regression algorithm yields a good agnostic learner with respect to C under

Π.

Section 3 contains the key reduction from noise sensitivity in general product spaces

to noise sensitivity under the uniform distribution on {0, 1}n. It is carried out in the

model case of linear threshold functions, which Peres [Per04] proved have δ-noise sen-

sitivity at most O(
√
δ). We give a surprisingly simple proof of the following:

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold function, where X =

X1× · · · ×Xn has the product distribution Π = π1× · · · × πn. Then NSδ(f) ≤ O(
√
δ).

Proving this just in the case of a p-biased distribution on {0, 1}n was an open problem

suggested in [Per04]. This noise sensitivity bound thus gives us the following learning

result:

Theorem 3.4 Let Π = π1×· · ·×πn be any product distribution over an instance space

X = X1× · · ·×Xn, where we assume |Xi| ≤ poly(n) for each i. Let C denote the class

of functions of k linear threshold functions over X . Taking d = O(k2/ε4), the degree-d

polynomial regression algorithm with L1 loss (or hinge loss) uses nO(k2/ε4) time and

examples and agnostically learns with respect to C.

In Section 4 we discuss how to extend concentration results for other concept

classes from uniform on {0, 1}n to arbitrary product distributions on product spaces

X = X1 × · · · ×Xn. Of course, it’s not immediately clear, given a concept class C of

functions on {0, 1}n, what it even means for it to be generalized to functions on X . We

discuss a reasonable such notion based on one-out-of-k encoding, and illustrate it in

the case of AC0 functions. The idea in this section is simple: any concentration result

under uniform on {0, 1}n easily implies a (slightly weaker) noise sensitivity bound; this

can be translated into the same noise sensitivity bound under any product distribution

using the methods of Section 3. In turn, that implies a concentration bound in the

general product space. As an example, we prove the following:

Theorem 4.2 Let C be the class of functions X1 × · · · ×Xn → {−1, 1} computed by

unbounded fan-in circuit of size at most s and depth at most c (under the one-out-of-k



7

encoding). Assume |Xi| ≤ poly(n) for each i. Let Π be any product distribution on

X1 × · · · ×Xn. Then polynomial regression agnostically learns with respect to C under

arbitrary product distributions in time n(O(log(s/ε)))c−1/ε2 .

Section 5 describes extensions of our learning algorithm to cases beyond those in

which one has exactly a product distribution on an instance space X = X1 × · · · ×Xn
with each |Xi| ≤ poly(n): these extensions include distributions “bounded by” or “close

to” product distributions, as well as certain cases when the Xi’s have superpolynomial

cardinality or are R. We end Section 5 with a discussion of learning under mixtures of

product distributions. Here there is a distinction between learning when the mixture

distribution is known to the algorithm and when it is unknown. In the former case we

prove, e.g.:

Theorem 5.15 Let D be any known mixture of poly(n) product distributions over an

instance space X = X1 × · · · ×Xn, where we assume |Xi| ≤ poly(n) for each i. Then

there is a nO(k2/ε4)-time algorithm for agnostically learning with respect to the class

of functions of k linear threshold functions over X under D.

In the latter case, by relying on algorithms for learning mixture distributions from

unlabeled data, we prove:

Theorem 5.17 Let D be any unknown mixture of O(1) product distributions over an

instance space X = X1× · · · ×Xn, where we assume either: a) |Xi| ≤ O(1) for each i;

or b) each Xi = R and each product distribution is a mixture of axis-aligned (poly(n)-

bounded) Gaussians. Then there is a nO(k2/ε4)-time algorithm for agnostically learning

with respect to the class of functions of k linear threshold functions over X under D.

2 Product probability spaces

In this section we consider functions f : X → R, where X = X1×· · ·×Xn is a product

set. We will also assume X is endowed with some product probability distribution

Π = π1×· · ·×πn. All occurrences of Pr[·] and E[·] are with respect to this distribution

unless otherwise noted, and we usually write x for a random element of X drawn from

Π. For simplicity we assume that each set Xi is finite.6 The vector space L2(X , Π) of

all functions f : X → R is viewed as an inner product space under the inner product

〈f, g〉 = E[f(x)g(x)]. We will also use the notation

‖f‖2 =
√
〈f, f〉 =

√
E[f(x)2].

2.1 Orthogonal decomposition

As each Xi is just an abstract set, there is not an inherent notion of a degree-d polyno-

mial on X . Ultimately the polynomial regression algorithm identifies X with a subset

6 In fact, we will only need that each L2(Xi, πi) has a countable basis.
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of {0, 1}|X1|+···+|Xn| via the“one-out-of-k encoding” and works with polynomials over

this space. However to prove concentration results, we need to take a more abstract

approach and consider the “(Hoeffding) orthogonal decomposition” of functions on

product spaces; see [vM47,Hoe48,KR82,Ste86]. In this section we recall this notion

with our own notation.

Definition 2.1 We say a function f : X1×· · ·×Xn → R is a simple function of order

d if it depends on at most d coordinates.

Definition 2.2 We say a function f : X1 × · · · ×Xn → R is a function of order d if

it is a linear combination of simple functions of order d. The set of all such functions

is a linear subspace of L2(X , Π) and we denote it by H≤d(X , Π).

Definition 2.3 We say a function f : X1×· · ·×Xn → R is a function of order exactly

d if it is a function of order d and it is orthogonal to all functions of order d − 1; i.e.,

〈f, g〉 = 0 for all g ∈ H≤d−1(X , Π). This is again a linear subspace of L2(X , Π) and

we denote it by H=d(X , Π).

Proposition 2.4 The space L2(X , Π) is the orthogonal direct sum of the H=d(X , Π)

spaces,

L2(X , Π) =

n⊕
d=0

H=d(X , Π).

Definition 2.5 By virtue of the previous proposition, every function f : X1 × · · · ×
Xn → R can be uniquely expressed as

f = f=0 + f=1 + f=2 + · · ·+ f=n,

where f=d : X1 × · · · ×Xn → R denotes the projection of f into H=d(X , Π). We call

f=d the order d part of f . We will also write

f≤d = f=0 + f=1 + f=2 + · · ·+ f=d.

In the sequel we will write simply H=d in place of H=d(X , Π), etc. Although we

will not need it, we recall a further refinement of this decomposition:

Definition 2.6 For each S ⊆ [n] we define H≤S to be the subspace consisting of all

functions depending only on the coordinates in S. We define HS to be the further

subspace consisting of those functions in H≤S that are orthogonal to all functions in

H≤R for each R ( S.

Proposition 2.7 The space L2(X , Π) is the orthogonal direct sum of the HS spaces,

L2(X , Π) =
⊕
S⊆[n]H

S . Hence every function f : X1× · · · ×Xn → R can be uniquely

expressed as f =
∑
S⊆[n] f

S , where fS : X1 × · · · ×Xn → R denotes the projection of

f into HS . Denoting also f≤S =
∑
R⊆S f

R for the projection of f into H≤S , we have

the following interpretations:

f≤S(y1, . . . , yn) = E[f(x1, . . . ,xn) | xi = yi ∀ i ∈ S];

fS(x1, . . . , xn) =
∑
R⊆S

(−1)|S|−|R|f≤R.
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Finally, we connect the orthogonal decomposition of functions f : X → R with

their analogue under the one-out-of-k encoding:

Proposition 2.8 A function f : X → R is of order d if and only if its analogue f :

{0, 1}|X1|+···+|Xn| → R under the one-out-of-k encoding is expressible as a polynomial

of degree at most d.

2.2 Low-order concentration

As in the previous section we consider functions f : X → R under a product distribution

Π. We will be especially interested in classifiers, functions f : X → {−1, 1}. Our goal

is to understand and develop conditions under which such f can be approximated in

squared loss by low-degree polynomials.

By basic linear algebra, we have the following:

Proposition 2.9 Given f : X → R, the best order-d approximator to f under squared

loss is f≤d. I.e.,

min
g of order d

E[(f(x)− g(x))2] = ‖f − f≤d‖22 =

n∑
i=d+1

‖f=i‖22.

Definition 2.10 Given f : X → R we say that f is ε-concentrated up to order d if∑n
i=d+1 ‖f

=i‖22 ≤ ε.

By Proposition 2.8 we conclude the following:

Proposition 2.11 Let f : X → R and identify f with a function {0, 1}N → R under

the one-out-of-k encoding. Then there exists a polynomial p : {0, 1}N → R of degree at

most d which ε-approximates f in squared loss under Π if and only if f is ε-concentrated

up to order d.

Combining this with the KKMS Theorem 1.2, we get the following learning result

about polynomial regression:

Theorem 2.12 Let Π = π1×· · ·×πn be a product distribution on X = X1×· · ·×Xn.

Write N for the total number of possible attribute values, N = |X1|+· · ·+|Xn|. Let C be

a class of functions X → {−1, 1} each of which is ε2-concentrated up to order d under

Π. Then the degree-d polynomial regression algorithm with L1 loss (or hinge loss) uses

poly(Nd/ε) time and examples, and agnostically learns with respect to C under Π.

We will now show how to prove low-order concentration results by extending the

“noise sensitivity method” of [KOS04] to general product spaces.

2.3 Noise sensitivity

We recall the generalization of noise sensitivity [BKS99] to general product spaces,

described in [MOO05].
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Definition 2.13 Given x ∈ X1 × · · · × Xn and 0 ≤ ρ ≤ 1, we define a ρ-noisy copy

of x to be a random variable y with distribution Nρ(x), where this denotes that each

yi is chosen to equal xi with probability ρ and to be randomly drawn from πi with

probability 1− ρ, independently across i.

Definition 2.14 The noise operator Tρ on functions f : X → R is given by

(Tρf)(x) = Ey∼Nρ(x)[f(y)].

The noise stability of f at ρ is

Sρ(f) = 〈f, Tρf〉.

When f : X → {−1, 1} we also define the noise sensitivity of f at δ ∈ [0, 1] to be

NSδ(f) = 1
2 −

1
2S1−δ(f) = Pr

x∼Π
y∼N1−δ(x)

[f(x) 6= f(y)].

The connection between noise stability, sensitivity, and concentration comes from

the following two facts:

Proposition 2.15 ([MOO05]) For any f : X → R,

Sρ(f) =

n∑
i=0

ρi‖f=i‖22.

Proposition 2.16 ([KOS04]) Suppose NSδ(f) ≤ ε. Then f is 2
1−1/e ε-concentrated up

to order 1/δ.

For example, Peres proved the following theorem:

Theorem 2.17 ([Per04]) If f : {0, 1}n → {−1, 1} is a linear threshold function then

NSδ(f) ≤ O(1)
√
δ

(under the uniform distribution on {0, 1}n). From [O’D03] we have that the O(1) can

be taken to be 5
4 for every value of n and δ.

It clearly follows that if f is any function of k linear threshold functions then NSδ(f) ≤
5
4k
√
δ. Combining this with Proposition 2.16:

Theorem 2.18 ([KOS04]) Let f : {0, 1}n → {−1, 1} be any function of k linear

threshold functions. Then f is (4k/
√
d)-concentrated up to order d under the uniform

distribution, for any d ≥ 1. In particular, f is ε2-concentrated up to order O(k2/ε4).
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3 Noise sensitivity of threshold functions in product spaces

In this section we show that Peres’s theorem can be extended to hold for linear threshold

functions in all product spaces.

Recall that a boolean linear threshold function is a function f : {0, 1}n → {−1, 1}
of the form f(x1, . . . , xn) = sgn(

∑n
i=1 wixi−θ) for some w1, . . . , wn, θ ∈ R. We extend

the definition to functions with arbitrary product domains as follows.

Definition 3.1 We say a function f : X1 × · · · ×Xn → {−1, 1} is a linear threshold

function if there exist weight functions wi : Xi → R, i = 1 . . . n, and a number θ ∈ R
such that

f(x1, . . . , xn) = sgn

(
n∑
i=1

wi(xi)− θ

)
.

Equivalently when X1, . . . , Xn are finite sets, f is a linear threshold function if its

analogue f : {0, 1}N → {−1, 1} under one-out-of-k encoding is expressible as a linear

threshold function.

No version of Peres’s Theorem 2.17 was previously known to hold even in the sim-

ple case of linear threshold functions on {0, 1}n under a p-biased product distribution

with p 6= 1/2. Understanding just this nonsymmetric case was left as an open ques-

tion in [Per04]. We now show that threshold functions over general product spaces

are no more noise sensitive than threshold functions over {0, 1}n under the uniform

distribution.

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold function, where the domain

X = X1×· · ·×Xn has the product distribution Π = π1×· · ·×πn. Then NSδ(f) ≤ 5
4

√
δ.

Proof For a pair of instances z0, z1 ∈ X and a vector x ∈ {0, 1}n, we introduce the

notation zx for the instance whose ith attribute (zx)i is the ith attribute of zxi . For any

fixed z0, z1 ∈ X we can define gz0,z1 : {0, 1}n → {−1, 1} such that gz0,z1(x) = f(zx).

Note that this function is a linear threshold function in the traditional binary sense.

Let z0,z1 now denote independent random draws from Π, and let x denote a

uniformly random vector from {0, 1}n. We have that zx is distributed as a random

draw from Π. Further pick y ∈ {0, 1}n to be a δ-noisy copy of x, i.e. y ∼ Nδ(x). Then

zy is distributed as Nδ(zx). We now have

NSδ(f) = Pr
z0,z1,x,y

[f(zx) 6= f(zy)]

= E
z0,z1

[
Pr
x,y

[f(zx) 6= f(zy)]

]
= E

z0,z1

[
Pr
x,y

[gz0,z1(x) 6= gz0,z1(y)]

]
.

Once z0 and z1 are fixed, the quantity in the expectation is just the noise sensitivity

at δ of the binary linear threshold function gz0,z1) which we can bound by 5
4

√
δ using

Theorem 2.17. So

NSδ(f) = E
z0,z1

[
Pr
x,y

[gz0,z1(x) 6= gz0,z1(y)]

]
≤ E

z0,z1

[
5
4

√
δ
]

= 5
4

√
δ,

which is what we wanted to show. ut
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As with Theorem 2.18, we conclude:

Theorem 3.3 Let f : X → {−1, 1} be any function of k linear threshold functions,

where X = X1 × · · · ×Xn has the product distribution Π = π1 × · · · × πn. Then f is

(4k/
√
d)-concentrated up to order d, for any d ≥ 1. In particular, f is ε2-concentrated

up to order O(k2/ε4).

By combining Theorem 3.3 with our main learning theorem, Theorem 2.12, we

conclude:

Theorem 3.4 Let Π = π1 × · · · × πn be any product distribution over an instance

space X = X1 × · · · × Xn, where we assume |Xi| ≤ poly(n) for each i. Let C denote

the class of functions of k linear threshold functions over X . Taking d = O(k2/ε4), the

degree-d polynomial regression algorithm with L1 loss (or hinge loss) uses nO(k2/ε4)

time and examples and agnostically learns with respect to C.

4 Concentration for other classes under product distributions

In this section we illustrate how essentially any result about ε-concentration of classes

of functions under the uniform distribution on {0, 1}n can be translated into a similar

result for general product distributions. Besides linear threshold functions, the other

main example of concentration comes from the original application of the Low Degree

Algorithm [LMN93]: learning AC0 functions in quasipolynomial time. Recall that AC0

is the class of functions computed by unbounded fan-in circuits of constant depth and

polynomial size. We will use this as a running example.

Suppose C is a class of functions X → {−1, 1}, where X = X1×· · ·×Xn. As usual,

under the one-out-of-k encoding we can think of C as a class of functions {0, 1}N →
{−1, 1}. In our example, this gives a reasonable notion of “AC0 circuits on general

product sets X”. Suppose further that C ⊇ C is any class of functions {0, 1}N → {−1, 1}
which is closed under negation of inputs and closed under fixing inputs to 0 or 1. In

our example, the class of AC0 circuits indeed has this basic property (as does the more

precisely specified class of all circuits with size at most s and depth at most c).

Now by repeating the proof of Theorem 3.2, it is easy to see that any upper bound

one can prove on the noise sensitivity of functions in C under the uniform distribution on

{0, 1}N immediately translates an identical bound on the noise sensitivity of functions

in C on X under any product distribution. The only thing to notice is that the functions

gz0,z1 arising in that proof will be in the class C. Thus we are reduced to proving noise

sensitivity bounds for functions on {0, 1}n under the uniform distribution.

Furthermore, any result on ε-concentration of functions on {0, 1}n under the uni-

form distribution can be easily translated into a noise sensitivity bound which is not

much worse:

Proposition 4.1 Suppose that f : {0, 1}n → {−1, 1} is ε-concentrated up to degree d

under the uniform distribution on {0, 1}n. Then NSε/d(f) ≤ ε.

Proof Using traditional Fourier notation instead of orthogonal decomposition notation,

we have

S1−ε/d(f) =
∑
S⊆[n]

(1− ε/d)|S|f̂(S)2 ≥ (1− ε/d)d(1− ε) ≥ (1− ε)2,
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where the first inequality used the fact that f is ε-concentrated up to degree d. Thus

NS1−ε/d(f) = 1
2 −

1
2S1−ε/d(f) ≤ 1

2 −
1
2 (1− ε)2 ≤ ε.

ut

Finally, applying Proposition 2.16, we get O(ε)-concentration up to order d/ε for

the original class C of functions X → {−1, 1}, under any product distribution on X .

This leads to an agnostic learning result for C under arbitrary product distributions

which is the same as the one would get for C under the uniform distribution on {0, 1}n,

except for an extra factor of ε in the running time’s exponent.

For example, with regard to AC0 functions, [LMN93,H̊as01] proved the following:

Theorem 4.2 Let f : {0, 1}n → {−1, 1} be computable by an unbounded fan-in circuit

of size at most s and depth at most c. Then f is ε-concentrated up to degree d =

(O(log(s/ε)))c−1.

We therefore may conclude:

Theorem 4.3 Let C be the class of functions X1 × · · · ×Xn → {−1, 1} computed by

unbounded fan-in circuit of size at most s and depth at most c (under the one-out-of-k

encoding). Assume |Xi| ≤ poly(n) for each i. Let Π be any product distribution on X1×
· · ·×Xn. Then every f ∈ C is 2

1−1/e ε-concentrated up to order d = (O(log(s/ε)))c−1/ε.

As a consequence, polynomial regression agnostically learns with respect to C under

arbitrary product distributions in time n(O(log(s/ε)))c−1/ε2 .

This result should be compared to the following theorem from Furst, Jackson, and

Smith [FJS91] for PAC-learning under bounded product distributions on {0, 1}n:

Theorem 4.4 ([FJS91]) The class C of functions {0, 1}n → {−1, 1} computed by un-

bounded fan-in circuit of size at most s and depth at most c can be PAC-learned under

any product distribution in time n(O((1/p) log(s/ε)))c+O(1)

, assuming the mean of each

coordinate is in the range [p, 1− p].

The advantage of the result from [FJS91] is that it does not pay the extra 1/ε2 in

the exponent. The advantages of our result is that it holds under arbitrary product

distributions on product sets. (Our result is in the agnostic model, but the result

of [FJS91] could also be by applying the results of [KKMS05].)

5 Extensions

5.1 Distributions close to or dominated by product distributions

We begin with some simple observations showing that the underlying distribution need

not be precisely a product distribution. First, the following fact can be considered

standard:
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Proposition 5.1 Suppose that under distribution D, algorithm A agnostically learns

with respect to class C, using m examples to achieve error ε. If D′ is any distribution

satisfying ‖D′−D‖1 ≤ ε/m, then A also agnostically learns under D′, using m examples

to achieve error 2ε+ 2ε/m ≤ 4ε.

Proof The key fact we use is that if X is a random variable with |X| ≤ 1 always, then

|ED′ [X] − ED[X]| ≤ ‖D′ − D‖1. This implies that for any hypothesis h, |errD′(h) −
errD(h)| ≤ ε/m. In particular, it follows that OptD′ ≤ OptD + ε/m. Further, let h be

the random variable denoting the hypothesis A produces when given examples from

D⊗m. By assumption, we have

E
D⊗m

[errD(h)] ≤ OptD + ε

which is at most OptD′ + ε+ ε/m. Since ‖D′⊗m−D⊗m‖1 ≤ m(ε/m) = ε, the key fact

applied to errD(h) implies

E
D′⊗m

[errD(h)] ≤ OptD′ + ε+ ε/m+ ε.

Finally, as we saw, errD′(h) ≤ errD(h) + ε/m always. Thus

E
D′⊗m

[errD′(h)] ≤ OptD′ + 2ε+ 2ε/m,

completing the proof. ut

We will use the above result later when learning under mixtures of product distri-

butions.

A simple extension to the case when the distribution is “dominated” by a product

distribution was already pointed out in [KKMS05]:

Proposition 5.2 Let D be a distribution on X which is “C-dominated” by a product

probability distribution Π = π1 × · · · × πn; i.e., for all x ∈ X , D(x) ≤ CΠ(x). If f is

ε-concentrated up to degree d under Π, then f is Cε-concentrated up to degree d under

D.

Hence:

Theorem 5.3 Suppose we are in the setting of Theorem 3.4 except that Π is any

distribution which is C-dominated by a product probability distribution. Then the degree-

d polynomial regression algorithm learns with respect to C with d = O(C2k2/ε4) and

hence nO(C2k2/ε4) time and examples.

5.2 Larger attribute domains

So far we have assumed that each attribute space Xi is only of polynomial cardinality.

This can fairly easily be relaxed to the assumption that most of the probability mass

in each (Xi, πi) is concentrated on polynomially many atoms. Let us begin with some

basic preliminaries:
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Definition 5.4 Given a distribution π on a set X, as well as a subset X ′ ⊆ X, we

use the notation π′ for the distribution on X ′ given by conditioning π on this set. (We

always assume π(X ′) 6= 0.)

Fact 1 Let X = X1 × · · · × Xn and let Π = π1 × · · · × πn be a product distribution

on X . Let X ′i ⊆ Xi, i = 1 . . . n, and write Π ′ for the distribution Π conditioned on the

set X ′ = X ′1 × · · · ×X ′n. Then Π ′ is the product distribution π′1 × · · · × π′n.

We now observe that if X ′ is a “large” subset of X , then any two functions which

are close in L2(X , Π) are also close in L2(X ′, Π ′):

Proposition 5.5 In the setting of Fact 1, suppose that Prxi∼πi [xi 6∈ X ′i] ≤ 1/(2n)

for all i. Then for any two functions f : X → R and g : X → R,

‖f |X ′ − g|X ′‖22,Π′ ≤ 2 · ‖f − g‖22,Π

where f |X ′ : X ′ → R denotes the restriction of f to X ′, and similarly for g|X ′ .

Proof Writing h = f − g, we have

‖h‖22,Π = E
x∼Π

[h(x)2]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π

[h(x)2 | x ∈ X ′]

+ Pr
x∼Π

[x /∈ X ′] · E
x∼Π

[h(x)2 | x /∈ X ′].

Using Ex∼Π [h(x) | x /∈ X ′] ≥ 0, we have

‖h‖22,Π ≥ Pr
x∼Π

[x ∈ X ′] · E
x∼Π

[h(x)2 | x ∈ X ′]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π′

[h(x)2].

But by the union bound

Pr
x∼Π

[x /∈ X ′] ≤
n∑
i=1

Pr
xi∼Πi

[xi /∈ X ′i] ≤ n · 1/(2n) = 1/2,

so Prx∼Π [x ∈ X ′] ≥ 1/2. Thus

2 · ‖h‖22,Π ≥ E
x∼Π′

[h(x)2] = ‖f |X ′ − g|X ′‖22,Π′ ,

completing the proof. ut

Corollary 5.6 In the setting of the previous proposition, if f is ε-concentrated up to

order d under Π, then f |X ′ is 2ε-concentrated up to order d under Π ′.

Proof It suffices to observe that if g : X → R is a function of order d, then g|X ′ is also

a function of order d. ut

We can now describe an extended learning algorithm which works when the at-

tribute spaces are mostly supported on sets of polynomial cardinality:
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Definition 5.7 We say that a finite probability space (X,π) is (η, r)-bounded if there

exists a subset X ′ ⊆ X of cardinality at most |X ′| ≤ r such that Prx∼π[x /∈ X ′] ≤ η.

Our algorithm will learn whenever all n attribute sets are, say, (ε/n,poly(n))-

bounded. The first step of the algorithm will be to determine a set of attribute values

which contain almost all of the probability mass.

Lemma 5.8 Let (X,π) be an (η, r)-bounded probability space. Let Z be a set of m =

r ln(r/δ)/η samples drawn independently from π. Define Y to be the set {x ∈ X :

x was sampled in Z}. Then with probability at least 1−δ, the set Y satisfies Prx∼π[x /∈
Y ] ≤ 2η.

Proof In fact, we will prove the slightly stronger statement that with probability at

least 1 − δ the set Y satisfies Prx∼π[x /∈ Y ∩X ′] ≤ 2η, where X ′ is any set fulfilling

the (η, r)-boundedness condition of (X,π).

To prove the claim, we split the sampling procedure into r epochs, where we draw

ln(r/δ)/η samples in each epoch. Let Yi be the set of all atoms in X sampled among

the first i epochs, with Y0 denoting the empty set. We will prove that with probability

at least 1− δ, the following holds for all epochs i ∈ [r]: either Yi−1 satisfies Prx∼π[x /∈
Yi−1 ∩X ′] ≤ 2η, or (Yi ∩X ′) \ Yi−1 6= ∅ (i.e., we see a “new” atom from X ′ in the ith

epoch).

Let’s first note that satisfying the above conditions implies that in the end Prx∼π[x /∈
Y ∩ X ′] ≤ 2η. This is straightforward: if at any epoch Yi−1 satisfies Prx∼π[x /∈
Yi−1 ∩X ′] ≤ 2η then we’re done because Y ⊇ Yi−1. Otherwise, in all r epochs we see

a new atom from X ′, and hence at the end of the sampling we will have seen r distinct

atoms of X ′; then |X ′| ≤ r implies that our final Y ⊇ X ′.
Now to complete the proof let us bound the probability that for a given i ∈ [r] the

Yi−1 does not satisfy Prx∼π[x /∈ Yi−1 ∩ X ′] ≤ 2η and we do not see a new element

of X ′ in the ith epoch. Note that if Prx∼π[x /∈ Yi−1 ∩ X ′] > 2η, then the fact that

Prx∼π[x /∈ X ′] ≤ η implies that Prx∼π[x ∈ X ′ \ Yi−1] > η. So the probability that

we do not observe any element of X ′ \ Yi−1 in ln(r/δ)/η samples is

Pr
x∼π

[x /∈ X ′ \ Yi−1]ln(r/δ)/η ≤ (1− η)ln(r/δ)/η ≤ e−η·ln(r/δ)/η = δ/r.

By applying the union bound, we see that there is probability at most δ that any of

the r epochs fails, so we’re done. ut

We now give our extended learning algorithm:

1. Draw a set Z1 of m1 unlabeled examples.

2. Draw a set Z2 of m2 labeled examples.

3. Delete from Z2 any instance/label pair where the instance contains

an attribute value not appearing in Z1.

4. Run the degree-d polynomial regression algorithm on Z2.

Theorem 5.9 Let Π = π1 × · · · × πn be a product distribution on the set X = X1 ×
· · ·×Xn and assume each probability space (Xi, πi) is (ε/n, r)-bounded. Write N = nr.

Let C be a class of functions X → {−1, 1} each of which is ε2-concentrated up to order

d. Set m1 = poly(N/ε) and m2 = poly(Nd/ε). The above algorithm uses poly(Nd/ε)

time and examples and agnostically learns with respect to C under Π.
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Proof For simplicity we will equivalently prove that the algorithm outputs a hypothesis

with error at most Opt +O(ε), rather than Opt + ε.

We first want to establish that with probability at least 1− ε, the set of attributes

observed in the sample Z1 covers almost all of the probability mass of Π. For each

i ∈ [n], let X ′i be the set of attribute values from Xi observed in at least one of the

samples in Z1. Using the fact that each (Xi, πi) is (ε/n, r)-bounded, Lemma 5.8 implies

that for sufficiently large m1 = poly(N/ε) log(1/ε), each X ′i will satisfy Prxi∼πi [xi /∈
X ′i] ≤ 2ε/n except with probability at most ε/n. Applying the union bound, all X ′i
simultaneously satisfy the condition with probability at least 1 − ε. We henceforth

assume this happens. Writing X ′ = X ′1 × · · · ×X ′n, we note that, by the union bound,

Prx∼Π [x 6∈ X ′] ≤ 2ε.

The second thing we establish is that we do not throw away too many examples in

Step 3 of the algorithm. We have just observed that the probability a given example

in Z2 is deleted is at most 2ε. We may assume 2ε ≤ 1/2, and then a Chernoff bound

(and m2 � log(1/ε)) easily implies that with probability at least 1 − ε, at most, say,

two-thirds of all examples are deleted. Assuming this happens, we have that even after

deletion, Z2 still contains at least poly(Nd/ε) many examples.

We now come to the main part of the proof, which is based on the observation

that the undeleted examples in Z2 are distributed as i.i.d. draws from the restricted

product distribution Π ′ gotten by conditioning Π on X ′. Thus we are in a position to

apply our main learning result, Theorem 2.12. The polynomial regression part of the

above algorithm indeed uses poly(Nd/ε) time and examples, and it remains to analyze

the error of the hypothesis it outputs.

First, we use the fact that each function f in C is ε2-concentrated up to order d

to conclude that each function f |X ′ in “C|X ′” is 2ε2-concentrated up to order d. This

uses Proposition 5.5 and the fact that we may assume 2ε ≤ 1/2. Next, the guarantee

of Theorem 2.12 is that when learning the target classifier t (viewed as a function

X → {−1, 1} or X ′ → {−1, 1}), the expected error under Π ′ of the hypothesis h

produced is at most Opt′ +O(ε), where

Opt′ = min
f ′∈C|X′

Pr
x∼Π′

[f ′(x) 6= t(x)].

By definition, there is a function f ∈ C satisfying

Pr
x∼Π

[f(x) 6= t(x)] = Opt.

Since Prx∼Π [x /∈ X ′] ≤ 2ε, it is easy to see that f |X ′ has error at most Opt + 2ε on t

under Π ′. Thus Opt′ ≤ Opt+2ε, and we conclude that the expected error under Π ′ of

h on t is at most Opt + 2ε+O(ε) = Opt +O(ε). Finally, the same observation implies

that the expected error under Π of h on t is at most Opt + 2ε+O(ε) = Opt +O(ε).

We have thus established that with probability at least 1 − 2ε, the polynomial

regression part of the above algorithm outputs a hypothesis with expected error at

most Opt + O(ε). It follows that the overall expected error is at most Opt + O(ε), as

desired. ut
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5.3 Real-valued attributes

We next consider the particular case of learning with respect to linear threshold func-

tions, but when some of the attributes are real-valued. This case is relatively easily

handled by discretizing the ranges of the distributions and using the previously dis-

cussed techniques. Our approach works for a very wide variety of distributions on R;

these distributions need not even be continuous. We only need the distributions to

satisfy “polynomial boundedness and anti-concentration” bounds.

Definition 5.10 We say that a distribution D over R is B-polynomially bounded if

for all η > 0, there is an interval I of length at most poly(B/η) such that Prx∼D[x 6∈
I] ≤ η.

Definition 5.11 Given a real-valued random variable x with distribution D, recall

that the Lévy (anti-)concentration function Q(x;λ) is defined by

Q(x;λ) = sup
t∈R

Pr
x∼D

[x ∈ [t− λ/2, t+ λ/2]] .

We say that D has B-polynomial anti-concentration if Q(D;λ) ≤ poly(B) ·λc for some

positive c > 0. Note that if D is a continuous distribution with pdf everywhere at most

B then it has B-polynomial anti-concentration (with c = 1 in fact).

Having polynomial boundedness and concentration is an extremely mild condi-

tion; for example, the following familiar continuous distributions are all B-polynomial

bounded and have B-polynomial anti-concentration: Gaussians with 1/B ≤ σ2 ≤ B;

exponential distributions with 1/B ≤ λ ≤ B; Laplace distributions with scale param-

eter with 1/B ≤ b ≤ B; Pareto distributions with shape parameter 1/B ≤ k ≤ B;

chi-square distributions with variance 1/B ≤ σ2 ≤ B (for 1 degree of freedom, the

anti-concentration “c” needs to be 1/2); etc.

(Furthermore, in most cases even the condition on the parameter being in [1/B,B]

can be eliminated. For example, suppose the first coordinate has a Gaussian distribu-

tion with standard deviation σ. With O(log(1/δ)) examples, one can with probability

at least 1 − δ estimate σ to within a multiplicative factor of 2. Having done so, one

can multiply all examples’ first coordinate by an appropriate constant so as to get a

Gaussian distribution with standard deviation in [1/2, 2]. Further, this does not change

the underlying agnostic learning problem, since the class of linear threshold functions

is closed under scaling a coordinate. For clarity of exposition, we leave further consid-

erations of this sort to the reader.)

We now describe the effect that discretizing a real-valued distribution can have

with respect to functions of linear threshold functions. It is convenient to switch from

working with a distribution on X and target function X → {−1, 1} to just having a

distribution D on X ×{−1, 1}— see the discussion after definition of agnostic learning

in Section 1.1. As usual, assume that X = X1× · · · ×Xn is a product set and that the

marginal distribution of D on X is a product distribution.

Suppose we have one coordinate with a real-valued distribution; without loss of

generality, say X1 = R, and write D1 for the marginal distribution of D on X1. When

we refer to a “linear threshold function” on X , we assume that the “weight function”

w1 : X1 → R for coordinate 1 is just w1(x1) = c1x1 for some nonzero constant c1.
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Lemma 5.12 Let C denote the class of functions of k linear threshold functions over

X . As usual, write

Opt = inf
f∈C

errD(f), where errD(f) = Pr
(x,y)∼D

[f(x) 6= y].

Consider discretizing X1 = R by mapping each x1 ∈ R to rdτ (x1), the nearest integer

multiple of τ to xi. Write X ′1 = τZ and let D′ denote the distribution on X ′1 ×X2 ×
· · ·Xn × {−1, 1} induced from D by the discretization.7 Write Opt′ for the quantity

analogous to Opt for D′. Then if D1 has B-polynomial anti-concentration, it holds that

Opt′ ≤ Opt + k · poly(B) · τΩ(1).

Proof It suffices to show that for any f ∈ C,

k · poly(B) · τΩ(1) ≥ |errD(f)− errD′(f)|

=

∣∣∣∣ Pr
(x,y)∼D

[f(x) 6= y]− Pr
(x,y)∼D′

[f(x) 6= y]

∣∣∣∣ .
Writing Π for the marginal of D on X , we can prove the above by proving

Pr
x∼Π

[f(x) 6= f(rdτ (x1),x2, . . . ,xn)] ≤ k · poly(B) · τΩ(1).

Since f is a function of some k linear threshold functions, by the union bound it suffices

to show

Pr
x∼Π

[h(x) 6= h(rdτ (x1),x2, . . . ,xn)] ≤ poly(B) · τΩ(1)

for any linear threshold function h. We can do this by showing

Pr
x1∼D1

Y

[sgn(c1x1 + Y ) 6= sgn(c1rdτ (x1) + Y )] ≤ poly(B) · τΩ(1),

where Y is the random variable distributed according to the other part of the linear

threshold function h. Note that Y and x1 are independent because Π is a prod-

uct distribution. Now since |x1 − rdτ (x1)| is always at most τ/2, we can only have

sgn(c1x1 + Y ) 6= sgn(c1rdτ (x1) + Y ) if

|c1x1 + Y | ≤ |c1|τ/2 ⇔ |x1 + Y /c1| ≤ τ/2.

It is an easy and well-known fact that if x and y are independent random variables

then Q(x + y;λ) ≤ Q(x;λ); hence

Pr
x1∼D1

Y

[|x1 + Y /c1| ≤ τ/2] ≤ Q(x1; τ/2).

But D1 has B-polynomial anti-concentration, so Q(x1; τ/t) ≤ poly(B) · τΩ(1), as

needed. ut

7 This can lead to inconsistent labels, which is why we switched to D rather than have a
target function.
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By repeating this lemma up to n times, it follows that even if all n coordinate dis-

tributions are real-valued, so long as they have poly(n)-polynomial anti-concentration

we will suffer little error. Specifically (assuming k ≤ poly(n) as well), by taking

τ = poly(ε/n) we get that discretization only leads to an additional error of ε.

Finally, note that if a distribution Di is poly(n)-polynomially bounded then its

discretized version is (ε/n,poly(n/ε))-bounded in the sense of Section 5.2; this lets us

apply Theorem 5.9. Summarizing:

Theorem 5.13 Let Π = π1 × · · · × πn be a product distribution on the set X = X1 ×
· · ·×Xn. For the finite Xi’s, assume each is (ε/n,poly(n/ε))-bounded. For the real Xi’s,

assume the associated πi is poly(n)-polynomially bounded and has poly(n)-polynomial

anti-concentration. Let C denote the class of functions of at most k ≤ poly(n) lin-

ear threshold functions over X . Then there is a poly(n/ε)k
2/ε4 time algorithm which

agnostically learns with respect to C under Π.

5.4 Mixtures of product distributions

So far we have only considered learning under distributions D that are product distri-

butions. In this section we show how to handle the commonly-studied case of mixtures

of product distributions.

The first step is to show a generic learning-theoretic reduction: Roughly speaking,

if we can agnostically learn with respect to any one of a family of distributions, then

we can agnostically learn with respect to a known mixture of distributions from this

family — even a mixture of polynomially many such distributions. (In our application

the family of distributions will be the product distributions, but our reduction does

not rely on this.) Although the following theorem uses relatively standard ideas, we do

not know if it has appeared previously in the literature:

Theorem 5.14 Let D be a family of distributions over an instance space X . There is

a generic reduction from the problem of agnostically learning under a known mixture

of c distributions from D to the problem of agnostically learning under a single known

distribution from D. The reduction incurs a running time slowdown of poly(cT )/γ for

an additional error of γ, where T denotes the maximum time needed to compute D(x)

for a mixture component D.

Proof Suppose we are agnostically learning (with respect to some class C) under the

distribution D which is a mixture of c distributions D1, . . . ,Dc with mixing weights

p1, . . . , pc. We make the assumption that the learning algorithm knows each of the

mixing weights pi, each of the distributionsDi, and can compute any of the probabilities

Di(x) in time T . We assume in the following that the Di’s are discrete distributions,

but the case of absolutely continuous distributions could be treated in essentially the

same way.

First, we claim that the algorithm can simulate learning under any of the single dis-

tributions Di, with slowdown poly(cT )/pi. This is a standard proof based on rejection

sampling: given an example x, the algorithm retains it with probability

ri(x) := pi
Di(x)

D(x)
, (1)
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a quantity the algorithm can compute in time poly(cT ). One can check that this leads

to the correct distribution Di on instances. The probability of retaining an example is

easy seen to be precisely 1/pi, leading to the stated slowdown.

The main part of the proof now involves showing that if the algorithm agnostically

learns under eachDi, it can combine the hypotheses produced into an overall hypothesis

which is good under D. We will deal with the issue of running time (in particular,

very small pi’s) at the end of the proof. Let Opt denote the minimal error achievable

among functions in C under D, and write Opti for the analogous quantity under Di,
i = 1 . . . c. Since one could use the same f ∈ C for each Di, clearly Opt ≥

∑c
i=1 piOpti.

By reduction, the algorithm produces hypotheses h1, . . . ,hc satisfying E[errDi(hi)] ≤
Opti + ε.

We allow our overall algorithm to output a randomized hypothesis h. We will then

show that E[errD(h)] ≤ Opt + ε. where the expectation is over the subalgorithms’

production of the hi’s plus the “internal coins” of h. Having shown this, it follows that

our algorithm could equally well produce a deterministic hypothesis, just by (randomly)

fixing a setting of h’s internal coins as its last step.

Assume for a moment that the subalgorithms’ hypotheses are fixed, h1, . . . , hc. The

randomized overall hypothesis h : X → {−1, 1} is defined by taking h(x) = hi(x) with

probability exactly ri(x), where the probabilities ri(x) are as defined in (1). (Note that

they indeed sum to 1 and are computable in time poly(cT ).) Writing t for the target

function, we compute:

E
h’s coins

[errD(h)] = E
x∼D

[ Pr
h’s coins

[h(x) 6= t(x)]]

= E
x∼D

 ∑
i:hi(x)6=t(x)

ri(x)


= E

x∼D

 ∑
i:hi(x)6=t(x)

pi(x)
Di(x)

D(x)


=
∑
x∈X

∑
i:hi(x) 6=t(x)

pi(x)Di(x)

=

c∑
i=1

pi
∑

x:hi(x)6=t(x)

Di(x) =

c∑
i=1

pierrDi(hi).

We now take the expectation over the production of the subhypotheses and conclude

E
h

[errD(h)] =

c∑
i=1

piE[errDi(hi)] ≤
c∑
i=1

pi(Opti + ε) =

c∑
i=1

piOpti + ε ≤ Opt + ε, (2)

as claimed.

It remains to deal with small pi’s and analyze the running time slowdown. We

modify the overall algorithm so that it only simulates and learns under Di if pi ≥ γ/c.
Thus the simulation slowdown we incur is only poly(cT )/γ, as desired. For any i with

pi < γ/c we use an arbitrary hypothesis hi in the above analysis and assume only

errDi(hi) ≤ 1. It is easy to see that this incurs an additional error in (2) of at most∑
i:pi<γ/c

pi ≤ γ, as necessary. ut



22

Combining Theorem 5.14 with, say, Theorem 3.4 (for simplicity), we may conclude:

Theorem 5.15 Let D be any known mixture of poly(n) product distributions over an

instance space X = X1 × · · · ×Xn, where we assume |Xi| ≤ poly(n) for each i. Then

there is a nO(k2/ε4)-time algorithm for agnostically learning with respect to the class

of functions of k linear threshold functions over X under D.

When the mixture of product distributions is not known a priori, we can first run

an algorithm for learning mixtures of product distributions from unlabeled examples.

For example, Feldman, O’Donnell, and Servedio [FOS05] proved the following:

Theorem 5.16 ([FOS05]) Let D be an unknown mixture of c = O(1) many product

distributions over an instance space X = X1× · · ·×Xn, where we assume |Xi| ≤ O(1)

for each i. There is an algorithm which, given i.i.d. examples from D and η > 0, runs

in time poly(n/η) log(1/δ) and with probability at least 1− δ outputs the parameters of

a mixture of c product distributions D′ satisfying ‖D′ −D‖1 ≤ η.

(The theorem was originally stated in terms of KL-divergence but also holds with L1-

distance [FOS05].) In [FOS06] the same authors gave an analogous result for the case

when each Xi = R and each product distribution is a product of Gaussians with means

and variances in [1/poly(n), poly(n)].

We conclude:

Theorem 5.17 Let D be any unknown mixture of O(1) product distributions over an

instance space X = X1× · · · ×Xn, where we assume either: a) |Xi| ≤ O(1) for each i;

or b) each Xi = R and each product distribution is a mixture of axis-aligned (poly(n)-

bounded) Gaussians. Then there is a nO(k2/ε4)-time algorithm for agnostically learning

with respect to the class of functions of k linear threshold functions over X under D.

Proof First use the results of [FOS05,FOS06] with η = ε/nO(k2/ε4), producing a known

mixture distribution D′ with ‖D′ − D‖1 ≤ ε/nO(k2/ε4). Then run the algorithm from

Theorem 5.17. The conclusion now follows from Proposition 5.1. ut

6 Conclusions

In this work, we have shown how to perform agnostic learning under arbitrary prod-

uct distributions and even under limited mixtures of product distributions. The main

technique was showing that noise sensitivity bounds under the uniform distribution on

{0, 1}n yield the same noise sensitivity bounds under arbitrary product distributions.

The running time and examples required by our algorithm are virtually the same as

those required for learning under the uniform distribution on {0, 1}n.

While we have established many interesting scenarios for which polynomial re-

gression works, there is still significant room for extension. One direction is to seek

out new concept classes and/or distributions for which polynomial regression achieves

polynomial-time agnostic learning. Our work has dealt mostly in the case where all the

attributes are mutually independent; it would be especially interesting to get learning

under discrete distributions that are far removed from this assumption.
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