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ABSTRACT
A function on n variables is called a k-junta if it depends on
at most k of its variables. In this article, we show that it
is possible to test whether a function is a k-junta or is “far”
from being a k-junta with O(k/ε + k log k) queries, where
ε is the approximation parameter. This result improves on
the previous best upper bound of Õ(k3/2)/ε queries and is
asymptotically optimal, up to a logarithmic factor.

We obtain the improved upper bound by introducing a
new algorithm with one-sided error for testing juntas. No-
tably, the algorithm is a valid junta tester under very gen-
eral conditions: it holds for functions with arbitrary finite
domains and ranges, and it holds under any product distri-
bution over the domain.

A key component of the analysis of the new algorithm is
a new structural result on juntas: roughly, we show that if
a function f is “far” from being a k-junta, then f is “far”
from being determined by k parts in a random partition
of the variables. The structural lemma is proved using the
Efron-Stein decomposition method.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous

General Terms
Algorithms, Theory
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1. INTRODUCTION
In many areas of science, data collection methods are

rapidly becoming more sophisticated. As a result, datasets
obtained from experiments contain an increasing number of
features. For example, until recently biologists were only
able to measure the expression of a handful of genes at a
time; now they can measure the expression of tens of thou-
sands of genes simultaneously [12].

Datasets with large numbers of features provide new op-
portunities, but they also introduce new challenges. For the
task of learning a target function, a large number of features
causes näıve learning algorithms to overfit the data, and can
lead to the formulation of hypotheses that are hard to inter-
pret. The feature subset selection method is commonly used
to avoid both those challenges [11, §3.4].

The feature subset selection method is appropriate when
the target function depends on only k of the n features in
a dataset, for some k � n. We call such target functions
k-juntas. In many cases, the target function may be quite
far from being a k-junta. When this is the case, the fea-
ture subset selection method is bound to fail. It is therefore
preferable to test a target function to see if it is a k-junta
before attempting to learn it via the feature subset selection
method.

In this article, we study the problem of testing k-juntas
in the property testing framework. Informally, we seek to
determine the minimum number of queries to a function
required to distinguish k-juntas from functions that are“far”
from being k-juntas, for some appropriate notion of distance.
(See Section 2 for formal definitions.)

1.1 Previous work
The first result explicitly related to testing juntas was ob-

tained by Parnas, Ron, and Samorodnitsky [17], who gener-
alized a result of Bellare, Goldreich, and Sudan [2] on testing
long codes to obtain an algorithm for testing 1-juntas (i.e.,
dictators) with only O(1/ε) queries.

Soon afterwards, Fischer et al. [9] introduced algorithms

for testing k-juntas with Õ(k2)/ε queries. The original anal-
ysis of Fischer et al. only applied to functions with a boolean
range; Diakonikolas et al. [7] extended the analysis to handle
functions with arbitrary finite ranges.

The junta-testing algorithms of Fischer et al. remained
the most query-efficient ways to test juntas until very re-
cently, when the current author introduced an algorithm for
testing boolean functions for the property of being k-juntas
with Õ(k3/2)/ε queries [3].



The first non-trivial lower bound on the query complexity
of the testing juntas problem was provided by Fischer et
al. [9], who showed that Ω(log k) queries are necessary to test
k-juntas.1 That lower bound was subsequently improved to
Ω(k) by Chockler and Gutfreund [6].

1.2 Our results
The research presented in this article was motivated by

the desire to close the gap between the upper and lower
bounds on the query complexity of the junta testing prob-
lem. Our main result is a new algorithm for testing juntas
that significantly improves the upper bound.

Theorem 1.1. The number of queries required to ε-test
k-juntas is bounded above by O (k/ε+ k log k). Furthermore,
this result holds for testing functions that have arbitrary fi-
nite product domains and arbitrary finite ranges, and it also
holds under any product distribution over the domain.

Combined with the lower bound of Chockler and Gutfre-
und [6], this completely characterizes the asymptotic query
complexity for ε-testing k-juntas (up to a logarithmic factor)
for constant values of ε.

The new algorithm for testing juntas, presented in Sec-
tion 3.1, is surprisingly simple. It is, however, quite gen-
eral. As Theorem 1.1 indicates, it can test functions with
arbitrary finite product domains and arbitrary finite ranges
for the property of being a k-junta, and it also is a valid
tester under the general property testing framework where
distance is measured by any product distribution over the
input. Furthermore, the algorithm has one-sided error : it
always accepts k-juntas.

The analysis of the algorithm constitutes the main techni-
cal contribution of this current research. At the heart of the
analysis lies a fundamental structural lemma about juntas:
roughly, the lemma states that if a function is “far” from be-
ing a k-junta, then it will also be“far”from being determined
by the coordinates in k parts in a (sufficiently fine) random
partition of the coordinates. The lemma is presented in Sec-
tion 3.2 and its proof is presented in Section 4.

1.3 Our techniques
The analysis of the junta testing algorithm and the proof

of our main structural lemma rely on the analysis of the
influence of coordinates in a function. The main tool we use
to do this is the Efron-Stein decomposition method.

The Efron-Stein decomposition of a function is a coarser
version of the Fourier decomposition of a function. While
both decompositions share many similarities, it can be more
convenient to work with the Efron-Stein decomposition when
the range of the function is not boolean. In particular, the
Efron-Stein decomposition provides a much simpler analysis
of junta tests for functions with non-boolean ranges than the
approach of Diakonikolas et al. [7].

The Efron-Stein decomposition method has found numer-
ous applications in statistics [8, 13, 19], hardness of approxi-
mation [1, 14, 15], learning theory [4], and social choice the-
ory [15]. As we see below, the method is also particularly
well suited for the analysis of juntas.

1In fact, Fischer et al. proved the stronger statement that
Ω(
√
k) queries are required to test k-juntas non-adaptively.

2. PRELIMINARIES
Throughout this article, we consider functions of the form

f : X → Y, where X = X1 × · · · ×Xn is a finite set and Y is
an arbitrary finite set. We define Ω = Ω1 × · · · × Ωn to be
a product probability space over X , where Ωi = (Xi, µi) is
defined by an arbitrary probability measure µi on Xi.

For the elements x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X
and the set S ⊆ [n], we let xS represent the ordered list
(xi : i ∈ S) and use the notation xSyS to represent the
element z = (z1, . . . , zn) ∈ X where zS = xS and zS = yS .

Throughout the rest of this article, I = {I1, . . . , Is} de-
notes a random partition of the coordinates in [n] obtained
by uniformly and independently assigning each coordinate
at random to one of the parts I1, . . . , Is.

2.1 Juntas
Definition 2.1 (Influence). The influence of the set

S ⊆ [n] of coordinates in the function f : X → Y under the
probability space Ω is

Inff (S)
def
= Pr

x,y∼Ω
[f(x) 6= f(ySxS)].

When Inff (S) > 0, we say that the set S of coordinates is
relevant to f , or alternatively that f depends on the coordi-
nates in S.

Definition 2.2 (Juntas). The function f : X → Y is
a k-junta if it has at most k relevant coordinates.

Conversely, f is ε-far from being a k-junta under Ω if for
every k-junta g : X → Y, Prx∼Ω[f(x) 6= g(x)] ≥ ε.

The analysis of the junta testing algorithm relies on the
following characterization of non-juntas.

Proposition 2.3. If f : X → Y is ε-far from being a
k-junta, then for every set J ⊆ [n] of size |J | ≤ k,

Inff
`
[n] \ J

´
≥ ε.

In our analysis of the junta testing algorithm, we also show
that there is a close connection between juntas and partition
juntas.

Definition 2.4 (Partition juntas). Let I be a par-
tition of [n]. The function f : X → Y is a k-part junta
with respect to I if the relevant coordinates in f are all con-
tained in at most k parts of I.

Conversely, f is ε-far from being a k-part junta with re-
spect to I under Ω if for every set J formed by taking the
union of k parts in I, Inff ([n] \ J) ≥ ε.

The proof of Proposition 2.3 is included in Appendix A.2.

We examine the problem of testing juntas in the prop-
erty testing model introduced by Goldreich, Goldwasser, and
Ron [10], which is a generalized version of the property test-
ing model of Rubinfeld and Sudan [18].

Definition 2.5 (Junta testers). A randomized algo-
rithm A that queries a given function on a small number of
inputs is an ε-tester for k-juntas under the distribution Ω if
it accepts k-juntas with probability at least 2/3, and rejects
functions that are ε-far from being k-juntas under Ω with
probability at least 2/3.

The query complexity of the algorithm A is the number of
queries it makes to the function before accepting or rejecting
it.



If a junta tester accepts k-juntas with probability 1, then
we say that it has one-sided error.

2.2 Efron-Stein decomposition
Let RY be the vector space generated by the set of all

formal linear combinations of elements in Y. Given two
vectors v =

P
y∈Y vyy and w =

P
y∈Y wyy in RY , we define

their inner product to be 〈v, w〉RY =
P

y∈Y vywy.

The set of all functions of the form f : X → RY forms the
inner product space L2(Ω,RY) under the inner product

〈f, g〉 = E
x∼Ω

ˆ
〈f(x), g(x)〉RY

˜
.

The norm of a function f ∈ L2(Ω,RY) is defined by

‖f‖2 =
p
〈f, f〉 =

q
E
x∼Ω

ˆ
〈f(x), f(x)〉RY

˜
.

By identifying elements in Y with elements in RY in the
natural way (i.e., by identifying y ∈ Y with the formal linear
combination 1 ·y ∈ RY), we observe that the set of functions
of the form f : X → Y forms a subset of L2(Ω,RY). We call
such functions pure-valued functions. The norm of a pure-
valued function f is ‖f‖2 = 1.

Theorem 2.6 (Efron-Stein [8]). Every function f in
L2(Ω,RY) has a unique decomposition of the form

f(x) =
X
S⊆[n]

fS(x)

where for every S ⊆ [n], S′ 6⊇ S, and y ∈ X :

1. fS depends only on the coordinates in S, and

2. Ex∼Ω

ˆ
fS(x)

˛̨
xS′ = yS′

˜
= 0.

The Efron-Stein decomposition is an orthogonal decom-
position of functions.2 As a result, Parseval’s identity holds
in this context.

Theorem 2.7 (Parseval’s identity). For every
function f ∈ L2(Ω,RY),X

S⊆[n]

‚‚‚fS‚‚‚2

2
= ‖f‖22 .

In particular, when f is a pure-valued function,X
S⊆[n]

‚‚‚fS‚‚‚2

2
= 1.

Remark 2.8. When f : {−1, 1}n → {−1, 1} is a boolean
function, the Efron-Stein decomposition of f is the same
as its Fourier decomposition (i.e., for every set S ⊆ [n],

fS = f̂(S)χS). This can be easily verified by noting that the

functions f̂(S)χS satisfy the two conditions of Theorem 2.6.

2.3 Influence
There is a natural connection between the influence of

coordinates in a function and the Efron-Stein decomposition
of that function.

2That is, the sets of projections HS = {fS : f ∈ L2(Ω,RY)}
form orthogonal subspaces of L2(Ω,RY).

Proposition 2.9. For every pure-valued function f in
L2(Ω,RY) and every set S ⊆ [n],

Inff (S) =
X

T :S∩T 6=∅

‚‚‚fT‚‚‚2

2
.

For completeness, we include the proof of Proposition 2.9
in Appendix A.1.

The monotonicity and subadditivity properties of influ-
ence follow directly from the proposition.

Corollary 2.10 (Monotonicity & Subadditivity).
For any pure-valued function f ∈ L2(Ω,RY) and any sets
S, T ⊆ [n],

Inff (S) ≤ Inff (S ∪ T ) ≤ Inff (S) + Inff (T ).

Another key contribution of Proposition 2.9 to the proof
of our main lemma is that it suggests two natural exten-
sions to the definition of influence: low-order and high-order
influence.

Definition 2.11 (Low- & High-order influence).
The influence of order at most k of a set S ⊆ [n] of coordi-
nates in the pure-valued function f ∈ L2(Ω,RY) is

Inf≤kf (S) =
X

|T |≤k :S∩T 6=∅

‚‚‚fT‚‚‚2

2

and the influence of order greater than k of the set S on f
is

Inf>kf (S) =
X

|T |>k :S∩T 6=∅

‚‚‚fT‚‚‚2

2
.

Proposition 2.9, along with Parseval’s identity, makes it
easy to show that the sum of the low-order influence of each
coordinate in a pure-valued function cannot be too large,
and that only a few coordinates can have significant low-
order influence in a pure-valued function.

Proposition 2.12. For every pure-valued function f in
L2(Ω,RY) and any k ≤ n, the sum of the low-order influence
of each coordinate in f is bounded above byX

i∈[n]

Inf≤kf (i) ≤ k.

Corollary 2.13. For every pure-valued function f in
L2(Ω,RY), any k ≤ n, and any θ > 0,˛̨̨n

i ∈ [n] : Inf≤kf (i) ≥ θ
o˛̨̨
≤ k

θ
.

3. MAIN RESULT

3.1 The algorithm
The JuntaTest algorithm is based on a simple but useful

observation of Blum, Hellerstein, and Littlestone [5]: if we
have two inputs x, y ∈ X such that f(x) 6= f(y), then the
set S of coordinates in which x and y disagree contains a
coordinate that is relevant in f . Furthermore, by performing
a binary search over the hybrid inputs formed from x and
y, we can identify the relevant coordinate with O(log |S|)
queries.

We build on this observation by noting that if we have
a partition of the coordinates into s parts and only care to



JuntaTest(f , k, ε)

Additional parameters: s = 1020k9/ε5, r = 12(k + 1)/ε

1. Randomly partition the coordinates in [n] into s sets I1, . . . , Is.

2. Initialize S ← [n], `← 0.

3. For each of r rounds,
3.1. Generate a pair (x, y) ∈ Ω× Ω.

3.2. If f(x) 6= f(ySxS), then

3.2.1. Use binary search to find a set Ij that contains a relevant variable.

3.2.2. Update S ← S \ Ij .
3.2.3. Set `← `+ 1.

3.2.4. If ` > k, then reject the function.

4. Accept the function.

Figure 1: The algorithm for ε-testing k-juntas.

identify a part that contains a relevant coordinate (rather
than the coordinate itself), then we can optimize the binary
search to only take O(log s) queries.

The JuntaTest algorithm applies the above observation
in the obvious way. It maintains a set S of coordinates that
may or may not be relevant to the function, generates pairs
of inputs x, y ∈ X at random, and checks if f(x) 6= f(xSyS).
When such a pair is found, the algorithm identifies a part
that contains a relevant coordinate, and removes all the co-
ordinates in that part from S. If the algorithm identifies
k+ 1 different parts with relevant coordinates, it rejects the
function; otherwise, it accepts the function. The details of
the algorithm are presented in Figure 1.

3.2 Main lemma
To establish the correctness of the JuntaTest algorithm,

we want to show that the algorithm does not lose too much
accuracy by identifying parts that contain relevant coordi-
nates instead of identifying the relevant coordinates individ-
ually.

In other words, we want to show that under a random
partition I, (1) a function that is a k-junta is also a k-part
junta with respect to I, and (2) a function that is ε-far from
being a k-junta is Θ(ε)-far from being a k-part junta with
respect to I. The former statement is clearly always true;
the following lemma shows that the latter statement holds
with high probability.

Lemma 3.1. Let I be a random partition of [n] with s =
1020k9/ε5 parts obtained by uniformly and independently as-
signing each coordinate to a part. With probability at least
5/6, a function f : X → Y that is ε-far from being a k-junta
is also ε

2
-far from being a k-part junta with respect to I.

The proof of Lemma 3.1 is presented in Section 4. Before
proceeding with that proof, we first show how the rest of the
proof of Theorem 1.1 is constructed.

3.3 Proof of Theorem 1.1
We prove Theorem 1.1 by showing that the JuntaTest

algorithm ε-tests k-juntas with only O(k/ε+k log k) queries.

Theorem 1.1 (Restated). The number of queries re-
quired to ε-test k-juntas is bounded above by O (k/ε+ k log k).
Furthermore, this result holds for testing functions that have
arbitrary finite product domains and arbitrary finite ranges,

and it also holds under any product distribution over the do-
main.

Proof. We begin by determining the query complexity of
the JuntaTest algorithm. At most 2r = 24(k+1)/ε queries
are made in the execution of line 3.2 of the algorithm, and
at most (k + 1) log s = O(k log(k/ε)) queries are made in
line 3.2.1 of the algorithm. So the algorithm makes a total
of O(k/ε+ k log k) queries to the input function.

The completeness of the JuntaTest algorithm is easy to
establish: when the input function is a k-junta, it contains
at most k parts with relevant coordinates, so the algorithm
must accept the function. Therefore, the JuntaTest algo-
rithm has one-sided error.

Finally, we analyze the soundness of the JuntaTest al-
gorithm. By Lemma 3.1, with probability at least 5/6 a
function f that is ε-far from being a k-junta is also ε/2-far
from being a k-part junta with respect to the random parti-
tion of the coordinates. When this is the case, the influence
of S is at least ε/2 until k+1 parts with relevant coordinates
are identified. So the expected number of rounds required to
identify k+ 1 parts with relevant variables is 2(k+ 1)/ε. By
Markov’s Inequality, the probability that the algorithm does
not identify k + 1 relevant parts in 12(k + 1)/ε rounds is at
most 1/6, and the overall probability that the JuntaTest
algorithm fails to reject f is at most 1/3.

4. PROOF OF THE MAIN LEMMA

4.1 Overview of the proof
To establish Lemma 3.1, we want to show that with high

probability every set J formed by taking the union of k parts
in a random partition of the coordinates satisfiesX

S⊆J

‖fS‖22 ≤ 1− ε. (1)

We show this with a combination of three arguments.
First, In Section 4.2, we examine the Efron-Stein coeffi-

cients ‖fS‖22 for sets of size |S| > 2k. Under a random par-
tition of the coordinates, most of these sets have elements
distributed over more than k parts. Therefore, with high
probability the contribution of those sets to the sum in (1)
is small.

We then examine the coordinates with large low-order in-
fluence. In Section 4.3, we show that for a sufficiently fine



random partition, with high probability those coordinates
are completely separated by the partition and therefore pro-
vide a limited contribution to the sum in (1).

Lastly, we examine the coordinates with small low-order
influence. In Section 4.4, we use a Hoeffding bound argu-
ment to show that their contribution to the sum in (1) is
also negligible.

We combine the above arguments to complete the proof
of Lemma 3.1 in Section 4.5.

4.2 High-order coefficients

Definition 4.1 (Covered sets). Let I = {I1, . . . , Is}
be a partition of [n]. For any subset S ⊆ [n], we say that S
is k-covered by the partition I, denoted by S �k I, if there
exist k indices i1, . . . , ik such that S ⊆ Ii1 ∪ · · · ∪ Iik .

Proposition 4.2. Let f ∈ L2(Ω,RY) be a pure-valued
function, let s ≥ 72ek/ε, and let I = {I1, . . . , Is} be a ran-
dom partition of [n]. Then with probability at least 17/18,
the high-level influence of f contained in sets that are k-
covered by I is at mostX

S�kI : |S|>2k

‚‚‚fS‚‚‚2

2
≤ ε/4.

Proof. Let S ⊆ [n] be a subset of size |S| > 2k. The
probability that all the elements in S are sent to k or fewer
parts in I is

Pr[S �k I] ≤

 
s

k

!„
k

s

«2k+1

≤
“es
k

”k „k
s

«2k+1

= ek
„
k

s

«k+1

≤ ε

72
.

The expected weight of all large sets that are covered by I
is

E

24 X
S�kI : |S|>2k

‚‚‚fS‚‚‚2

2

35 =
X
|S|>2k

‚‚‚fS‚‚‚2

2
· Pr[S �k I] ≤ ε

72
,

where the last inequality uses the above upper bound on
Pr[S �k I] and Parseval’s identity. The proposition then
follows from Markov’s Inequality.

4.3 Coords. with large low-order influence
For any pure-valued function f in L2(Ω,RY), let us define

Hf
def
= {i ∈ [n] : Inf≤2k

f (i) ≥ θ}.

to be the set of coordinates with large low-order influence in
f .

With high probability, a random partition of the coordi-
nates completely separates the set Hf .

Proposition 4.3. Let f ∈ L2(Ω,RY) be a pure-valued
function, let θ > 0, and let s ≥ 72k2/θ2. Then with prob-
ability at least 17/18, a random partition I = {I1, . . . , Is}
satisfies the condition that for all i ∈ [s],

|Hf ∩ Ii| ≤ 1.

Proof. By Corollary 2.13, |Hf | ≤ 2k/θ. So the prob-
ability that there exists a part Ii that contains at least 2
elements from Hf is 

|Hf |
2

! 
s

1

!
(1/s)2 ≤

„
2k

θ

«2

· 1

s
≤ 1

18
.

4.4 Coords. with small low-order influence
Since every coordinate in [n]\Hf has small low-order influ-

ence, we can expect these coordinates to have little impact
on the total low-order influence of each part. Indeed, this is
what the next proposition shows.

Proposition 4.4. Let f ∈ L2(Ω,RY) be a pure-valued
function, let s ≥ 16k2/ε, let θ ≤ ε2/64k3 log(18s), and let
I = {I1, . . . , Is} be a random partition of [n]. Then with
probability at least 17/18,

Inf≤2k
f

“
Ii \Hf

”
≤ ε

4k

for every i ∈ [s].

Proof. Fix i ∈ [s]. For every j ∈ [n], define Xj to be a
random variable that takes the value

Xj =

(
Inf≤2k

f (j) , if j ∈ Ii \Hf ,
0 , otherwise.

By the subadditivity of influence,

Inf≤2k
f

“
Ii \Hf

”
≤

X
j∈Ii\Hf

Inf≤2k
f (j) =

X
j∈[n]

Xj .

By Proposition 2.12,
P
j∈[n] Inf≤2k

f (j) ≤ 2k. Further-

more, Pr[j ∈ Ii] = 1/s for every j ∈ [n]. So

E

24X
j∈[n]

Xj

35 =
X

j∈[n]\Hf

Inf≤2k
f (j) · Pr[j ∈ Ii] ≤

2k

s
.

By our choice of s, we have that 2k/s ≤ ε/8k. We can apply
Hoeffding’s inequality to obtain

Pr

24X
j∈[n]

Xj ≥
ε

8k
+ t

35 ≤ exp

 
− 2t2P

j∈[n]\Hf
Inf≤2k

f (j)2

!
.

Applying the elementary inequality
P
i x

2
i ≤ maxi xi ·

P
i xi

to the summation on the right-hand side of the equation and
recalling that maxj∈[n]\Hf

Inf≤2k
f (j) < θ, we get thatX

j∈[n]\Hf

Inf≤2k
f (j)2 ≤ 2kθ.

So

Pr
h
Inf≤2k

f

“
Ii \Hf

”
>

ε

4k

i
≤ Pr

24X
j∈[n]

Xj ≥
ε

8k
+

ε

8k

35
≤ e− log(18s) =

1

18s
.

Applying the union bound over all i ∈ [s] completes the
proof of the proposition.



4.5 Proof of Lemma 3.1
Lemma 3.1 (Restated). Let I be a random partition of

[n] with s = 1020k9/ε5 parts obtained by uniformly and in-
dependently assigning each coordinate to a part. With prob-
ability at least 5/6, a function f : X → Y that is ε-far from
being a k-junta is also ε

2
-far from being a k-part junta with

respect to I.

Proof. Let J be the union of any k parts in I. By Propo-
sition 2.9,

Inff ([n] \ J) =
X
S⊆[n]

‖fS‖22 −
X
S⊆J

‖fS‖22.

Let θ = ε2 log(k/ε)/109k4. Note that the values of s and
θ satisfy the conditions of Propositions 4.2–4.4. Define the
following families:

H = {S ⊆ J : |S| ≤ 2k, S ⊆ J ∩Hf},
L = {S ⊆ J : |S| ≤ 2k, S 6⊆ J ∩Hf}, and

B = {S ⊆ J : |S| > 2k}

The sets H,L,B form a partition of the subsets of J , so

Inff ([n] \ J) =
X
S⊆[n]

‚‚‚fS‚‚‚2

2
−
X
S∈H

‚‚‚fS‚‚‚2

2

−
X
S∈L

‚‚‚fS‚‚‚2

2
−
X
S∈B

‚‚‚fS‚‚‚2

2

≥ Inff
`
[n] \ (J ∩Hf )

´
−
X
S∈L

‚‚‚fS‚‚‚2

2
−
X
S∈B

‚‚‚fS‚‚‚2

2
.

As Proposition 4.3 shows, with probability at least 17/18,
Hf is completely separated by the partition I, so every set
J formed by taking the union of at most k parts satisfies
|J ∩Hf | ≤ k. Then, since f is ε-far from being a k-junta,

Inff
`
[n] \ (J ∩Hf )

´
≥ ε. (2)

By Proposition 4.4, with probability at least 17/18, every

set Ij in the partition satisfies
P
i∈Ij\Hf

Inf≤2k
f (i) ≤ ε/4k,

so every set J formed by taking the union of k parts satisfiesX
S∈L

‚‚‚fS‚‚‚2

2
= Inf≤2k

f (J \Hf ) ≤ k · ε
4k

=
ε

4
. (3)

Finally, the family B contains exclusively sets S that are
k-covered by I, so B ⊆ {S ⊆ [n] : |S| > 2k, S �k I} and we
can apply Proposition 4.2 to obtain that with probability at
least 17/18, for every set JX

S⊆B

‚‚‚fS‚‚‚2

2
≤

X
S�kI : |S|>2k

‚‚‚fS‚‚‚2

2
≤ ε

4
. (4)

Combining equations (1)–(4), we obtain that with probabil-
ity at least 1 − 3(1/18) = 5/6, for every set J obtained by
taking the union of at most k parts of I

Inff
`
[n] \ J

´
≥ ε− ε

4
− ε

4
=
ε

2
.
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APPENDIX
A. ADDITIONAL PROOFS

A.1 Proof of Proposition 2.9
It is well-known that the identity

Inff (S) =
X

T :S∩T 6=∅

‚‚‚fT‚‚‚2

2

holds for functions in the space L2(Ω,R) (see for exam-
ple [15, 16, 19, 9]). Below, we show that the same identity
holds for pure-valued functions in L2(Ω,RY). The proof it-
self is a simple generalization of known proofs of the above
identity; we include it for the convenience of the reader.

Proposition 2.9 (Restated). For any pure-valued
function f ∈ L2(Ω,RY) and set S ⊆ [n],

Inff (S) =
X

T :S∩T 6=∅

‚‚‚fT‚‚‚2

2
.

Proof. Since f is pure-valued, the indicator function
1[f(x) = f(y)] is equal to the inner product 〈f(x), f(y)〉RY ,
and so

Inff (S) = Pr
x,y∼Ω

[f(x) 6= f(xSyS)]

= 1− E
x,y∼Ω

ˆ
〈f(x), f(xSyS)〉RY

˜
.

Taking the Efron-Stein decomposition of f and applying lin-
earity of expectation, we get

Inff (S) = 1−
X

T,U⊆[n]

E
x∼Ω

»fi
fT (x), E

y∼Ω
[fU (y) | yS = xS ]

fl
RY

–
.

By the definition of the Efron-Stein decomposition,

E
y∼Ω

h
fU (y)

˛̨
yS = xS

i
=

(
fU (x) , if U ⊆ S,
0 , otherwise.

So

Inff (S) = 1−
X
T⊆[n]

X
U⊆S

E
x∼Ω

hD
fT (x), fU (x)

E
RY

i
= 1−

X
T⊆[n]

X
U⊆S

D
fT , fU

E
.

By the orthogonality of the Efron-Stein decomposition, when
T 6= U ,

˙
fT , fU

¸
= 0. SoX

T⊆[n]

X
U⊆S

D
fT , fU

E
=
X
T⊆S

D
fT , fT

E
=
X
T⊆S

‚‚‚fT‚‚‚2

2
.

By Parseval’s identity, we also have that 1 =
P
T⊆[n]

‚‚fT‚‚2

2
,

so

Inff (S) =
X
T⊆[n]

‚‚‚fT‚‚‚2

2
−
X
T⊆S

‚‚‚fT‚‚‚2

2
=

X
T :S∩T 6=∅

‚‚‚fT‚‚‚2

2
.

A.2 Proof of Proposition 2.3
Fischer et al. [9] showed that in functions with boolean

ranges that are far from being juntas on a set J of coordi-
nates, the set [n] \J of coordinates has a significant amount
of influence. A similar result was established by Diakoniko-
las et al. [7] for functions with non-boolean ranges, when a
different notion of influence (“binary variation”) is consid-
ered.

We use Hölder’s Inequality to establish the analogous re-
sult with our notion of influence.

Proposition 2.3 (Restated). If f : X → Y is ε-
far from being a k-junta, then for every set J ⊆ [n] of size
|J | ≤ k,

Inff
`
[n] \ J

´
≥ ε.

Proof. For a given set J of size |J | ≤ k, let h : X → Y
be the function defined by

h(x) = argmax
y∈Y

n
Pr
z

[f(xJzJ) = y]
o
,

where we break ties arbitrarily. Then,

Pr
x

[f(x) 6= h(x)] = 1−E
x

[〈f(x), h(x)〉RY ]

= 1−E
x

»D
E
z

[f(xJzJ)], h(x)
E

RY

–
= 1−E

x

»‚‚‚E
z

[f(xJzJ)]
‚‚‚
∞

‚‚‚E
z

[f(xJzJ)]
‚‚‚

1

–
≤ 1−E

x

»‚‚‚E
z

[f(xJzJ)]
‚‚‚2

2

–
= 1−

X
S⊆J

‖fS‖22

=
X

S:S∩([n]\J)6=∅

‖fS‖22

The first equality follows from the fact that f and h are pure-
valued functions. The second follows from the fact that h
only depends on the coordinates in J and from the linear-
ity of expectation. The third equality uses the two easily-
verified identities ‖Ez [f(xJzJ)]‖∞ = 〈Ez[f(xJzJ)], h(x)〉RY
and ‖Ez [f(xJzJ)]‖1 = 1. The inequality is a special case of
Hölder’s Inequality. The penultimate equality follows from
the fact that Ez [f(xJzJ)] =

P
S⊆J f

S(x), and, finally the
last equality follows from Parseval’s Theorem.

The proposition then follows from Proposition 2.9.


