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Abstract. A function on n variables is called a k-junta if it depends
on at most k of its variables. In this survey, we review three recent
algorithms for testing k-juntas with few queries.

1 Introduction

A function f : {0, 1}n → {0, 1} is said to be a k-junta if it depends on at most k
variables. Juntas provide a clean model for studying learning in the presence of
many irrelevant features [7,10] and have consequently been of particular interest
to the computational learning theory community [7,8,9,10,22,23,25].

As is typical in the machine learning setting, all learning results on k-juntas
assume that the unknown function is a k-junta. In practice, however, it is often
not known a priori whether a function being learned is a k-junta or not. It is
therefore desirable to have an efficient algorithm for testing whether a function
is a k-junta or “far” from being a k-junta before attempting to run any k-junta
learning algorithm.

We consider the problem of testing k-juntas in the standard property testing
framework originally defined by Rubinfeld and Sudan [27]. In this framework,
we say that a function f is �-far from being a k-junta if for every k-junta g, the
functions f and g disagree on at least an � fraction of all inputs.

An �-tester for k-juntas is an algorithm A that queries an unknown function
f on q inputs of its choosing, and then (1) accepts f with probability at least 2/3
when f is a k-junta, and (2) rejects f with probability at least 2/3 when f is �-far
from being a k-junta. When the algorithm A chooses all its queries in advance
(i.e., before observing the values of the function on any of its previous queries), it
is non-adaptive; otherwise it is adaptive. The main parameter of interest for our
purposes is the number q of queries required by testers for k-juntas. In particular,
the question we study is the following:

What is the minimum number of queries required to �-test k-juntas?

A simple way to test k-juntas is to learn a target hypothesis k-junta using
membership queries, and to then use a separate set of randomly-chosen queries
to test this hypothesis [18,22]. Such an approach yields a valid tester but requires
O(k log n/�) queries. In the rest of this survey, we will examine three algorithms
that improve dramatically on this bound by requiring a number of queries that
is independent of n.
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2 Boolean Functions: Preliminaries

2.1 Basic Definitions

Throughout this survey, f : {0, 1}n → {0, 1} represents a (generic) boolean
function. The complement of f is the function f̄ : {0, 1}n → {0, 1} defined by
f̄(x) = 1 − f(x).

Given x = (x1, . . . , xn) and y = (y1, . . . , yn) from {0, 1}n, addition and mul-
tiplication are defined componentwise: x + y = (x1 + y1, . . . , xn + yn) and
x · y = (x1y1, . . . , xnyn). We also define a hybridization operation: for a set
S ⊆ [n], the element z = xS̄yS ∈ {0, 1}n is formed by setting zi = xi for every
i ∈ S̄ = [n] \ S and setting zi = yi for every i ∈ S.

2.2 Notable Boolean Functions

The function that maps all inputs to 0 is the constant zero (or just zero) function;
its complement is the constant one function that maps all inputs to 1. When
there is an index i ∈ [n] such that f is defined by f(x) = xi, then we say that f
is a dictator function. A function is an anti-dictator function if its complement
is a dictator function.

For a set S = {i1, i2, . . . , ik} ⊆ [n], the linear function corresponding to S
is the function χS defined by χS(x) = xi1 + xi2 + · · · + xik

. By convention, we
define χ∅ to be the constant zero function. An alternative characterization of
linear functions is provided by the following proposition.

Proposition 1. A function f : {0, 1}n → {0, 1} is linear if and only if for every
x, y ∈ {0, 1}n, f(x) + f(y) = f(x + y).

For a set S = {i1, i2, . . . , ik} ⊆ [n], the (monotone) monomial function corre-
sponding to S is the function ξS defined by ξS(x) = xi1xi2 · · ·xik

. (I.e., ξS(x) = 1
iff xi1 = · · · = xik

= 1.) As with linear functions, monomials have a useful alter-
native characterization.

Proposition 2. A non-constant function f : {0, 1}n → {0, 1} is a monomial if
and only if for every x, y ∈ {0, 1}n, f(x) · f(y) = f(x · y).

2.3 Influence

For an index i ∈ [n], the influence of the ith variable in the function f is

Inff (i) = Pr
x

[f(x) �= f(x(i))],

where the probability is over the uniform distribution on {0, 1}n and the input
x(i) ∈ {0, 1}n is obtained by flipping the value of the ith variable of x.

The influence of the set S ⊆ [n] in the function f is

Inff (S) = 2 Pr
x,y

[f(x) �= f(xS̄yS)].

A k-junta is a function f for which there are at most k indices i ∈ [n] such that
Inff (i) > 0. Alternatively, f is a k-junta if there exists a set S ⊆ [n] of size
|S| ≤ k such that Inff (S̄) = 0.
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3 Testing 1-Juntas

We begin with the simplest case: testing 1-juntas. The family of 1-junta func-
tions is small. It contains only the constant functions, the dictator functions,
and the anti-dictator functions. Furthermore, dictator functions have the useful
distinction of being the only non-constant functions that are both linear func-
tions and monomials. This distinction lies at the heart of the 1-junta tester that
we will examine in this section.

3.1 The Algorithm

As suggested above, our main building block for testing 1-juntas is an algorithm
that accepts functions that are both linear and monomials. The characterizations
of linear functions and of monomials from Propositions 1 and 2 suggest the
following simple algorithm for this task:

Linear Monomial Test(f , �)

1. For O(1/�) randomly selected pairs x, y ∈ {0, 1}n,
1.1. Verify that f(x) + f(y) = f(x + y).
1.2. Verify that f(x) · f(y) = f(x · y).

2. Accept iff all verifications pass.

Clearly, the Linear Monomial Test always accepts the zero function and
dictator functions. To accept all 1-juntas, it suffices to test f and its complement
f̄ for the property of being a linear monomial:

1-Junta Test(f , �)

1. Call Linear Monomial Test(f , �).
2. Call Linear Monomial Test(f̄ , �).
3. Accept iff one of the above tests accepts.

The 1-Junta Test algorithm always accepts 1-juntas. To establish that it
is a valid tester for 1-juntas, we need to show that it rejects functions that are
�-far from 1-juntas with high probability. We do so in two steps.

First, we show that the 1-Junta Test rejects functions that are far from
linear with high probability. This statement follows from the robustness of the
linearity characterization in Proposition 1: when a function f is �-far from linear
and x, y are generated uniformly at random, then f(x) + f(y) �= f(x + y) with
probability at least � [3,11].

Lemma 3 (Blum et al. [11], Bellare et al. [3]). Let f be �-far from linear.
Then the 1-Junta Test rejects with probability at least 2/3.

Second, we show that functions that are �-close to a linear function χS for some
set S of size |S| ≥ 2 are rejected by the monomial test in Line 1.2 of the Linear
Monomial Test with high probability. This is indeed the case, as an elementary
counting argument shows.
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Lemma 4 (Bellare et al. [4]). Fix 0 < � < 1
8 and let f be �-close to χS for

some set S ⊆ [n] of size |S| ≥ 2. Then the 1-Junta Test rejects with probability
at least 2/3.

Together, Lemmas 3 and 4 show that the 1-Junta Test rejects functions that
are �-far from 1-juntas with probability at least 2/3. This completes the proof
of correctness of the algorithm. We can also easily verify that the tester makes
only O(1/�) queries to the input function; this is optimal.

3.2 History

The problem of testing dictator functions was first studied by Bellare, Goldre-
ich, and Sudan [4] in the context of testing the Long Code for constructing
probabilistically-checkable proof (PCP) systems. As pointed out in [26], testing
the Long Code is equivalent to testing dictator functions, and their test for dicta-
tor functions is roughly equivalent to the 1-Junta Test algorithm above.1 The
analysis of the dictator test was further generalized and extended by Parnas,
Ron, and Samorodnitsky [26].

Due to the key role of dictator functions in PCP systems, many other variants
of the dictatorship testing problem have been studied – see [13] in this volume
and the references therein for more information on this topic.

4 Testing k-Juntas

We now turn our attention to the general problem of testing k-juntas for any
value of k ≥ 1. In contrast to the case of 1-juntas, when k ≥ 2 the class of
k-juntas does not have a simple characterization that directly suggests a testing
algorithm. Nonetheless, as we will see in this section it is still possible to test
k-juntas with a small number of queries.

4.1 The Algorithm

The algorithm for testing k-juntas relies on two basic components: the Inde-
pendence Test, and the idea of randomly partitioning the coordinates.

The Independence Test is a simple algorithm for verifying whether a given
function f is independent of a set S ⊆ [n] of coordinates:

Independence Test(f , S)

1. Generate x, y ∈ {0, 1}n uniformly at random.
2. Accept iff f(x) = f(xS̄yS).

1 There is one difference: when testing dictator functions, constant functions must be
rejected. In our case we want to accept them; this simplifies the algorithm slightly.
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By our definition of influence, the probability that the Independence Test
rejects is exactly 1

2 Inff (S). In particular, when f is independent of the variables
in S, then Inff (S) = 0 and the test always accepts.

A näıve way to use the Independence Test for testing k-juntas is to run the
test (sufficiently many times) on each singleton set S = {1}, {2}, . . . , {n} and to
accept iff at most k of the sets are rejected. This proposed algorithm is indeed
a valid tester for k-juntas, but it requires Ω(n) queries. A simple trick, however,
can dramatically reduce the number of queries required: take a sufficiently fine
partition of the coordinates [n] and run the Independence Test on each part.

k-Junta Test(f , �)

1. Randomly partition the coordinates into O(k2) buckets.
2. Run Independence Test Õ(k2/�) times.
3. Accept iff at most k buckets fail the independence test.

Clearly, the k-Junta Test always accepts k-juntas: if there are only k indices
i ∈ [n] for which Inff (i) > 0, then at most k parts in the random partition
will have influence Inff (S) > 0. Conversely, when f is �-far from being a k-
junta, Fischer et al. [17] showed that with high probability over the choice of the
random partition, at least k + 1 parts have large influence.

Lemma 5 (Fischer et al. [17]). Let f : {0, 1}n → {0, 1} be �-far from be-
ing a k-junta and s = Θ(k2). Then with high probability a random partition
S1∪̇S2∪̇ · · · ∪̇Ss of [n] will have at least k+1 parts with influence Inff (Sj) > �/k2.

The proof of Lemma 5 uses Fourier analysis. The rest of the proof of correctness
of the k-Junta Test follows almost immediately. The k-Junta Test uses
Õ(k4/�) queries. This bound is significant in that it is independent of n; as we
discuss below, however, variants on this algorithm can test k-juntas with fewer
queries.

4.2 History

Fischer, Kindler, Ron, Safra, and Samorodnitsky [17] first studied the problem of
testing juntas and introduced the algorithm presented in this section. They also
designed multiple other testing algorithms that improve on the query complexity
of the k-Junta Test. In particular, by using the Independence Test on
carefully chosen sets of parts in a random partition, they showed that Õ(k2/�)
queries are sufficient to test k-juntas.

Fischer et al. [17] also introduced the first non-trivial lower bound on the
query complexity of junta testing problem: they showed that for k = o(

√
n),

non-adaptive testing algorithms for testing k-juntas must make at least Ω̃(
√

k)
queries. This lower bound implies a lower bound of Ω(log k) queries for all adap-
tive k-junta testers as well. The lower bound was improved shortly afterwards
by Chockler and Gutfreund [14], who showed that Ω(k) queries are required to
test k-juntas (adaptively or non-adaptively).
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The gap between the Ω(k) and Õ(k2/�) bounds on the query complexity of the
junta testing problem remained unchanged until recently, when a new algorithm
was introduced to test k-juntas with Õ(k1.5/�) queries [5]. This was followed by
the introduction of another algorithm for testing k-juntas with O(k log k + k/�)
queries [6]; we examine this algorithm in the next section.

5 Testing k-Juntas Nearly Optimally

The algorithm we saw in the last section relied on the Independence Test.
To improve the query complexity, the algorithm we present in this section relies
on a slightly stronger building block.

5.1 The Algorithm

The starting point for the algorithm is an observation due to Blum, Hellerstein,
and Littlestone [9]: if we have two inputs x, y ∈ {0, 1}n such that f(x) �= f(y),
then the set of coordinates i ∈ [n] for which xi �= yi contains a coordinate that
is relevant in f . Furthermore, by performing a binary search over the hybrid
inputs formed from x and y, we can identify a relevant coordinate with O(log n)
queries.

Even more interestingly, if we have a partition I of [n] and we have a pair of
inputs x, y such that f(x) �= f(y), we can use the same binary search idea to
identify a part that contains a relevant coordinate with only O(log |I|) queries.
We use this idea to create an algorithm that attempts to find a part with a
relevant coordinate as follows:

Find Relevant Part(f , I, S)

1. Generate x, y ∈ {0, 1}n uniformly at random.
2. If f(x) �= f(xS̄yS) then

2.1. Use a binary search to identify a part I ∈ I that contains
a relevant variable;

2.2. Return I.
3. Otherwise, Return ∅.

Note that by the test in Line 2, if the algorithm finds a part with a relevant
variable, that relevant variable is guaranteed to be in S. Also, the probability that
Find Relevant Part succeeds in identifying a relevant part is the probability
that f(x) �= f(xS̄yS), which as we have seen previously is exactly 1

2 Inff (S).
The algorithm we now consider for testing k-juntas uses the Find Relevant

Part in the obvious way: after taking a random partition of the coordinates,
the algorithm calls this routine a large number of times and rejects the input if
it identifies k + 1 distinct parts that contain relevant coordinates.
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Nearly Optimal k-Junta Test(f , �)

1. Randomly partition [n] into a partition I with poly(k/�)
parts and initialize J ← ∅.

2. For each of O(k/�) rounds,
2.1. J ← J ∪ Find Relevant Part(f, I, J̄).
2.2. If J contains > k parts, quit and Reject.

3. Accept.

As with the algorithms in the previous sections, it is easy to check that this
algorithm always accepts k-juntas. Once again, the non-trivial part of the proof
of correctness involves showing that functions �-far from k-juntas are rejected
with high probability. The key to proving that statement is the following lemma:

Lemma 6 ([6]). Let f : {0, 1}n → {0, 1} be �-far from being a k-junta, and let
I be a sufficiently fine partition of [n]. Then with high probability every set J
formed by taking the union of at most k parts of I satisfies Inff (J) ≥ �/2.

The proof of Lemma 6 can be completed with Fourier analysis. Alternatively, and
more generally, it can also be completed using the Efron-Stein decomposition of
functions [16]. This is the approach taken in [6], and it enables the analysis of
the algorithm to hold even in the more general setting where the algorithm is
testing functions with any finite product domain and any finite ranges for the
property of being k-juntas.2

6 Open Problems and Future Directions

There are many possible directions for future research on testing k-juntas. We
highlight three particularly intriguing open problems.

6.1 Classical vs. Quantum Property Testing

The field of property testing can be extended to allow the tester to use the
quantum oracle model of Beals et al. [2]. The resulting model is called quan-
tum property testing and was first studied by Buhrman, Fortnow, Newman, and
Röhrig [12]. They showed that there are properties that can be tested with sig-
nificantly fewer queries in the quantum model than in the classical model and
that for some other properties, the extra power of the quantum oracle does not
improve the query complexity of the associated testing problem.

The first open problem asks if quantumoracles help when testing juntas: Is there
a gap between the quantum and classical query complexities for testing k-juntas?

Atıcı and Servedio [1] studied the problem of testing juntas in the quantum
model. They showed that in this model, O(k/�) queries are sufficient and Ω(

√
k)

2 We note that the result in [6] was not the first one to generalize the analysis of a
junta testing algorithm to non-boolean functions; Diakonikolas et al. [15] did so as
well with a more technically intricate argument.
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queries are necessary to �-test k-juntas. At the time that this algorithm was
introduced, it provided a quadratic improvement over the query complexity of
the best classical k-junta tester. Of course, the algorithm presented in Section 5
reduces the gap to be only logarithmic in k, and in fact our strongest lower
bounds in the classical model are not strong enough to guarantee the existence
of a gap in the query complexities.

6.2 Adaptive vs. Non-Adaptive Testing

Gonen and Ron [21], and Goldreich and Ron [19] (see also [20] in this volume)
recently began a systematic study of the benefits of adaptivity for testing prop-
erties in the dense-graph model. They showed that for some properties, there
is a gap between the query complexity of the best adaptive and non-adaptive
testing algorithms, while for other properties no such gap exists.

The current gap between query complexity of the best adaptive and non-
adaptive algorithms for testing k-juntas — O(k log k + k/�) and Õ(k3/2/�), re-
spectively — leaves the following basic problem open: Does adaptivity help when
testing k-juntas?

6.3 Improved Testers for Other Properties

Following the work of Fischer et al. [17], junta testers have been used as a basic
building block to design testers for many other properties of boolean functions,
including function isomorphism [17], halfspaces [24], and many concise represen-
tation properties (e.g., being computable by a small decision tree or by a small
circuit, having low Fourier degree) [15] (see also [28] in this volume).

All of the above testing algorithms use one of the k-junta testers presented in
Section 4. The last open problem that we wish to mention is the following: Can
the Nearly Optimal k-Junta Test be used (or extended) to obtain improved
testing algorithms for function isomorphism, halfspaces, or concise representa-
tion properties?
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1 Introduction

The area of sublinear-time algorithms is a new rapidly emerging area of computer
science. It has its roots in the study of massive data sets that occur more and
more frequently in various applications. Financial transactions with billions of
input data and Internet traffic analyses (Internet traffic logs, clickstreams, web
data) are examples of modern data sets that show unprecedented scale. Managing
and analyzing such data sets forces us to reconsider the traditional notions of
efficient algorithms: processing such massive data sets in more than linear time
is by far too expensive and often even linear time algorithms may be too slow.
Hence, there is the desire to develop algorithms whose running times are not
only polynomial, but in fact are sublinear in n.

Constructing a sublinear time algorithm may seem to be an impossible task
since it allows one to read only a small fraction of the input. However, in recent
years, we have seen development of sublinear time algorithms for optimization
problems arising in such diverse areas as graph theory, geometry, algebraic com-
putations, and computer graphics. Initially, the main research focus has been on
designing efficient algorithms in the framework of property testing (for excellent
surveys, see [28,32,33,43,53]), which is an alternative notion of approximation
for decision problems. But more recently, we have seen some major progress
in sublinear-time algorithms in the classical model of randomized and approxi-
mation algorithms. In this paper, we survey some of the recent advances in this
area. Our main focus is on sublinear-time algorithms for combinatorial problems,
especially for graph problems and optimization problems in metric spaces.

� This survey is a slightly updated version of a survey that appeared in Bulletin of
the EATCS, 89: 23–47, June 2006.

�� Research supported by EPSRC award EP/G064679/1 and by the Centre for Dis-
crete Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.

� � � Supported by DFG grant SO 514/3-1.

O. Goldreich (Ed.): Property Testing, LNCS 6390, pp. 41–64, 2010.
c� Springer-Verlag Berlin Heidelberg 2010


