
Tight Bounds for Testing k-Linearity

Eric Blais∗ Daniel Kane†

August 8, 2012

Abstract

The function f : Fn
2 → F2 is k-linear if it returns the sum (over F2) of exactly k coordinates of

its input. We introduce strong lower bounds on the query complexity for testing whether a function is
k-linear. We show that for any k ≤ n

2
, at least k − o(k) queries are required to test k-linearity, and we

show that when k ≈ n
2

, this lower bound is nearly tight since 4
3
k + o(k) queries are sufficient to test

k-linearity. We also show that non-adaptive testers require 2k −O(1) queries to test k-linearity.
We obtain our results by reducing the k-linearity testing problem to a purely geometric problem on the

boolean hypercube. That geometric problem is then solved with Fourier analysis and the manipulation
of Krawtchouk polynomials.

1 Introduction

What global properties of functions can we test with only a partial, local view of an unknown object?
Property testing, a model introduced by Rubinfeld and Sudan [20], formalizes this question. In this model,
a property of functions Fn2 → F2 is simply a subset of these functions. A function f : Fn2 → F2 is ε-far from
a property P if for every g ∈ P, the inequality f(x) 6= g(x) holds for at least an ε fraction of the inputs
x ∈ Fn2 . A q-query ε-tester for P is a randomized algorithm that queries a function f on at most q inputs
and distinguishes with probability at least 2

3 between the cases where f ∈ P and where f is ε-far from P.
The aim of property testing is to identify the minimum number of queries required to test various properties.
For more details on property testing, we recommend the recent surveys [17, 18, 19] and the collection [13].

Linearity testing is one of the earliest success stories in property testing. The function f : Fn2 → F2 is
linear if it is of the form f(x) =

∑
i∈S xi for some set S ⊆ [n], where the sum is taken over F2. Equivalently,

f is linear if every pair x, y ∈ Fn2 satisfies the identity f(x) +f(y) = f(x+y). Blum, Luby, and Rubinfeld [7]
showed that, remarkably, linearity can be ε-tested with only O(1/ε) queries. The exact query complexity of
this problem has since been studied extensively [2, 3, 1, 15] and is well understood.

In this work, we study a closely related property: k-linearity. The function f : Fn2 → F2 is k-linear if
it is of the form f(x) =

∑
i∈S xi for some set S ⊆ [n] of size |S| = k. The k-linearity property plays a

fundamental role in testing properties of boolean functions. Notably, the query complexity of the k-linearity
testing problem provides a lower bound for the query complexity for testing juntas [11], testing low Fourier
degree [9], testing computability by small-depth decision trees [9], and testing a number of other basic
properties of boolean functions.

Our goal is to determine the exact query complexity of the k-linearity testing problem. As an initial
observation, we note that for any 0 ≤ k ≤ n, the query complexity for the k-linearity and (n − k)-linearity
testing problems are identical. (See Proposition ?? in the appendix.) This observation lets us concentrate
on the range 0 ≤ k ≤ n

2 from now on; all our results also apply to the range n
2 < k ≤ n by applying this

identity.

∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. eblais@cs.cmu.edu
†Department of Mathematics, Stanford University, Stanford, CA 94305. dankane@math.stanford.edu

1

1.1 Previous Work

The connection between property testing and learning theory, first established by Goldreich, Goldwasser,
and Ron [14], yields a simple and non-adaptive k-linearity tester with query complexity n + O(1/ε). For
i = 1, 2 . . . , n, define ei ∈ Fn2 to be the vector with value 1 in the ith coordinate and value 0 elsewhere.
The tester queries the function on the inputs e1, e2, . . . , en ∈ Fn2 . If f(ei) = 1 for exactly k indices i ∈ [n],
then f is consistent with exactly one k-linear function h. We can query the function f on O(1/ε) additional
inputs chosen uniformly and independently at random from Fn2 to verify that the rest of the function f is
also consistent with h. This test always accepts k-linear functions, while the functions that are ε-far from
k-linear functions fail at least one of the two steps of the test with high probability. We call this algorithm
the learning tester for k-linearity.

Fischer, Kindler, Ron, Safra, and Samorodnitsky [11] introduced an algorithm for testing k-linearity with
roughly O(k2) queries. They also showed that for k = o(

√
n), non-adaptive testers—that is, testers that

must fix all their queries before observing the value of the function on any of those queries—require roughly
Ω(
√
k) queries to test k-linearity. This implies a lower bound of Ω(log k) queries for general (i.e., possibly

adaptive) k-linearity testers for the same range of values of k.
The upper bound on the query complexity for testing k-linearity was improved implicitly by the intro-

duction of a new algorithm for testing k-juntas—that is, testing whether a function depends on at most k
variables—with only O(k log k) queries [4]. By combining this junta tester with the BLR linearity test [7],
one can test k-linearity with roughly O(k log k) queries.

The first lower bound for testing k-linearity that applied to all values of k was discovered by Blais and
O’Donnell [6], who, as a special case of a more general theorem on testing function isomorphism, showed
that non-adaptive testers need at least Ω(log k) queries to test k-linearity.

A much stronger bound was obtained by Goldreich [12], who showed that Ω(k) queries are required to
test k-linearity non-adaptively, and that general testers require at least Ω(

√
k) queries for the same task.

He conjectured that this last bound could be strengthened to show that Ω(k) queries are required to test
k-linearity for all 1 ≤ k ≤ n

2 .1 Goldreich’s conjecture was recently verified by Blais, Brody, and Matulef [5],
who proved the desired lower bound by establishing a new connection between communication complexity
and property testing.

1.2 Our Results

Continuing on the line of work described above, we pose the following question: can we obtain exact bounds
on the query complexity of the k-linearity testing problem? The results presented in this paper make
significant progress on this question. Our main results are new lower bounds for general as well as for
non-adaptive testing algorithms.

Theorem 1.1. Fix 1 ≤ k ≤ n
2 . At least k −O(k2/3) queries are required to test k-linearity.

Theorem 1.2. Fix 1 ≤ k ≤ n
2 . Non-adaptive testers for k-linearity need at least 2k −O(1) queries.

A particularly interesting case for k-linearity testing is when k = n
2 . The learning tester for n

2 -linearity
requires n queries, so the lower bound in Theorem 1.2 shows that no non-adaptive tester can reduce this
query complexity by more than an additive constant. It is reasonable to ask whether Theorem 1.1 can be
strengthened to obtain the same conclusion for adaptive testers as well. It cannot: our next result shows
that there is an adaptive n

2 -linearity tester that makes much fewer than n queries.

Theorem 1.3. It is possible to test n
2 -linearity with 2

3n+O(
√
n) queries.

This theorem is a special case of a more general upper bound on the query complexity for testing k-
linearity for values of k that are close to n

2 . The details and the proof of this more general upper bound are
presented in Appendix ??.

1Goldreich’s results and conjecture are stated in terms of the slightly different problem of testing ≤ k-linearity—the property
of being a function that returns the sum over Fn

2 of at most k variables. The ≤ k-linearity and k-linearity problems are largely
equivalent; see [5, 12] for more details.

2

The lower bounds in Theorems 1.1 and 1.2, as well as all previous lower bounds on the query complexity
for testing n

2 -linearity, proceed by establishing a lower bound on the number of queries required to distinguish
n
2 -linear and (n2 + 2)-linear functions. Our final result shows that for this promise problem our lower bound
is optimal up to the lower order error term.

Theorem 1.4. We can distinguish n
2 -linear and (n2 +2)-linear functions with dn2 e+1 queries. More generally,

for ` ≥ 1, let b be the smallest positive integer for which 2b does not divide `. It is possible to distinguish
n
2 -linear and (n2 + 2`)-linear functions with 2

3 (1− 2−2b)n+ o(n) queries.

1.3 Implications

The k-linearity testing problem plays a fundamental role in the study of property testing on boolean functions.
In particular, lower bounds on the query complexity of this problem imply lower bounds for the query
complexity of a number of other property testing problems. Our lower bounds carry over directly to all these
other problems. As a result, Theorem 1.1 sharpens several previous results. In this section, we only provide
a short description of these results; the details are found in Appendix ??.

Corollary 1.5. Fix 1 ≤ k ≤ n
2 . At least k − O(k2/3) queries are required to test (1) k-juntas, (2) k-sparse

F2-polynomials, (3) functions of Fourier degree at most k, (4) functions computable by depth-k decision trees,
and (5) isomorphism to the function f : x 7→ x1 + · · ·+ xk.

A property of linear functions is called symmetric if it is invariant under relabeling of its variables. A
symmetric property P of linear functions is completely characterized by the function hP : {0, 1, . . . , n} →
{0, 1} where hP(k) = 1 iff k-linear functions are included in P. Define ΓP to be the minimum value of
` ∈ {0, 1, . . . , bn2 c} for which every value of k in the range ` ≤ k ≤ n − ` satisfies hP(k) = hP(k + 2). This
measure is closely related to the Paturi complexity of symmetric functions [16]. It also provides a lower
bound on the query complexity for testing P.

Corollary 1.6. Let P be a symmetric property of linear functions. Then at least ΓP −O(Γ
2/3
P) queries are

required to test P.

1.4 Discussion of our Results

Rare are the questions in theoretical computer science for which we can obtain exact (as opposed to asymp-
totic) answers. The results in this paper shows that the query complexity of the k-linearity testing problem
is one of those special questions. Yet, while the fundamental nature of the k-linearity testing problem causes
the determination of its exact query complexity to be of intrinsic interest, two other reasons form the main
motivation for the research described in this article.

First, one main reason for studying the k-linearity testing problem is to gain a better understanding of the
structure of linear functions. All the previous works on this problem yielded new insights into this structure.
However, the insights into the structure of linear functions have yet to be exhausted by the current line of
research. Indeed, as we will discuss below, our research uncovered new connections between the problem of
testing k-linearity and the geometry of the boolean hypercube.

Second, the asymptotic bounds on query complexity hide some important questions. For example, con-
sider the following rephrasing of our main question: what is the difference between the query complexities
of the best n

2 -linearity tester and the (näıve) learning tester? An asymptotic lower bound on the query
complexity of n

2 -linearity testers is too weak to shed any light on this question. In stark contrast, Theo-
rem 1.2 shows that if we restrict our attention to non-adaptive testers, the difference is at most constant.
Furthermore, Theorem 1.3 shows that for adaptive testers the difference is linear in n.

1.5 Our Techniques

We reduce the problem of testing k-linear functions to a purely geometric problem on the Hamming cube.
Namely, we obtain our testing lower bound by showing that affine subspaces of large dimension intersect

3

roughly the same fraction of the middle layers of the cube. More precisely, let Wk ⊆ Fn2 denote the set of
vectors x ∈ Fn2 of Hamming weight k. Our main technical contribution is the following result.

Lemma 1.7. There is a constant c > 0 such that for any affine subspace V ⊆ {0, 1}n of codimension
d ≤ n

2 − cn
2/3, ∣∣∣∣ |V ∩Wn

2−1|
|Wn

2−1|
−
|V ∩Wn

2 +1|
|Wn

2 +1|

∣∣∣∣ ≤ 1
362−d.

We prove the lemma with Fourier analysis and with the manipulation of Krawtchouk polynomials.
The proof of our lower bound for non-adaptive testers proceeds via a similar reduction to a geometric

problem on the Hamming cube. See Section 4 for the details.

2 Preliminaries

2.1 Fourier Analysis

For a finite dimensional vector space V over F2, the inner product of two functions f, g : V → R is 〈f, g〉 =
Ex∈V [f(x) · g(x)], where the expectation is over the uniform distribution on V . The L2 norm of f is
‖f‖2 :=

√
〈f, f〉. A character of V is a group homomorphism χ : V → {1,−1}∗. Equivalently a character

is a function χ : V → {1,−1} so that for any x, y ∈ V , χ(x + y) = χ(x)χ(y). Define V̂ to be the set of
characters of V .

For a function f : V → R, the Fourier transform of f is the function f̂ : V̂ → R given by f̂(χ) := 〈f, χ〉.
The Fourier decomposition of f is f(x) =

∑
χ∈V̂ f̂(χ)χ(x). A fundamental property of the Fourier transform

is that it preserves the squared L2 norm.

Fact 2.1 (Parseval’s Identity). For any f : V → R, ‖f‖22 =
∑
χ∈V̂ f̂(χ)2.

The pushforward of the function f : V → R by the linear function g : V →W is defined by (g∗(f))(x) :=
1
|V |
∑
y∈g−1(x)[f(y)].

Fact 2.2. For any linear function g : V →W and any function f : V → R, ĝ∗(f)(χ) = 1
|W | f̂(χ ◦ g).

2.2 Krawtchouk Polynomials

For n > 0 and k = 0, 1, . . . , n, the (binary) Krawtchouk polynomial Kn
k : {0, 1, . . . , n} → Z is defined by

Kn
k (m) =

k∑
j=0

(−1)j
(
m

j

)(
n−m
k − j

)
.

The generating function representation of the Krawtchouk polynomial Kn
k (m) is Kn

k (m) = [xk] (1−x)m(1 +
x)n−m. Krawtchouk polynomials satisfy a number of useful properties. In particular, we use the following
identities in our proofs.

Fact 2.3. Fix n > 0. Then

i. For every 2 ≤ k ≤ n, Kn
k (m)−Kn

k−2(m) = Kn+2
k (m+ 1).

ii.
∑n
k=0K

n
k (m)2 = (−1)mK2n

n (2m).

iii. For every 0 ≤ d ≤ n
2 ,

∑d
j=0

(
d
j

)
(−1)jKn

n
2

(2j + 2) = 22dKn−2d
n
2−d

(2).

iv. K2n
n (2m+ 1) = 0 and (−1)mK2n

n (2m) is positive and decreasing in min{m,n−m}.

4

Fact 2.4. Fix n > 0 and −n2 ≤ k ≤
n
2 . Then

Kn
n
2 +k(m) =

2n−1im

π

∫ 2π

0

sinm θ cosn−m θei2kθ dθ.

Krawtchouk polynomials are widely used in coding theory [22] and appear in our proofs because of their
close connection with the Fourier coefficients of the (Hamming weight indicator) function IWk

: Fn2 → {0, 1}
defined by IWk

(x) = 1|x|=k. With the Hamming weight of the vector α = (α1, . . . , αn) ∈ {0, 1}n defined as
|α| =

∑n
i=1 αi, the connection is formulated as follows.

Fact 2.5. Fix 0 ≤ k ≤ n, and α ∈ {0, 1}n. Then ÎWk
(α) = 2−nKn

k (|α|).
For completeness, we include the proofs of Facts 2.3–2.5 in Appendix ??.

2.3 Property Testing

The proof of Theorem 1.1 uses the following standard property testing lemma.

Lemma 2.6. Let Dyes and Dno be any two distributions over functions Fn2 → F2. If for every set X ⊆ Fn2 of
size |X| = q and any vector r ∈ Fq2 we have that

∣∣Prf∼Dyes
[f(X) = r]− Prf∼Dno

[f(X) = r]
∣∣ < 1

36 2−q, then
any algorithm that distinguishes functions drawn from Dyes from those drawn from Dno with probability at
least 2

3 makes at least q + 1 queries.

Lemma 2.6 follows from Yao’s Minimax Principle [23]. The proof of this result can be found in [10, 8] and,
for the reader’s convenience, in Appendix ??.

3 Proof of the General Lower Bound

Proof of Theorem 1.1. We first prove the special case where k = n
2 − 1. There is a natural bijection between

linear functions Fn2 → F2 and vectors in Fn2 : associate f(x) =
∑
i∈S xi with the vector α ∈ Fn2 whose

coordinates satisfy αi = 1 iff i ∈ S. Note that f(x) = α · x.
For 0 ≤ ` ≤ n, let W` ⊆ Fn2 denote the set of elements of Hamming weight `. Fix any set X ⊆ Fn2 of

q < n
2 −O(n2/3) queries and any response vector r ∈ Fq2. The set of linear functions that return the response

vector r to the queries in X corresponds in our bijection to an affine subspace V ⊆ Fn2 of codimension q.
This is because for each x ∈ X, the requirement that f(x) = ri imposes an affine linear relation on f . By
Lemma 1.7, this subspace satisfies the inequality∣∣∣∣ |V ∩Wn

2−1|
|Wn

2−1|
−
|V ∩Wn

2 +1|
|Wn

2 +1|

∣∣∣∣ ≤ 1
362−q. (1)

Define Dyes and Dno to be the uniform distributions over (n2 − 1)-linear and (n2 + 1)-linear functions,
respectively. By our bijection, Dyes and Dno correspond to the uniform distributions over Wn

2−1 and Wn
2 +1.

As a result, the probability that a function drawn from Dyes or from Dno returns the response r to the set
of queries X is

Pr
f∼Dyes

[f(X) = r] =
|V ∩Wn

2−1|
|Wn

2−1|
and Pr

f∼Dno

[f(X) = r] =
|V ∩Wn

2 +1|
|Wn

2 +1|
.

So (1) and Lemma 2.6 imply that at least n
2 −O(n2/3) queries are required to distinguish (n2 − 1)-linear and

(n2 +1)-linear functions. All (n2 +1)-linear functions are 1
2 -far from (n2 −1)-linear functions, so this completes

the proof of the theorem for k = n
2 − 1.

For other values of k, we apply a simple padding argument. When k < n
2 − 1, modify Dyes and Dno

to be uniform distributions over k-linear and (k + 2)-linear functions, respectively, under the restriction
that all coordinates in the sum taken from the set [2k + 2]. This modification with k = n

2 − 2 shows that
n
2 −O(n2/3) queries are required to distinguish (n2 − 2)- and n

2 -linear functions; this implies the lower bound
in the theorem for the case k = n

2 .

5

Proof of Lemma 1.7. For any set A ⊆ Fn2 , define IA : Fn2 → {0, 1} to be the indicator function for A. For
a given function f : Fn2 → {0, 1}, let us write E[f] as shorthand for Ex[f(x)] where the expectation is over
the uniform distribution of x ∈ Fn2 . Similarly, for two functions f, g, we write E[f · g] as short-hand for
Ex[f(x) · g(x)].

For any subsets A,B ⊆ Fn2 , |A ∩B| = 2n ·E[IA · IB]. Since |Wn
2−1| = |Wn

2 +1| =
(

n
n
2−1

)
,∣∣∣∣ |V ∩Wn

2−1|
|Wn

2−1|
−
|V ∩Wn

2 +1|
|Wn

2 +1|

∣∣∣∣ =
2n(
n

n
2−1

) ·E[IV · (IWn
2
−1
− IWn

2
+1

)
]
.

The subspace V can be defined by a set S ⊆ [n] of size |S| = d and an affine-linear function f : {0, 1}n−d →
{0, 1}d, where x ∈ V iff xS = f(xS̄). Define ISm and I S̄m to be indicator functions for |xS | = m and |xS̄ | = m,
respectively. Then

E[IV · (IWn
2
−1
− IWn

2
+1

)] =

d∑
m=0

E
[
IV · ISm · (I S̄n2−m−1 − I S̄n2−m+1)

]
.

Let U ⊆ {0, 1}S be the image of f . Let d′ = dim(U). Define hm : {0, 1}S → [−1, 1] by setting hm(u) =

Ex∈{0,1}S̄ [IV (x, u) · (I S̄n
2−m−1(x)− I S̄n

2−m+1(x))]. Note that hm = f∗

(
I S̄n

2−m−1 − I S̄n2−m+1

)
. Notice also that

hm is supported on U . We have

E[IV · (IWn
2
−1
− IWn

2
+1

)] =

d∑
m=0

E
[
ISm · hm

]
=

d∑
m=0

E
[
ISm · 1U · hm

]
. (2)

Two applications of the Cauchy-Schwarz inequality yield

d∑
m=0

E
[
ISm · 1U · hm

]
≤

d∑
m=0

‖ISm · 1U‖2 · ‖hm‖2 ≤

√√√√ d∑
m=0

‖ISm · 1U‖22 ·

√√√√ d∑
m=0

‖hm‖22. (3)

We bound the two terms on the right-hand side. The first term satisfies

d∑
m=0

‖ISm · 1U‖22 =
∑
m

Ex[ISm(x)2 · 1U] = Ex

[
1U
∑
m

ISm(x)2

]
= 2d

′−d, (4)

where the last equality follows from the fact that for every x ∈ {0, 1}n, there is exactly one m for which
ISm(x) = 1.

We now examine the second term. By Parseval’s Identity, we have that ‖hm‖22 =
∑
α∈{0,1}S ĥm(χα)2.

Suppose that the image of f has dimension d′ ≤ d. Then, since hm is a pushforward,

ĥm(χ) = 2−d
(
Î S̄n

2−m−1(χ ◦ f)− Î S̄n
2−m+1(χ ◦ f)

)
.

The characters χ ◦ f depend only on the restriction of χ to f({0, 1}S̄). Thus these characters all lie in some

subspace W ⊆ {̂0, 1}S̄ of dimension d′, with each character appearing 2d−d
′

times. Thus, we have that

‖hm‖22 = 2−d−d
′ ∑
χ∈W

(
Î S̄n

2−m−1(χ)− Î S̄n
2−m+1(χ)

)2
.

For any set χ ⊆ S̄, we can apply Facts 2.5 and 2.3(i) to obtain

Î S̄n
2−m+1(χ)− Î S̄n

2−m−1(χ) = 2−(n−d)Kn−d+2
n
2−m+1(|χ|+ 1).

6

Therefore,
∑d
m=0 ‖hm‖22 = 2−2n+d−d′∑

m

∑
χ∈W Kn−d+2

n
2−m+1(|χ|+ 1)2 and by Fact 2.3(ii),

d∑
m=0

‖hm‖22 ≤ 2−2n+d−d′
∑
χ∈W

(−1)|χ|+1K
2(n−d+1)
n−d+1 (2|χ|+ 2). (5)

There exist some d′ coordinates such that the projection of W onto those coordinates is surjective.

Therefore the number of elements of W with weight at most ` is at most
∑`
j=1

(
d′

j

)
. We also have a similar

bound on the number of elements of W of size at least n−d−`. Therefore, since by Fact 2.3(iv) the summand
in (5) is decreasing in min(|χ|, n− d− |χ|), we have

d∑
m=0

‖hm‖22 ≤ 2−2n+d−d′+1
d′∑
j=0

(
d′

j

)
(−1)j+1K

2(n−d+1)
n−d+1 (2j + 2).

By Fact 2.3(iii), the sum on the right-hand side evaluates to −K2(n−d−d′+1)
n−d−d′+1 (2). We can then apply the

generating function representation of Krawtchouk polynomials to obtain

d∑
m=0

‖hm‖22 ≤ −2−2n+d+d′+1[xn−d−d
′+1](1− x)2(1 + x)2(n−d−d′)

= 2−2n+d+d′+2

((
2(n− d− d′)
n− d− d′

)
−
(

2(n− d− d′)
n− d− d′ − 1

))
= 2−d−d

′
Θ(n− d− d′)−3/2 = 2−d−d

′
O
(

(n− 2d)−3/2
)
.

Thus we have that

E[IV · (IWn
2

+1
− IWn

2
−1

)] ≤
√

2d′−d
√

2−d−d′O
(
(n− 2d)−3/2

)
= 2−dO

(
(n− 2d)−3/4

)
.

When d = n
2 − cn

2/3 for some large enough constant c > 0, we therefore have E[IV · (IWn
2

+1
− IWn

2
−1

)] <
1
36

(
n

n
2−1

)
2−n−d and the lemma follows.

4 Non-Adaptive Lower Bound

The strategy for the proof of Theorem 1.2 is similar to that of the proof of the general lower bound in the
last section. Once again, we reduce the problem to a geometric problem on the Hamming cube. The main
difference is that in this case we prove the following lemma.

Lemma 4.1. There is a constant d0 > 0 such that for any linear subspace V ⊆ {0, 1}n of codimension
d ≤ n− d0, ∑

x∈{0,1}n/V

(|(V + x) ∩Wn
2−1|

|Wn
2−1|

−
|(V + x) ∩Wn

2 +1|
|Wn

2 +1|

)2

≤ 1
32−d.

Proof. As in the last section, define IA : {0, 1}n → {0, 1} to be the indicator function for the set A ⊆ {0, 1}n.
To prove Lemma 4.1, we want to show that

∑
x∈{0,1}n/V

(
E[IV+x · IWn

2
−1

]

E[IWn
2
−1

]
−

E[IV+x · IWn
2

+1
]

E[IWn
2

+1
]

)2

≤ 1
32−d.

7

Let Dn
2

= IWn
2
−1
− IWn

2
+1

, and note that E[IWn
2
−1

] = E[IWn
2

+1
] =

(
n

n
2−1

)
/2n. Then the above inequality is

equivalent to ∑
x∈{0,1}n/V

E[IV+x ·Dn
2

]2 ≤ 1
32−d ·

((n
n
2−1

)
2n

)2

.

Let π : {0, 1}n → {0, 1}n/V be the projection map. Notice that E[IV+x · Dn
2

] = π∗Dn
2

(x). By Parseval’s
Theorem and Fact 2.2,

Ex∈{0,1}n/V [π∗Dn
2

(x)2] = |π∗Dn
2
|22 =

∑
χ∈ ̂{0,1}n/V

π̂∗Dn
2

(χ) = 2d−n
∑
χ∈V ⊥

D̂n
2

(χ).

Where above V ⊥ is the set of pullbacks of ̂{0, 1}n/V to {̂0, 1}n, which is the space of characters of {0, 1}n
that are trivial on V .

By Fact 2.5, D̂n
2

(χ) = 2−nKn+2
n
2 +1(|χ|+ 1). By Fact 2.3(iv), the absolute value of this is 0 for |χ| even and

otherwise decreasing in min(|χ|, n−|χ|). Since there are at most 2
∑`
j=0

(
d
j

)
χ ∈ V ⊥ with min(|χ|, n−|χ|) < `,

the above sum is less than it would be if there were 2 χ ∈ V ⊥ with |χ| = 0, 2
((
d
2

)
+
(
d
1

))
with |χ| = 2,

2
((
d
4

)
+
(
d
3

))
with |χ| = 4, and so on. Hence

∑
x∈{0,1}n/V

E[IV+x ·Dn
2

]2 ≤ 22−2n−d
d∑

m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2.

By Fact 2.4, we can expand the sum on the right-hand side of the inequality into a double integral. Namely,

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2

=
22n

π2

∫∫ d∑
m=0

(
d

m

)
(−1)m sinm+1 θ sinm+1 φ cosn−m+1 θ cosn−m+1 φ dθ dφ.

As we show in Proposition ??, we can manipulate the trigonometric functions and apply the Cauchy-Schwarz
inequality to obtain

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2 ≤ O

(
22nd−

1
2 (n− d+ 1)−

3
2

)
. (6)

Using this bound, we obtain ∑
x∈{0,1}n/V

E[IV+x ·Dn
2

]2 ≤ O
(

2−dd−
1
2 (n− d+ 1)−

3
2

)
.

Note that 2−d ·
(

(n
n
2
−1)

2n

)2

= Θ(2−dn−1/2). If d < n/2,
∑
x∈{0,1}n/V E[IV+x ·Dn

2
]2 is O(2−dn−3/2), which is

too small. Otherwise it is O(2−dn−1/2(n− d+ 1)−3/2), which is too small as long as n− d is bigger than a
sufficiently large constant.

5 Upper Bounds

We provide a sketch of the proofs of Theorems 1.3 and 1.4 in this section.
Let us begin by describing the algorithm for distinguishing n

2 -linear and (n2 + 2)-linear functions. The
starting point for this algorithm is an elementary observation: n

2 6≡
n
2 + 2 (mod 4). For a set S ⊆ [n], let

8

xS ∈ Fn2 be the vector with value 1 at each coordinate in S and 0 in the remaining coordinates. Query
f(x{1,2}), f(x{3,4}), . . . , f(x{n−1,n}). Let m denote the number of queries that returned 1. Define the set
T = {2i : f(x{2i−1,2i}) = 0}. Query f(xT); if f(xT) = 1, increment m by 2. When f is k-linear, we have
m ≡ k (mod 4) and this algorithm completes the proof of the first claim in Theorem 1.4.

The algorithm that proves the more general claim in Theorem 1.4 is obtained by applying the same
approach recursively. When b > 0 is the minimum integer for which 2b - ` and f is k-linear, we can
determine the value of k modulo 2b in b rounds and thereby distinguish between the cases where k = n

2 and
k = n

2 + 2`.
Finally, to complete the proof of Theorem 1.3, we essentially combine the Blum–Luby–Rubinfeld (BLR)

linearity test [7] with the algorithm described above. The BLR test rejects functions that are far from linear;
after that, the problem of testing k-linearity is essentially equivalent to that of distinguishing k-linear from
functions that are k′-linear for some k′ 6= k.

References

[1] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos Kiwi, and Madhu Sudan. Linearity testing in
characteristic two. IEEE Trans. on Information Theory, 42(6):1781 –1795, 1996.

[2] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient probabilistically check-
able proofs and applications to approximations. In Proc. of the 25th Symposium on Theory of Computing,
pages 294–304, 1993.

[3] Mihir Bellare and Madhu Sudan. Improved non-approximability results. In Proc. of the 26th Symposium
on Theory of Computing, pages 184–193, 1994.

[4] Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on Theory of
Computing (STOC), pages 151–158, 2009.

[5] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication com-
plexity. In Proc. of the 26th Conference on Computational Complexity, 2011.

[6] Eric Blais and Ryan O’Donnell. Lower bounds for testing function isomorphism. In Proc. of the 25th
Conference on Computational Complexity, pages 235–246, 2010.

[7] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications to numer-
ical problems. J. Comput. Syst. Sci., 47:549–595, 1993.

[8] Sourav Chakraborty, David Garćıa-Soriano, and Arie Matsliah. Nearly tight bounds for testing function
isomorphism. In Proc. 22nd Symposium on Discrete Algorithms, pages 1683–1702, 2011.

[9] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A. Servedio,
and Andrew Wan. Testing for concise representations. In Proc. 48th Symposium on Foundations of
Computer Science, pages 549–558, 2007.

[10] Eldar Fischer. The art of uninformed decisions. Bulletin of the EATCS, 75:97–126, 2001.

[11] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing juntas. J.
Comput. Syst. Sci., 68(4):753–787, 2004.

[12] Oded Goldreich. On testing computability by small width OBDDs. In Proc. of the 13th international
conference on Approximation, and 14 the International conference on Randomization, and combinatorial
optimization: algorithms and techniques, APPROX/RANDOM’10, pages 574–587, 2010.

[13] Oded Goldreich, editor. Property Testing: Current Research and Surveys, volume 6390 of LNCS.
Springer, 2010.

9

[14] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and
approximation. J. of the ACM, 45(4):653–750, 1998.

[15] Tali Kaufman, Simon Litsyn, and Ning Xie. Breaking the ε-soundness bound of the linearity test over
GF(2). SIAM J. on Computing, 39:1988–2003, 2010.

[16] Ramamohan Paturi. On the degree of polynomials that approximate symmetric boolean functions
(preliminary version). In Proc. STOC ’92, pages 468–474, 1992.

[17] Dana Ron. Property testing: A learning theory perspective. Found. Trends Mach. Learn., 1:307–402,
2008.

[18] Dana Ron. Algorithmic and analysis techniques in property testing. Found. Trends Theor. Comput.
Sci., 5:73–205, 2010.

[19] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. Technical Report TR11-013, ECCC,
2011.

[20] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM J. Comput., 25(2):252–271, 1996.

[21] Gábor Szegő. Orthogonal Polynomials, volume 23 of Colloquium Publications. AMS, fourth edition,
1975.

[22] Jacobus H. V. Van Lint. Introduction to Coding Theory, volume 86 of Graduate Texts in Mathematics.
Springer, third edition, 1999.

[23] Andrew C. Yao. Probabilistic computations: towards a unified measure of complexity. In Proc. 18th
Sym. on Foundations of Comput. Sci., pages 222–227, 1977.

A Krawtchouk Polynomials

We include the proofs for the facts related to Krawtchouk polynomials that we introduced in Section 2. All
these facts follow from elementary manipulations of the generating function representation of Krawtchouk
polynomials. We include these proofs for the convenience of the reader; for a more complete reference on
Krawtchouk polynomials, see [21, 22].

Fact 2.3 (Restated). Fix n > 0. Then

i. For every 2 ≤ k ≤ n, Kn
k (m)−Kn

k−2(m) = Kn+2
k (m+ 1).

ii.
∑n
k=0K

n
k (m)2 = (−1)mK2n

n (2m).

iii. For every 0 ≤ d ≤ n
2 ,

d∑
j=0

(
d

j

)
(−1)jKn

n
2

(2j + 2) = 22dKn−2d
n
2−d

(2).

iv. K2n
n (2m+ 1) = 0 and (−1)mK2n

n (2m) is positive and decreasing in min{m,n−m}.

Proof. We prove each statement individually.

i. The first statement follows directly from the generating function representation of Krawtchouk polyno-
mials.

Kn
k (m)−Kn

k−2(m) =
(
[xk] (1− x)m(1 + x)n−m

)
−
(
[xk−2] (1− x)m(1 + x)n−m

)
= [xk] (1− x)m(1 + x)n−m(1− x2)

= [xk] (1− x)m+1(1 + x)n−m+1 = Kn+2
k (m+ 1).

10

ii. By some more elementary manipulation of generating functions, we have

Kn
k (m) = [xk] (1− x)m(1 + x)n−m

= [x−k] (1− 1
x)m(1 + 1

x)n−m

= [xn−k] (x− 1)m(x+ 1)n−m = (−1)mKn
n−k(m).

Therefore,
n∑
k=0

Kn
k (m)2 = (−1)m

n∑
k=0

Kn
k (m)Kn

n−k(m).

The Cauchy product of two sequences {a0, a1, . . .} and {b0, b1, . . .} is(∑
n≥0

an

)(∑
n≥0

bn

)
=
∑
n≥0

(n∑
k=0

akbn−k

)
.

Let ak = bk = [xk] (1− x)m(1 + x)n−m. Then (
∑
n≥0 an) = (1− x)m(1 + x)n−m and

n∑
k=0

Kn
k (m)Kn

n−k(m) = [xn] (1− x)2m(1 + x)2(n−m) = K2n
n (2m).

iii. Considering generating functions and applying the binomial theorem, we get

d∑
j=0

(
d

j

)
(−1)jK2n

n (2j + 2) = [xn]

d∑
j=0

(
d

j

)
(−1)j(1− x)2j+2(1 + x)2n−2j−2

= [xn] (1− x)2(1 + x)2n−2d−2
d∑
j=0

(
d

j

)(
− (1− x)2

)j(
(1 + x)2

)d−j
= [xn] (1− x)2(1 + x)2n−2d−2(4x)d = 22dK

2(n−d)
n−d (2).

iv. By the last statement, K2n
n (2m+ 1) is pure imaginary. Since it is also real, it must be 0.

The last statement also yields

(−1)mK2n
n (2m) =

22n−1

π

∫ 2π

0

sin2m(θ) cos2n−2m(θ)dθ

=
22n−2

π

∫ 2π

0

sin2m(θ) cos2n−2m + cos(θ)2m sin(θ)2n−2m(θ)dθ.

By AM-GM, for fixed n, the integrand is a decreasing function of min{m,n−m}.

Fact A.1. Fix n > 0 and −n2 ≤ k ≤
n
2 . Then

Kn
n
2 +k(m) =

2n−1

π
im
∫ 2π

0

sinm θ cosn−m θei2kθ dθ.

Proof. By elementary manipulation of generating functions, we obtain

Kn
n
2 +k(m) = [x

n
2 +k] (1− x)m(1 + x)n−m

= [xk] (1√
x
−
√
x)m(1√

x
+
√
x)n−m

= [x−2k] (x− 1
x)m(x+ 1

x)n−m.

11

Applying Cauchy’s integral formula to this expression, we get

Kn
n
2 +k(m) =

1

2π

∫ 2π

0

(eiθ − e−iθ)m(eiθ + e−iθ)n−mei2kθ dθ.

From the trigonometric identities sin θ = eiθ−e−iθ
2i and cos θ = eiθ+e−iθ

2 , we get

Kn
n
2 +k(m) =

2n

2π
im
∫ 2π

0

sinm θ cosn−m θei2kθ dθ.

Fact 2.5 (Restated). Fix 0 ≤ k ≤ n and α ∈ {0, 1}n. Then

ÎWk
(α) = 2−nKk(|α|).

Proof. The Fourier coefficient of IWk
at α is

ÎWk
(α) = 2−n

∑
x∈{0,1}n:|x|=k

(−1)α·x

= 2−n
k∑
j=0

(−1)j
(
|α|
j

)(
n− |α|
k − j

)
= 2−nKn

k (|α|).

B Property Testing Lemmas

We complete the proofs of Lemma 2.6 and a similar lemma for proving lower bounds on the query complexity
for non-adaptive testers. We also provide the proof of the claim in the introduction that the k-linearity and
(n− k)-linearity testing problems have the same query complexity.

Lemma 2.6. (Restated) Let Dyes and Dno be any two distributions over functions {0, 1}n → {0, 1}. If for
every set X ⊆ {0, 1}n of size |X| = q and any vector r ∈ {0, 1}q we have that∣∣∣∣ Pr

f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ < 1
36 2−q,

then any algorithm that distinguishes functions drawn from Dyes from those drawn from Dno with probability
at least 2

3 makes at least q + 1 queries.

Proof. Define D to be the distribution obtained by drawing a function from Dyes or from Dno, each with
probability 1/2. By Yao’s Minimax Principle[23], to prove the lemma it suffices to show that any deterministic
testing algorithm needs at least q + 1 queries to distinguish functions drawn from Dyes or from Dno with
probability at least 2/3.

A deterministic testing algorithm can be described by a decision tree with a query x ∈ {0, 1} at each
internal node and a decision to accept or reject at every leaf. Each boolean function f defines a path through
the tree according to the value of f(x) at each internal node.

Consider a testing algorithm that makes at most q queries. Then it has depth at most q and at most 2q

leaves. Let us call a leaf ` negligible if the probability that a function f ∼ D defines a path that terminates
at ` is at most 1

122−q. The total probability that f ∼ D defines a path to a negligible leaf is at most 1
12 .

Fix ` to be some non-negligible leaf. This leaf corresponds to a set X ⊆ {0, 1}n of q queries and a vector
r ∈ {0, 1}q of responses; a function f defines a path to the leaf ` iff f(X) = r. Since ` is non-negligible,
Prf∼D[f(X) = r] > 1

122−q. So by the hypothesis of the lemma,∣∣∣∣ Pr
f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ ≤ 1
36 2−q < 1

3 Pr
f∼D

[f(X) = r].

12

Then by Bayes’ theorem∣∣∣∣ Pr
f∼D

[f ∈ P | f(X) = r]− Pr
f∼D

[f ε-far from P | f(X) = r]

∣∣∣∣
=

∣∣∣∣Prf∼Dyes
[f(X) = r]− Prf∼Dno

[f(X) = r]

2 Prf∼D[f(X) = r]

∣∣∣∣ < 1

6
.

Therefore, the probability that the testing algorithm correctly classifies a function f ∼ D that lands at a
non-negligible leaf ` is less than 7

12 . So even if the algorithm correctly classifies all functions that land in
negligible leaves, it still correctly classifies f with probability less than 11

12 ·
7
12 + 1

12 <
2
3 , so it is not a valid

tester for P.

Lemma B.1. Let Dyes and Dno be any two distributions over functions Fn2 → F2. If for every set X ⊆ Fn2
of size |X| = q we have that

∑
r∈{0,1}q

(
Pr

f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

)2

< 1
92−q,

then any non-adaptive algorithm that distinguishes functions drawn from Dyes from those drawn from Dno

with probability at least 2
3 makes at least q + 1 queries.

Proof. As in the proof of Lemma 2.6, let D denote the distribution that obtained by drawing a function from
Dyes or from Dno, each with probability 1

2 . By Yao’s Minimax Principle, the proof is completed by showing
that any deterministic non-adaptive testing algorithm requires at least q+ 1 queries to distinguish functions
drawn from Dyes or Dno with probability at least 2

3 .
A deterministic non-adaptive testing algorithm queries all functions on a fixed set X of queries, and must

accept or reject strictly based on the values of f(X). When |X| = q, the condition in the lemma and the
Cauchy-Schwarz inequality imply that∑

r∈{0,1}q

∣∣∣∣ Pr
f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ < 1

3
. (7)

This completes, the proof, since the maximum success probability of the algorithm is∑
r∈{0,1}q

max

{
Pr

f∼Dyes

[f(X) = r], Pr
f∼Dno

[f(X) = r]

}
≤

1
2 + 1

2

∑
r∈{0,1}q

∣∣∣∣ Pr
f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

∣∣∣∣ < 2
3 .

Proposition B.2. Fix 0 ≤ k ≤ n. For any 0 < ε < 1
2 , the query complexities for testing k-linearity and

(n− k)-linearity are identical.

Proof. Let f : Fn2 → F2 be the function being tested for k-linearity. Let g : Fn2 → F2 be the function defined
by setting g(x) = f(x) + χ[n](x), where χ[n] is the parity function over all bits. Then if f : x 7→

∑
i∈S xi,

we have g : x 7→
∑
i∈[n]\S xi. In particular, if f is k-linear, then g is (n − k)-linear. Furthermore, if f is

ε-far from k-linear, then g is also ε-far from (n − k)-linear. And, lastly, for any x ∈ Fn2 , we can obtain the
value of g(x) by querying the value of f on a single input, namely, by querying f(x). Therefore, we can use
a (n− k)-linearity tester to test if f is k-linear without any loss in the query complexity.

The same argument obviously also shows that we can use a k-linearity tester to test (n − k)-linearity
without any loss in the query complexity; the proposition follows.

13

C Proofs of Corollaries 1.5 and 1.6

Definition C.1 (Juntas). The function f : Fn2 → F2 is a k-junta if there is a set J ⊆ [n] of size |J | ≤ k such
that for each x, y ∈ Fn2 that satisfy xi = yi for every i ∈ J , the identity f(x) = f(y) holds.

Definition C.2 (Sparse polynomials). The function f : Fn2 → F2 has a unique representation as a multi-
variate polynomial over the variables x1, . . . , xn. If this representation has at most k non-zero coefficients,
we say that f is a k-sparse F2-polynomial.

Definition C.3 (Fourier degree). The Fourier degree of a function f : Fn2 → F2 is the maximum Hamming

weight of any α ∈ F2 such that the Fourier coefficient f̂(χα) is non-zero.

Definition C.4 (Decision trees). A decision tree is a model of computation that can be represented as a
rooted binary tree with each internal node of the tree labeled with an index i ∈ [n] and the two edges going
from a node to its children labeled with 0, 1. The leaves of the tree are also labeled with 0, 1. A decision tree
computes the function f : Fn2 → F2 if for every x ∈ Fn2 , the path from the root to a leaf followed by taking
the edge xi at each node i leads to a leaf labeled with f(x). The depth of a tree is the maximum length of
any path from its root to one of its leaves.

Definition C.5 (Function isomorphism). Given a function f : Fn2 → F2, the f -isomorphism property
includes all functions that are equal to f up to relabeling of the n variables. In other words, g is isomorphic
to f if there exists a permutation π ∈ Sn such that for every x = (x1, . . . , xn) ∈ Fn2 , g(x1, . . . , xn) =
f(xπ(1), . . . , xπ(n)).

Corollary 1.5. (Restated) Fix 1 ≤ k ≤ n
2 . At least k −O(k2/3) queries are required to test

(1) k-juntas,

(2) k-sparse F2-polynomials,

(3) functions of Fourier degree at most k,

(4) functions computable by depth-k decision trees, and

(5) isomorphism to the function f : x 7→ x1 + · · ·+ xk.

Proof. Recall that in our proof of Theorem 1.1, we showed that at least k − O(k
2
3) queries are required to

distinguish k-linear and (k + 2)-linear functions.
As we can easily verify, k-linear functions are k-juntas, they are k-sparse F2-polynomials, they have

Fourier degree at most k, and they can be computed by a (complete) decision tree of depth k. To complete
the proof of cases (1)–(4) of the corollary, it suffices to show that (k + 2)-linear functions are 1

2 -far from
those same properties. This is indeed the case, as Fischer et al. [11] showed for the k-junta property and
Diakonikolas et al. [9] showed for the other three properties.

Finally, case (5) of the corollary follows immediately from the observation that the set of functions
isomorphic to the function f : Fn2 → F2 defined by f(x) = x1 + · · · + xk is exactly the set of k-linear
functions.

Corollary 1.6 (Restated). Let P be a symmetric property of linear functions. Then at least ΓP −O(Γ
2/3
P)

queries are required to test P.

Proof. Once again, recall that the proof of Theorem 1.1 shows that at least k −O(k
2
3) queries are required

to distinguish k-linear and (k + 2)-linear functions. This also implies that the same number of queries are
required to distinguish (n− k)-linear and (n− k − 2)-linear functions.

By definition of ΓP , at least one of the inequalities hP(ΓP − 1) 6= hP(ΓP + 1) or hP(n − ΓP − 1) 6=
hP(n− ΓP + 1) must hold. In either case, the corollary follows from the lower bounds above.

14

D Proof of the Non-Adaptive Lower Bound

Proof of Theorem 1.2. The proof of this theorem is very similar to the proof of Theorem 1.1. Let k = n
2 − 1.

Recall that linear functions f : Fn2 → F2 can be represented as f : x 7→ α ·x for some Fn2 . This representation
gives a natural bijection between the set of linear functions and Fn2 . Let W` ⊆ Fn2 denote the set of elements
of Hamming weight `. For any set X ⊆ Fn2 of q < n−O(1) queries and any response vector r ∈ Fq2, the set
of linear functions that gives the response r to the queries X corresponds to an affine subspace V + x ⊆ Fn2
of codimension q. From Lemma 4.1,

∑
x∈Fn2 /V

(|(V + x) ∩Wn
2−1|

|Wn
2−1|

−
|(V + x) ∩Wn

2 +1|
|Wn

2 +1|

)2

≤ 1
32−d. (8)

Define Dyes and Dno to be uniform distributions over (n2 −1)-linear and (n2 +1)-linear functions, respectively.
These distributions correspond by our bijection to the uniform distributions over Wn

2−1 and Wn
2 +1, and so

(??) implies that ∑
r∈Fq2

(
Pr

f∼Dyes

[f(X) = r]− Pr
f∼Dno

[f(X) = r]

)2

≤ 1
32−d. (9)

By Lemma ??, any non-adaptive algorithm that distinguishes (n2 − 1)-linear from (n2 + 1)-linear functions
must therefore make at least n−O(1) queries. This gives the desired lower bound for testing (n2 −1)-linearity.
We apply the same padding argument as in the proof of Theorem 1.1 to get the lower bound for the other
values of k.

We conclude the section with the proof of Proposition ?? that was used in the proof of Lemma 4.1.

Proposition D.1. Fix 0 ≤ m ≤ d ≤ n. Then

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2 ≤ O

(
22nd−

1
2 (n− d+ 1)−

3
2

)
.

Proof. By Fact 2.4 and manipulation of the integrand, we obtain

d∑
m=0

(
d

m

)
Kn+2

n
2 +1(m+ 1)2

=
22n

π2

∫∫ d∑
m=0

(
d

m

)
(−1)m sinm+1 θ sinm+1 φ cosn−m+1 θ cosn−m+1 φdθ dφ

=
22n

π2

∫∫
sin θ sinφ cosn−d+1 θ cosn−d+1 φ(cos θ cosφ− sin θ sinφ)d dθ dφ

=
22n

π2

∫∫
sin θ sinφ cosn−d+1 θ cosn−d+1 φ cosd(θ − φ) dθ dφ.

Letting ψ = θ − φ this is

22n

π2

∫∫
sin(ψ + φ) sinφ cosn−d+1(ψ + φ) cosn−d+1 φ cosd(ψ) dφ dψ.

Next we bound the inner integral using Cauchy-Schwarz to obtain the upper bound

22n

π2

∫
| cosd(ψ)|

(∫
sin2(ψ + φ) cos2(n−d+1)(ψ + φ) dφ

)1/2(∫
sin2 φ cos2(n−d+1) φ dφ

)1/2

dψ.

15

Algorithm 1 (k vs. k + 2`)-Linearity Tester

1: Initialize S0 = {1, . . . , n} and m = 0.
2: for r = 1, . . . , b− 1 do
3: Initialize Sr = ∅.
4: if |Sr−1| is odd then
5: Choose i ∈ Sr−1 and update Sr−1 = Sr−1 \ {i}.
6: Set m = m+ f({i}) · 2r−1.
7: end if
8: Let M be a random matching of Sr−1.
9: for each pair (i, j) ∈M do

10: if f({i, j}) = 1 then
11: Increment m = m+ 2r−1.
12: else
13: Update Sr = Sr ∪ {i}.
14: end if
15: end for
16: end for
17: Output “f is k-linear” iff m+ 2b−1f(Sb−1) ≡ k (mod 2b).

This is
22n

π2

(∫
| cosd(ψ)|dψ

)(∫
sin2 φ cos2(n−d+1) φ dφ

)
.

Now

1

2π

(∫
sin2 φ cos2(n−d+1) φ dφ

)
= 2−2(n−d+1)−1

((
2(n− d+ 1)

n− d+ 1

)
−
(

2(n− d+ 1)

n− d

))
= Θ

(
(n− d+ 1)−3/2

)
.

If d is even, we have that
1

2π

∫
| cosd(ψ)|dψ = 2−d

(
d

d/2

)
= Θ

(
d−1/2

)
.

If d is odd, then
∫
| cosd(ψ)|dψ is bounded between

∫
| cosd+1(ψ)|dψ and

∫
| cosd−1(ψ)|dψ, so in this case

also it is Θ
(
d−1/2

)
.

E Proof of Theorems 1.3 and 1.4

Theorem 1.4 (Restated). We can distinguish n
2 - and (n2 + 2)-linear functions with dn2 e+ 1 queries. More

generally, for ` ≥ 1, let b be the smallest positive integer for which 2b does not divide `. It is possible to
distinguish n

2 - and (n2 + 2`)-linear functions with 2
3 (1− 2−2b)n+ o(n) queries.

Proof. As described briefly in Section 5, the general approach for the algorithm that obtains the desired
bounds is to count the number of variables included in the parity, modulo 2b, in order to distinguish k-
linear from (k + 2`)-linear functions. The details of a tester that implements this approach is described in
Algorithm ??.

Let’s first examine the correctness of the algorithm. To do so, we need to argue that the algorithm
correctly counts the number of variables in the parity, modulo 2b. This is easily verified by noting that
every element i ∈ Sr is the representative of a set of 2r elements whose corresponding variables are either
all included or all excluded from the parity.

To complete the analysis, we must also analyze the query complexity of the algorithm. In the worst-case,
Algorithm ?? may query up to n

2r inputs in round r, for a total of n
2 + n

4 + n
8 + · · · ≈ n queries. But the

16

expected number of queries is much smaller: since we pick our matching at random and f is nearly balanced,
the expected number of queries that return 0 is 1

2 ± o(1). Therefore, the expected number of elements in Sr
is n

22r + o(n) and the expected number of queries is n
2 + n

8 + n
32 + · · ·+ n

22(b−1) + o(n) = 2
3 (1− 2−2b)n+ o(n).

Furthermore, with high probability the number of queries required by the algorithm is within ±o(n) of this
expected value; to complete the proof of the theorem, simply run Algorithm ?? with a query quota so that if
the quota is reached, we terminate the algorithm and guess. Setting the quota large enough, this termination
occurs only with probability o(1), and so we have a valid (k vs. k + 2`)-tester.

Remark 1. When ` > ω(
√
n), the result in Theorem 1.4 is not optimal. In fact, in this case it is possible

to solve the (n2 − ` vs. n
2 + `)-parity testing problem with O(n/`2) queries with a simple sampling approach.

(Sample O(n/`2) elements i1, . . . , is uniformly at random from [n], query f(ei1), . . . , f(eis), and guess that
f is a n

2 − `-parity function iff at most 1
2 of the queries returned the value 1. By a Chernoff bound argument,

with high probably this approach correctly solves the testing problem.)

Theorem E.1. Let n ≥ k ≥ 0. Let k′ = n− k. There is an adaptive k-linearity ε-tester that makes

∞∑
i=0

2−i−1(k2i + k′2
i

)

i−1∏
j=0

(k2j + k′2
j

)−1 +O(
√
n+ 1/ε)

queries.

Remark 2. Theorem 1.3 is the special case of Theorem ?? where k = n
2 .

Proof. We first define an algorithm that assumes the input is a linear function. We discuss how to handle
non-linear functions at the end of the proof. We define the algorithm recursively. It tests if the parity of a
linear function f on {0, 1}S (for some set S) is equal to k with failure probability at most p. We assume for
sake of simplicity that k ≤ |S|/2. Were this not the case, we could test for the parity of the pointwise sum
of f with the parity function on all of S. The full algorithm is presented in Algorithm ??.

We have left to verify that Algorithm ?? works in an appropriate runtime. Let

h(x, y) =

∞∑
i=0

2−i−1(x2i + y2i)

i−1∏
j=0

(x2j + y2j)−1.

We first note that if f is a k-linear function on {0, 1}S for k ≤ |S|/2, then for a random i ∈ S, then the
probability that f({i}) = 0 will be at most 1/2. Therefore, the probability that log2(6/p) such i all have this
property is at most p/6. Hence if |S| is odd, the probability of failure is at most p/6 plus the probability of
failure of the recursive call, which is at most 5p/6.

We note that each of the pairs (i, j) for which f({i, j}) = 1 have total weight of exactly one between
them. The other pairs have f({i}) = f({j}). Therefore the weight of f on S is equal to k if and only if t
plus twice the weight of f on T equals k. We note also that if f were weight k on S that the expected value

of t would be k(|S|−k)
2|S| with a variance of O(|S|). Hence for C sufficiently large, we only report False in error

due to t being too large or small with probability at most p/6. This verifies the correctness of the algorithm.
We need to verify that it runs in at most h(k, |S| − k) +O(

√
|S|) queries.

We note that the algorithm makes O(log(|S|/p)) + |S|/2 queries before making a recursive call on t,T .
If x = k and y = |S| − k, we note that we make recursive calls with new values of x and y given by either

x and y − 1 or by x2

2(x+y) + c and y2

2(x+y) + c with c = O(
√

(x+ y)/p). For the first case, we note that for

x ≤ y that h(x, y) ≤ h(x, y − 1). Upon applying the latter recursion, we note that were c equal to 0 that

h(x, y) = (x+ y)/2 + h

(
x2

2(x+ y)
,

y2

2(x+ y)

)
.

We need to show that having a value of c not equal to 0 does not significantly effect the runtime of the
recursive call to the algorithm. In particular we show that it changes the runtime by O(c). We do this by

17

Algorithm 2 Linearity-Tester(k,S,p)

1: if |S| = 0 and k = 0 then
2: Return True
3: end if
4: if |S| = 0 and k 6= 0 then
5: Return False
6: end if
7: if |S| is odd then
8: Choose log2(6/p) random i ∈ S
9: for Each chosen i do

10: query f({i})
11: end for
12: if All of these queries return 1 then
13: Return False
14: else
15: For i so that f({i}) = 0, Return Linearity-Tester(k,S − {i},5p/6)
16: end if
17: else
18: Let M be a random matching of the elements of S
19: Let T = ∅, t = 0
20: for (i, j) ∈M do
21: if f({i, j}) = 1 then
22: Set t = t+ 1
23: else
24: Set T = T ∪ {i}
25: end if
26: end for
27: if t 6≡ k (mod 2) then
28: Return False
29: else if

∣∣∣t− k(|S|−k)
2|S|

∣∣∣ > C
√
|S|/p for C a sufficiently large constant then

30: Return False
31: else
32: Return Linearity-Tester((k − t)/2,T ,5p/6)
33: end if
34: end if

showing that the directional derivative of h(x, y) in the (1, 1) direction is O(1). In order to do this we note
that h(x, y) =

∑∞
i=0 hi(x, y) where

hi(x, y) = 2−i−1(x2i + y2i)

i−1∏
j=0

(x2j + y2j)−1 =
2−i−1(x2i + y2i)

x2i−1 + x2i−2y + . . .+ y2i−1
.

The derivative of hi in the (1, 1) direction is

(x2i−1 + y2i−1)(x2i−1 + x2i−2y + . . .+ y2i−1)− (x2i + y2i)(x2i−2 + x2i−3y + . . .+ y2i−2)

2(x2i−1 + x2i−2y + . . .+ y2i−1)2

=
x2i−1y2i−1

(x2i−1 + x2i−2y + . . .+ y2i−1)2
≤ 2−2i.

Where the last step above is by AM-GM. Thus the directional derivative of h(x, y) is O(1). We prove
inductively that for sufficiently large K that our algorithm runs in time at most h(k, |S| − k) + K

√
|S|/p.

18

From the above discussion it is clear that upon this inductive hypothesis and for sufficiently large C ′ that
our algorithm runs in time at most h(k, |S|−k)+C ′

√
|S|/p+K

√
(|S|/2)/(2p/3). Hence for K a sufficiently

large multiple of C ′, we can complete our inductive step.
We now complete the proof by extending the algorithm to reject all functions—and not just linear

functions—that are far from all k-linear functions. First, we add an extra step where we run the Blum–
Luby–Rubinfeld linearity tester O(1/ε) times. This rejects all functions that are ε-far from linear.

At this point, we are almost, but not quite, done. We can still have functions that are very close to
linear (so that they pass the linearity test), very far from k-linear (so that the overall test should reject), and
yet that pass the test in Algorithm 2 with high probability. For example, a function f might be consistent
with a k-linear function on all inputs of Hamming weight at most 2 and consistent with some (k + 2)-linear
function on the remaining inputs. Since the algorithm only queries the function on inputs of low Hamming
weight, it will erroneously accept f .

To remove this last source of error, we add one last step. In this step, we choose uniformly at random
one of the queries {i, j} that was made by Algorithm 2. We then choose x ∈ Fn2 uniformly at random, and
set y ∈ Fn2 to be identical to x except for yi and yj , who take the opposite values of xi and xj , respectively.
We then verify that f(x) = f(y) iff f({i, j}) = 0. Running this test a constant number of times is sufficient
to verify that the function is globally consistent with the answers returned by the queries and, in particular,
functions that are close to linear but not are not k-linear and still passed the test in Algorithm 2 will fail
this test with high probability.

We remark that the above testing algorithm tests k-linearity in time cn + o(n) for some constant c < 1
except when k = o(n). When k is small, however, there is another simple sampling algorithm that can be
used to test k-linearity with O(k log(n/k)) queries.

This algorithm allows us to test for k-linearity in time equal to n times some constant less than 1 unless
k is o(n). In this latter case, we have a different type of algorithm. In particular, we show that:

Theorem ??. (Restated) Let n ≥ k ≥ 0. There is an adaptive k-linearity tester that makes O(k log(n/k))
queries.

The idea of the algorithm depends largely on the following algorithm. We claim that there is an algorithm
that given a linear function f on {0, 1}S with |S| ≥ 12k spends O(k) time and may return a set T ⊂ S with
|T | ≤ |S|/2. Furthermore if this algorithm returns a T , there is a probability at least 1−2−k that f depends
only on the coordinates in T . Also if f is a k-linear function, the algorithm will return a T with at least
50% probability.

This in turn will depend on an even simpler algorithm to test if a linear function f is 0 on {0, 1}S . This
is done simply by evaluating f on a random vector. If f is 0 it will return 0, otherwise it will return 1 with
50% probability. Our range reduction algorithm is as follows:

It is clear that Algorithm ?? runs in time O(k). It is also clear from the last round of queries at the end
that the algorithm will return S − V when f is non-trivial on {0, 1}V with probability at most 2−k. We
have left to show that if f is actually a k-linear function that |V | > |S|/2 with probability at least 1/2. We
do this by showing that the expected size of S − V is at most |S|/4. The result will then follow from the
Markov bound.

We first show the following claim. At the beginning on the rth iteration of the while loop, the expected
number of elements U of S, so that f is non-trivial on {0, 1}U is at most 4−(r−1)k. This is clear for r = 1.
At each round, each such element U will have a probability of 3/4 of being removed from S. Each of these
sets is a union of at most 2r−1 of the sets in our original partition. Thus S − V will be a union of n sets
from our original partition, and that the expected size of n will be at most

∑∞
r=1 2r−14−(r−1)k = 2k. Hence

with probability at least 1/2, S−V is a union of at most 4k of these sets. The sets thrown away are at most
twice the size of the other sets, and hence in this case, |S − V | ≤ |S|/2.

In order to get our final k-linearity testing algorithm, we do the following. If k ≤
√
n, we can use an

O(k log(k)-query algorithm. Otherwise, we iteratively run our Range-Reduce algorithm 3 log2(n/k) times or
until we are left with a set of size less than 12k. If f were actually a k parity function, then the probability
that this algorithm fails more than 2 log2(n/k) times will be at most 10% (at least for n/k sufficiently large).

19

Algorithm 3 Range-Reduction(k,S)

1: Partition S into 12k subsets of nearly equal size. Let S be the set of these subsets.
2: while |S| > 1 do
3: for U ∈ S do
4: Query f on two random elements of {0, 1}U .
5: if One of these queries returns 1 then
6: Remove U from S.
7: end if
8: end for
9: Let M be a pairing of all or all but one of the elements of S

10: for (U,U ′) ∈M do
11: Remove U and U ′ from S and add U ∪ U ′
12: end for
13: end while
14: if S = ∅ then
15: Return Fail
16: else
17: Let V be the single element of S
18: end if
19: Query f at k random elements of {0, 1}V
20: if Any of these queries returns 1 of V < |S|/2 then
21: Output Fail
22: else
23: Return S − V
24: end if

Thus if it fails more than this many times, we declare that f is not k-linear. Otherwise, we are left with a T
of size at most 12k so that f is 0 on {0, 1}S−T with probability at least 1−O(log(n/k)2−k) ≥ 90%. Under
the assumption that f is actually a parity function on some subset of T , we can then evaluate f on a basis
of {0, 1}T in |T | = O(k) queries, and thus determine the parity of f . This takes a total of O(k log(n/k))
queries and has a failure probability of at most 20%.

20

