
Testing Juntas
Eric Blais

University of Waterloo, Waterloo, ON, Canada

Years aud Authors of Summarized Original Work

2004; Fischer, Kindler, Ron, Safra, Samorodnitsky
2009; Blais

Keywords

Juntas; Property testing; Sublinear-time algorithms; Dimension reduction

Problem Definition

Fix positive integers n and k with n ≥ k. The function f : {0, 1}n → {0, 1} is a k-junta
if it depends on at most k of the input coordinates. Formally, f is a k-junta if there
exists a set J ⊆ {1, 2, . . . , n} of size |J | ≤ k such that for all inputs x, y ∈ {0, 1}n
that satisfy xi = yi for each i ∈ J , we have f(x) = f(y). Juntas play an important
role in different areas of computer science. In machine learning, juntas provide an
elegant framework for studying the problem of learning with datasets that contain
many irrelevant attributes [9; 10]. In the analysis of Boolean functions, they essentially
capture the set of functions of low complexity under natural measures such as total
influence [19] and noise sensitivity [12].

How efficiently can we distinguish k-juntas from functions that are far from being
k-juntas? We can formalize this question in the setting of property testing. Define the
distance between two functions f, g : {0, 1}n → {0, 1} to be the fraction of inputs on
which f and g take different values: dist(f, g) := 1

2n
|{x ∈ {0, 1}n : f(x) 6= g(x)}. When

dist(f, g) ≥ ε for every k-junta g, we say that f is ε-far from being a k-junta; otherwise
we say that f is ε-close to being a k-juntas. An ε-test for k-juntas is a randomized
algorithm that queries the value of f : {0, 1}n → {0, 1} on some of its inputs and then
with probability at least 2

3

1. accepts if f is a k-junta, and
2. rejects if f is ε-far from being a k-junta.

(The algorithm is free to output anything when f is not a k-junta but is ε-close to
being a k-junta.)

Problem 1. What is the minimum number of queries to f : {0, 1}n → {0, 1} required
to ε-test if f is a k-junta?

Key Results

Testing 1-juntas. One important class of functions related to junta testing is dictator
functions—the functions f : {0, 1}n → {0, 1} of the form f(x) = xi for some i ∈ [n].
Bellare, Goldreich, and Sudan [3], in work that was stated in terms of testing the long
code and part of their analysis of probabilistically-checkable proofs (PCPs), showed that
dictator functions can be ε-tested with O(1/ε) queries. (See the Locally Testable

2

Codes entry for more details.) This result was later extended by Parnas, Ron, and
Samorodnitsky [21]. The class of 1-juntas includes dictator functions, their negations
(known as anti-dictator functions), and the constant functions; using the algorithms
in [3; 21], we can test 1-juntas with O(1/ε) queries.

Testing k-juntas. The first result on testing k-juntas for values k > 1 followed from
related work on the problem of learning juntas. Blum, Hellerstein, and Littlestone [11]
introduced an algorithm that queries a k-junta f : {0, 1}n → {0, 1} on O(k log n +
k/ε+ 2k) inputs and with probability at least 5

6
returns a k-junta h : {0, 1}n → {0, 1}

such that dist(f, h) ≤ ε. Shortly afterwards, Goldreich, Goldwasser, and Ron [20] gave
a general reduction showing that a proper learning algorithm with query complexity q
for a class C of functions can be used to ε-test the class C with q+O(1/ε) queries. This
result, combined with the Blum–Hellerstein–Littlestone algorithm, shows that k-juntas
can be tested with O(k log n+ 2k + 1/ε) queries.

Fischer, Kindler, Ron, Safra, and Samorodnitsky [18] showed that, remarkably,
it is possible to test k-juntas with a number of queries that is independent of n. Specif-
ically, they introduced ε-tests for k-juntas with query complexity O(k2/ε2). This result
was sharpened in [4; 5], leading to the following theorem.

Theorem 1 ([5]). It is possible to ε-test if f : {0, 1}n → {0, 1} is a k-junta with
O(k log k + k/ε) queries.

Chockler and Gutfreund [16] showed that Ω(k) queries are required to test k-
juntas, so the bound in Theorem 1 is nearly optimal. (See also [4; 7; 13] for related
lower bounds.)

Theorem 1 can be generalized to apply to the setting where X1, . . . , Xn, and Y
are arbitrary finite sets and we wish to test whether a function f : X1× · · · ×Xn → Y
is a k-junta. Interestingly, the query complexity of the k-junta test remains unchanged
in this general setting as well. See [5] for the details.

Junta-testing algorithm. The proof of Theorem 1 contains two main ingredients.
The first ingredient is a simple modification of the Blum–Hellerstein–Littlestone

learning algorithm. The original learning algorithm proceeds in two stages: first, the
algorithm learns the k relevant coordinates of the junta; then, it queries f for all 2k

different values of the k relevant coordinates. When we test k-juntas, the second stage is
unnecessary and can be replaced with a simpler test that checks whether the (at most)
k relevant coordinates that have been identified completely determine the value of f
or not. With this modification, we obtain an ε-test for k-juntas with query complexity
O(k log n + k/ε). Note that this result already yields the desired bound in Theorem 1
when n = poly(k).

The second ingredient in the proof of Theorem 1 is a dimension reduction
argument. Consider a random partition of the n coordinates into m = poly(k)
parts S1, . . . , Sm. A function f : {0, 1}n → {0, 1} is isomorphic to a function
f ′ : X1 × · · · × Xm → {0, 1} where Xi = {0, 1}|Si|. The function f ′ is defined over a
domain with much smaller dimension and it satisfies two useful properties. First, when
f is a k-junta, then so is f ′. Second, when f is ε-far from k-juntas and m = Ω(k2),
then with high probability f ′ is ε

2
-far from k-juntas as well. The second fact is far from

obvious. It was established in [5] using Fourier analysis and in [8] using a combinato-
rial argument. These two properties let us complete the algorithm for testing k-juntas
by applying the modified Blum–Hellerstein–Littlestone algorithm on the function f ′.
More details on the algorithm itself can be found in the original papers [18; 5] and the
survey [6].

3

Applications

Feature Selection

Feature selection is the general machine learning task of identifying the features (also
known as attributes or variables) in a dataset that suffice to describe the model being
studied. This task is formalized within the junta framework as follows: given a function
f : {0, 1}n → {0, 1}, the algorithm seeks to identify a set J ⊆ [n] of size |J | = k where
(i) k is as small as possible, and (ii) there is a k-junta h : {0, 1}n → {0, 1} on the set
J that is close to f .

The junta testing algorithm can be used to approximate the minimal value
of k for which these two conditions can be satisfied. For example, by executing the
junta testing algorithm with k = 1, 2, 4, 8, . . . until it accepts, we obtain the following
estimation result.

Corollary 1. There is an algorithm that, given query access to f : {0, 1}n → {0, 1},
outputs an estimate k̂ such that f is ε-close to a k-junta and such that f is not an
`-junta for any ` < k/2. Furthermore, this algorithm makes O(k log k+ k/ε) queries to
f .

Testing by Implicit Learning

Let C be any class (i.e., family) of Boolean functions where every function in C is close
to a being a k-junta. Many natural classes of Boolean functions that have been studied
in learning theory and computational complexity fall into this framework. For example,
functions with bounded, decision tree complexity, DNF complexity, circuit complexity,
and sparse polynomial representation all satisfy this condition. (See the) Diakonikolas
et al. [17] gave a general result showing that for each of these classes C, we can ε-test
the property of being in the class C efficiently. This result has since been sharpened by
Chakraborty et al. [14], yielding the following bounds.

Theorem 2 ([14]). Fix s > 0 and ε > 0. We can ε-test whether f : {0, 1}n → {0, 1}
can be represented by

1. a DNF with s terms,
2. a size-s Boolean formula,
3. an s-sparse polynomial over Fn2 , or
4. a decision tree of size s

with O(s/ε2 · polylog(s/ε)) queries.

The proof of Theorem 2 is remarkable in that the ε-test algorithm in [17; 14]
learns the function f : {0, 1}n → {0, 1} when f is a k-junta, but without identifying
which of the k coordinates of f are part of the junta. This technique is called testing
by implicit learning, and it is obtained by using and building on the junta testing
algorithm.

Testing Function Isomorphism

Two functions f, g : {0, 1}n → {0, 1} are isomorphic to each other when they are
identical up to relabeling of the input variables. In the function isomorphism testing
problem, we are given query access to (an unknown function) f and must determine
whether it is isomorphic to (the known function) g or whether it is ε-far from being
so. How many queries to f do we need to perform this task? The answer, it turns

4

out, depends on the choice of the function g. The functions g for which we can test
isomorphism to g with a constant number of queries are called efficiently isomorphism-
testable.

Every symmetric function is efficiently isomorphism-testable. Using the junta
testing algorithm, Fischer et al. [18] showed that for any constant k ≥ 0, every k-
junta is also efficiently isomorphism-testable. An important open problem in property
testing is to characterize the set of functions that are efficiently isomorphism-tesable.
The state of the art on this question is a recent result—also building on the junta
testing algorithm—showing that every partially symmetric function is also efficiently
isomorphism-testable. A function f : {0, 1}n → {0, 1} is k-partially symmetric if there
is a function g : {0, 1}k × {0, 1, 2, . . . , n} → {0, 1} and a mapping ρ : [k] → [n] such
that f(x) = g(xρ(1), . . . , xρ(k), ‖x‖) where ‖x‖ =

∑
i xi the Hamming weight of x.

Theorem 3 ([8; 15]). For every constant k ≥ 0, every k-partially symmetric function
is efficiently isomorphism-testable.

Open Problems

There are two particularly appealing open problems related to the junta testing problem
that are motivated by its application to the feature selection problem.

Distance approximation. Theorem 1 shows that we can distinguish k-juntas from
functions that are ε-far from k-juntas with few queries. Can we also approximate the
distance of a function to its closest k-junta with a small number of queries?

Problem 2. What is the minimum number of queries to f : {0, 1}n → {0, 1} required
to approximate the distance of f to its closest k-junta within an additive error of ±ε,
where ε ∈ [0, 1

2
] is a parameter given to the algorithm?

In some cases, property testing algorithms can also be used directly for the
corresponding distance approximation problem. This is the case, for example, for the
BLR linearity test in the Testing Linearity chapter. But it is currently not known
whether the junta testing algorithms in [18] or [5] can be extended to yield distance
approximators or not.

Testing with random samples. The query model we have discussed throughout this
chapter—where the algorithm is free to query the target function on any input of
its choosing—is known as the membership query model in machine learning. In some
applications, however, we must consider weaker query models where we restrict the
queries that the algorithm can make in some ways. Can we also test k-juntas efficiently
in restricted query models?

Problem 3. In which restricted query models can we test whether f : {0, 1}n → {0, 1}
is a k-junta with a number of queries that is asymptotically smaller than the number
of queries required to learn k-juntas in the same settings?

Two examples of restricted query models include the passive sampling model
(where each query is drawn independently at random from some fixed distribution)
and the active query model (where the algorithm can choose its queries from a larger
set of inputs drawn from some distribution). Some initial results on this problem can
be found in [2; 1].

5

Cross-References

Testing Linearity; Testing by Implicit Learning.

Recommended Reading

1. Alon N, Hod R, Weinstein A (2013) On active and passive testing. arXiv preprint arXiv:13077364
2. Balcan MF, Blais E, Blum A, Yang L (2012) Active property testing. In: Foundations of Computer

Science (FOCS), 2012 IEEE 53rd Annual Symposium on, IEEE, pp 21–30
3. Bellare M, Goldreich O, Sudan M (1998) Free bits, PCPs, and nonapproximability—towards tight

results. SIAM J Comput 27(3):804–915
4. Blais E (2008) Improved bounds for testing juntas. In: Approximation, Randomization and Com-

binatorial Optimization. Algorithms and Techniques, Springer, pp 317–330
5. Blais E (2009) Testing juntas nearly optimally. In: STOC’09—Proceedings of the 2009 ACM

International Symposium on Theory of Computing, ACM, New York, pp 151–157
6. Blais E (2010) Testing juntas: A brief survey. In: Goldreich O (ed) Property Testing - Current

Research and Surveys, pp 32–40
7. Blais E, Brody J, Matulef K (2012) Property testing lower bounds via communication complexity.

Comput Complexity 21(2):311–358
8. Blais E, Weinstein A, Yoshida Y (2012) Partially symmetric functions are efficiently isomorphism-

testable. In: Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,
pp 551–560

9. Blum A (1994) Relevant examples and relevant features: thoughts from computational learning
theory. In: AAAI Fall Symposium on ‘Relevance’

10. Blum A, Langley P (1997) Selection of relevant features and examples in machine learning. Arti-
ficial Intelligence 97(2):245–271

11. Blum A, Hellerstein L, Littlestone N (1995) Learning in the presence of finitely or infinitely many
irrelevant attributes. J of Comp Syst Sci 50(1):32–40

12. Bourgain J (2002) On the distribution of the fourier spectrum of boolean functions. Israel Journal
of Mathematics 131(1):269–276

13. Buhrman H, Garćıa-Soriano D, Matsliah A, de Wolf R (2013) The non-adaptive query complexity
of testing k-parities. Chic J Theoret Comput Sci pp Article 6, 11

14. Chakraborty S, Garćıa-Soriano D, Matsliah A (2011) Efficient sample extractors for juntas with
applications. In: Automata, Languages and Programming, Springer, pp 545–556

15. Chakraborty S, Fischer E, Garćıa-Soriano D, Matsliah A (2012) Junto-symmetric functions,
hypergraph isomorphism, and crunching. In: 2012 IEEE 27th Conference on Computational
Complexity—CCC 2012, IEEE Computer Soc., Los Alamitos, CA, pp 148–158

16. Chockler H, Gutfreund D (2004) A lower bound for testing juntas. Information Processing Letters
90(6):301–305

17. Diakonikolas I, Lee HK, Matulef K, Onak K, Rubinfeld R, Servedio RA, Wan A (2007) Testing
for concise representations. In: Foundations of Computer Science, 2007. FOCS’07. 48th Annual
IEEE Symposium on, IEEE, pp 549–558

18. Fischer E, Kindler G, Ron D, Safra S, Samorodnitsky A (2004) Testing juntas. J Comput System
Sci 68(4):753–787

19. Friedgut E (1998) Boolean functions with low average sensitivity depend on few coordinates.
Combinatorica 18(1):27–35

20. Goldreich O, Goldwasser S, Ron D (1998) Property testing and its connection to learning and
approximation. J ACM 45(4):653–750

21. Parnas M, Ron D, Samorodnitsky A (2002) Testing basic boolean formulae. SIAM J Discrete
Math 16(1):20–46

	Testing Juntas

