
Testing convexity of functions over finite domains

Aleksandrs Belovs1, Eric Blais2, and Abhinav Bommireddi2

1Faculty of Computing, University of Latvia, Riga, Latvia, aleksandrs.belovs@lu.lv
2Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada,

eblais,vabommir@uwaterloo.ca

August 8, 2020

Abstract

We establish new upper and lower bounds on the number of queries required to test convexity
of functions over various discrete domains.

1. We provide a simplified version of the non-adaptive convexity tester on the line. We re-

prove the upper bound O
(log(εn)

ε

)
in the usual uniform model, and prove an O

(
logn
ε

)
upper

bound in the distribution-free setting.

2. We show a tight lower bound of Ω
(log(εn)

ε

)
queries for testing convexity of functions

f : [n] → R on the line. This lower bound applies to both adaptive and non-adaptive
algorithms, and matches the upper bound from item 1, showing that adaptivity does not
help in this setting.

3. Moving to higher dimensions, we consider the case of a stripe [3] × [n]. We construct an
adaptive tester for convexity of functions f : [3]×[n]→ R with query complexity O(log2 n).
We also show that any non-adaptive tester must use Ω(

√
n) queries in this setting. Thus,

adaptivity yields an exponential improvement for this problem.

4. For functions f : [n]d → R over domains of dimension d ≥ 2, we show a non-adaptive query

lower bound Ω
(

(nd)
d
2

)
.

1 Introduction

Let X be a subset of Rd. A function f : X → R is called convex if for every finite collection of points
x1, x2, . . . , xk ∈ X and non-negative reals λ1, . . . , λk ≥ 0 satisfying

∑
i λi = 1 and

∑
i λixi ∈ X, we

have
f
(∑

i

λixi

)
≤
∑
i

λif(xi).

Convex functions are typically considered on convex domains, but for property testing questions,
we will be mostly interested in the case when X is a finite (hence, discrete) subset of Rd. In this
case, one can show that f is convex on X if and only if it can be extended to a convex function
f̃ : Rd → R on the entire linear space Rd.1

1I.e., f is convex on X if and only if there exists a function f̃ that is convex on Rd and satisfies f̃(x) = f(x) for
every x ∈ X. See Section 2 for details.

1

For a finite set X, we say that a function g : X → R is ε-far from convex with respect to some
proximity parameter 0 < ε < 1 if for every convex function h : X → R, we have

∣∣{x ∈ X : h(x) 6=
g(x)]}

∣∣ ≥ ε|X|.
In this work, we consider the problem of distinguishing convex functions from those that are

far from convex in the property testing framework [11, 19]. Formally, an (ε,X)-convexity tester is
a bounded-error randomized algorithm that queries the values of an unknown function f : X → R
on a set of inputs from X and distinguishes the case where f is convex from the one where f is
ε-far from convex. A tester is non-adaptive if it selects all the inputs to query before observing the
value of f on any of those inputs; otherwise the tester is adaptive.

Our goal is to determine the minimum query complexity of (ε,X)-convexity testers for various
discrete sets X, and to determine whether the query complexity of adaptive and non-adaptive
(ε,X)-convexity testers differs for any set X. While there has been work studying the problem of
testing convexity of functions in various settings [17, 2, 16, 3, 4], large gaps remain between the best
upper and lower bounds. We give new bounds on the number of queries required to test convexity
of functions on the line, over a stripe, and over higher-dimensional domains.

1.1 Testing convexity on the line

The problem of testing convexity of functions f : [n]→ R on the line was first considered by Parnas,
Ron, and Rubinfeld [17]. They showed that O(logn

ε) queries suffice to ε-test convexity in this setting.

A slightly better upper bound of O(log(εn)
ε) was shown by Ben-Eliezer [2]. This follows from his

more general algorithm for testing local properties of arrays. We give a more direct algorithm.

Theorem 1.1. There exists an ε-tester for convexity of functions f : [n] → R over the line with

complexity O(log(εn)
ε). The tester is non-adaptive and has 1-sided error.

We also consider the problem of testing convexity of functions on the line in the distribution-
free model of Halevy and Kushilevitz [12]. In this model, the distance of a function g : X → R
to convexity is measured with respect to some unknown distribution D over the domain X. The
algorithm can query the target function f : [n]→ R as usual, and it can also sample from D. The
tester must distinguish the case where f is convex and the case where f is ε-far from a convex
function with respect to D, in that Prx∼D[g(x) 6= h(x)] ≥ ε for every convex function h. The
tester must work for any distribution D, and the complexity measure is the worst-case sum of the
number of queries to f and samples from D. Thus, distribution-free property testing is at least as
hard as usual property testing, and for some problems the query complexity is much larger in the
distribution-free setting [12].

We show that our algorithm for testing convexity of functions f : [n] → R can be made
distribution-free with only a slight loss in the dependence of ε.

Theorem 1.2. There exists a non-adaptive 1-sided algorithm that ε-tests a function f : [n]→ R for
convexity with respect to an unknown distribution D using O

(logn
ε

)
queries to f and O

(
1
ε

)
samples

from D.

The algorithms that establish Theorems 1.1 and 1.2 are both triple testers: they repeatedly
draw triples of points from a natural probability distribution over [n]3 and test that the function is
convex on those three points.2 This has a number of consequences. First, both our algorithm admit

2This is similar to the situation for the well-known pair testers for monotonicity [8] that sample pairs of points
from a natural distribution and test them for monotonicity. Note also that while it is not presented as such, the
convexity tester of Parnas, Ron, and Rubinfeld [17] can also be reformulated as a triple tester.

2

time-efficient implementation. Second consequence is for quantum testers (see [14] for introduction
to quantum property testing). Using quantum amplitude amplification [5], we can achieve quadratic
improvement. Thus, in the standard property testing model, the quantum query complexity for

ε-testing convexity is O
(√

ε−1 log(εn)
)

, and in the distribution-free setting the quantum query

complexity of the problem is O
(√

ε−1 log n
)

. Again, both of the algorithms can be implemented

time-efficiently.

Blais, Raskhodnikova, and Yaroslavtsev [4] showed that the bound in Theorem 1.1 on the
query complexity of non-adaptive convexity testers is optimal when ε > 0 is a constant. For
adaptive algorithms, this only gives a lower bound of Ω(log log n) by the standard conversion
between adaptive and non-adaptive algorithms. We close this gap and show that the bound in
Theorem 1.1 is optimal for all values of ε ≤ 1

9 , even when the testers are allowed to be adaptive.

Theorem 1.3. For every 1
n ≤ ε ≤

1
9 , any ε-tester for convexity of functions f : [n]→ R has query

complexity Ω
(log(εn)

ε

)
.

In particular, the lower bound in Theorem 1.3 implies that adaptivity does not help to reduce
query complexity when testing convexity of functions over the line. This is analogous to the
situation for testing monotonicity of functions over the line [10]. This result, combined with the
distance approximation algorithm of Fattal and Ron [9], also shows that approximating the distance
to convexity is essentially no harder than testing convexity.

1.2 Testing convexity over 2-dimensional domains

Parnas, Ron, and Rubinfeld [17] asked whether convexity can be tested efficiently for functions over
2-dimensional domain. The first non-trivial upper bound on the query complexity for testing the
convexity of functions mapping [n]2 to R was obtained by Ben-Eliezer [2], who showed that O(n)
queries suffice for non-adaptive testing of convexity—a number of queries that is sublinear (in fact,
quadratically smaller) than the size of the domain.

The only previous lower bound for non-adaptive testing of convexity of functions f : [n]2 → R
was again Ω(log n) [4], so it remained open whether it is possible to test convexity non-adaptively
using a number of queries that is exponentially smaller than the size of the domain. We show that
it is not, and that the Ben-Eliezer bound is optimal for all non-adaptive algorithms when ε is a
constant.

Theorem 1.4 (Special case of Theorem 1.6 below). Any non-adaptive Ω(1)-tester for convexity of
f : [n]2 → R has query complexity Ω(n).

Note that Theorem 1.4 does not eliminate the possibility that convexity of functions on [n]2 can
be tested with polylog(n) queries by adaptive algorithms. Based on the results for testing convexity
in 1D, one may be tempted to guess that adaptivity does not help in this setting either and that
the bound in the theorem could be strengthened to apply to adaptive algorithms as well. To test
this intuition, we consider an intermediate domain between 1-dimensional and full 2-dimensional
case: the stripe [3] × [n]. The same intuition from the 1-dimensional case would suggest that
adaptivity does not help in testing convexity of functions over the stripe. We show, however, that
here adaptivity can be used to obtain an exponential improvement on the query complexity of
convexity testers.

3

Theorem 1.5. There exists a 1-sided-error algorithm that ε-tests a function f : [3] × [n] → R for

convexity in the distribution-free testing model using O
(log2 n

ε

)
queries to f and O

(
1
ε

)
samples from

D. By contrast, any non-adaptive Ω(1)-tester for convexity of f : [3] × [n] → R (in the standard
testing model) has query complexity Ω(

√
n).

The exponential gap between the adaptive and non-adaptive query complexity of convexity
testing in Theorem 1.5 stands in stark contrast to the situation for the related problem of testing
monotonicity: there it is known that adaptivity does not yield any reduction in query complexity,
as there is a non-adaptive monotonicity tester for functions f : [n]d → R with query complexity
O(d log n) [6] and every monotonicity tester (adaptive or not) has query complexity Ω(d log n) [7].

1.3 Testing convexity over high-dimensional domains

Ben-Eliezer’s upper bound for testing convexity [2] also carries over to high-dimensional settings.
When the dimension d is large, however, the bound is quite weak: it shows that O(dnd−1) queries
suffice to test convexity non-adaptively. This is (barely) sublinear in the domain size nd when
d = o(n).

Blais, Raskhodnikova, and Yaroslavtsev [4] previously showed that non-adaptive algorithms that
test linear convexity of functions over the hypergrid [n]d have query complexity Ω(d log n). (Linear
convexity is a slightly different notion of convexity than the one studied here; see Appendix A for
details.) We show that a much stronger lower bound holds for the problem of testing convexity:
any non-adaptive algorithm for testing convexity of functions over [n]d has query complexity that
is linear in n and exponential in d.

Theorem 1.6. For every d ≥ 2 and any ε ≤ 1
10 , any bounded-error non-adaptive ε-tester for

convexity has query complexity Ω
(

(nd)
d
2

)
.

Note that the trivial upper bound for testing convexity (or any other property) of functions
over [n]d is nd, so Theorem 1.6 shows that non-adaptive convexity testers cannot do significantly
better (qualitatively) than the näıve brute-force testing algorithm.

This result also implies a general lower bound of Ω(d log n) queries for adaptive convexity testers
of convexity for functions over the hypergrid [n]d. This is the first general lower bound for convexity
testing which shows that the query complexity must scale as the product of the dimension and the
logarithm of the length of hypergrids.

1.4 Discussion and open problems

Our results suggest two main open problems.

Open Problem 1. Is it possible to Ω(1)-test convexity of functions f : [n]×[n]→ R with polylog(n)
queries?

Parnas, Ron, and Rubinfeld [17] also raised the problem of determining the query complexity for
testing convexity in d ≥ 2, and the upper bound in Theorem 1.5 provides the first suggestion that
the query complexity of the problem might be exponentially smaller than—and not just sublinear
in—the domain size. As the lower bound in the same theorem shows, however, any algorithm that
would provide a positive answer to this question would have to be adaptive.

We can also generalize Open Problem 1 to ask whether convexity testing of f : [n]d → R can be
done with query complexity polylog(n) for every constant value of d. For high-dimensional settings,
it is also natural to ask about the dependence on d.

4

Open Problem 2. Must every Ω(1)-tester for convexity of functions f : [n]d → R have query
complexity 2Ω(d)?

Theorem 1.6 gives a positive answer to this question for non-adaptive algorithms, but it still
allows for the possibility that there is a convexity tester with query complexity that is polynomial
in d. It is also possible that the best query complexity of convexity testers is subexponential in d,
even if it is not polynomial in d. (C.f., for instance, the submodularity testing problem, where it

is known that 2Õ(
√
d) queries suffice to test submodularity of functions f : {0, 1}d → R [20]. It is

possible that a similar bound holds for testing convexity as well.)

1.5 Organization

We introduce some basic facts about convexity in Section 2, estalish our algorithmic results in
Sections 3 and 4, and give the proofs for our hardness results in Sections 5 and 6.

Specifically, the proofs of Theorems 1.1 and 1.2 for testing convexity over one-dimensional
domains are presented Section 3. The upper bound in Theorem 1.5 for testing convexity of functions
on the stripe is established in Section 4.

The lower bound in Theorem 1.6 for testing convexity over high-dimensional domains is pre-
sented in Section 5; the lower bound for the stripe in Theorem 1.5 is found in Section 5.6; and the
optimal lower bound for testing convexity on the line in Theorem 1.3 is presented in Section 6.

2 Basic facts about convexity

In this section, we establish some basic facts about convex functions over finite subsets of Rd. We
use the notation [n] = {0, 1, . . . , n − 1} and [a..b] = {a, a + 1, . . . , b − 1}. All the results in this
section are standard; we provide the missing proofs in Appendix B for completeness.

The restriction of a function f : X → R to a domain Y ⊆ X is the function f |Y : Y → R defined
by f |Y (y) = f(y) for each y ∈ Y . Our first basic observation is that restriction preserves convexity.

Lemma 2.1. Let f : X → R be a convex function and Y ⊆ X. Then the function f |Y : Y → R
restricted to Y is also convex.

To define the extension of convex functions, we first need the notion of a centred simplex.

Definition 2.1. A simplex in Rd is a set of affinely independent points. A centred simplex in Rd
is a collection of points x1, . . . , xk, z such that x1, . . . , xk form a simplex, and z can be (uniquely)
expressed as

z =
∑
i

λixi, (1)

where all λi > 0 and
∑

i λi = 1. The point z is called the centre of the simplex, and we say that
the simplex is centred at z when this condition is satisfied.

In other words, x1, . . . , xk, z is a centred simplex if z is inside the convex hull of x1, . . . , xk and
no xi can be removed from the simplex without breaking this property. When X is a finite subset
of Rd and x1, . . . , xk, z ∈ X, we say that the centred simplex is of X.

Definition 2.2. The centred simplex x1, . . . , xk, z of X is minimal iff z is the only point of X
inside the convex hull of the simplex x1, . . . , xk except for its vertices.

5

Lemma 2.2. Let f : X → R be a convex functions with X a finite subset of Rd. Then the function
can be extended to a convex function on the whole space Rd. That is, there exists a convex function
g : Rd → R such that g(x) = f(x) for all x ∈ X. Moreover, for a point z in the convex hull of X
the function g can be defined as

g(z) = min
x1,...,xk

∑
i

λif(xi), (2)

where x1, . . . , xk range over all simplices of X centred at z, and λi are as in Equation (1).

Combining the above two lemmata, we see that if f : X → R is a convex function with X ⊆ Rd
finite, and X ⊆ Y ⊆ Rd, then the function f can be extended to a convex function on Y . This is
how we will usually use the above lemma.

We say that a function f : X → R is convex on a centred simplex x1, . . . , xk, z if its restriction
to this set of points is convex. This is equivalent to

f(z) ≤
∑
i

λif(xi),

where λi are as in Equation (1). This notion provides a characterization of convexity that we will
use to test convex functions.

Theorem 2.3. A function f : X → R is convex if and only if it is convex on every minimal centred
simplex of X.

Let us apply the general Theorem 2.3 to the setting where f is a function over the line. For the
rest of this section, let X = {x1, x2, x3, . . .} ⊆ R where x1 < x2 < x3 < · · · . A centred simplex in
this case is a triple x < y < z and y is the centre of the triple. A function f is convex on the triple
if and only if

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
. (3)

A minimal centred simplex is a minimal triple of the form xi < xi+1 < xi+2. Thus, we get the
following corollary.

Corollary 2.4. The function f : X → R is convex if and only if it is convex on every triple
xi < xi+1 < xi+2 of consecutive points.

A nice feature of convex functions on the line is that we can efficiently find their minimum.

Theorem 2.5. Assume f : X → R is a convex function. It is possible to find the minimum of f
on X in time O(log |X|).

Proof. Use bisection. Let n = |X|. If n < 6, query all the values of f and find the minimum.
Otherwise, let a = bn/2c and b = a + 1. Query f(xa) and f(xb). If f(xa) < f(xb), execute the
minimum search on the set x1, . . . , xa. Otherwise, execute the minimum search on the set xb, . . . , xn.
By each execution, the size of the set decreases roughly by a factor of 2, hence O(log |X|) iterations
suffice.

3 Algorithms for testing convexity over the line

In this section, we prove Theorem 1.1 and Theorem 1.2. Both theorems are established using similar
ideas, by constructing explicit convexity testing algorithms that are inspired by the monotonicity
tester on the line [1].

6

Definition 3.1. Let a ∈ [n]. A triple test rooted at a is a (non-necessarily sorted) triple (a, b, c)
such that

• b ∈
{

2k
⌊
a−1
2k

⌋
, 2k
⌈
a+1
2k

⌉}
for some integer k satisfying 1 ≤ 2k < n, and

• c is either a+ 1 or b+ 1.

The element a is called the root, and b is called a hub of a. The integer 2k is called the height of
the triple. We say that a passes the triple test if the function f is convex on {a, b, c}. We say that
a passes all its triple tests if it passes all the triple tests rooted at it.

Claim 3.1. If x < y − 1, then x and y have a common hub with height not exceeding 2(y − x).

Proof. Let k be such that y−x
2 ≤ 2k ≤ y−x. There can be either one or two multiples of 2k between

x and y. If there is just one then we are done and that is the common hub. If there are two then
there will be exactly one multiple of 2k+1 between x and y and that is their common hub.

Lemma 3.2. Assume x < y < z is a non-convex triple. Then at least one of x, y or z fails some
of its triple tests with height not exceeding 2 ·max{y − x, z − y}.

Proof. Assume for now that y− x ≥ 2 and z− y ≥ 2. Let h be the common hub between x, y with
height not exceeding 2(y − x) and h′ be the common hub between y, z with height not exceeding
2(z − y). Consider the function f restricted to the domain x < h < y < h′ < z. By Lemma 2.1,
we know the function is not convex, hence, by Corollary 2.4, it is non-convex on at least one of the
triples (x, h, y), (h, y, h′), or (y, h′, z). Let us consider the three cases separately:

• f is non-convex on the triple x, h, y. Consider the function f on the domain x < h < h+1 ≤ y.
Using Corollary 2.4 if needed, we get that the function f is non-convex on one of the triples
(x, h, h + 1) or (h, h + 1, y). Each of them constitutes a triple test: a = x, b = h, c = h + 1,
or a = y, b = h, c = h+ 1, respectively.

• f is non-convex on the triple h, y, h′. Consider the function f on the domain h < y < y+ 1 ≤
h′. The function f is non-convex on one of the triples (h, y, y + 1) or (y, y + 1, h′). Again,
each of them constitutes a triple test: a = y, b = h, c = y + 1, or a = y, b = h′, c = y + 1,
respectively.

• f is non-convex on the triple y, h′, z. This case is analogous to the first one.

If y = x + 1, then the above analysis works with h = x (the first case never holds, and x = y − 1
is a hub of y). If z = y + 1, the above analysis works with h′ = z (the third case never holds, and
z = y + 1 is a hub of y). Finally, if both y = x + 1 and z = y + 1, we can use the triple test with
a = x, b = y, and c = z.

A simple consequence of this lemma is that the function f is convex on the set of points passing
all their triple tests. This allows us to formulate the following notion.

Definition 3.2. A convex replacement of a function f : [n] → R is a convex function f̃ : [n] → R
such that f(x) = f̃(x) for all x that pass all their triple tests.

The proof of Theorem 1.2 now follows easily.

7

Proof of Theorem 1.2. The algorithm is simple: sample a from D and run all the triple tests rooted
at a. It takes 1 sample and O(log n) queries. The probability that this test fails is at least the
distance (with respect to D) to the convex replacement to f . Repeat the above test O(1/ε) times
to increase the success probability to Ω(1).

We are now also ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The algorithm is a triple tester. It selects a root a of the triple uniformly
at random from [n], select a triple rooted at a with height at most 2εn uniformly at random, and
tests it for convexity. For completeness, let us restate the algorithm:

Algorithm 1: ConvexityTest1D

1 Draw a uniformly at random from [n];
2 Draw k uniformly at random from {0, . . . , dlog2(2εn)e};
3 Let b be either the largest multiple of 2k strictly smaller than x, or the smallest

multiple of 2k strictly larger than x, each case with probability 1/2;
4 Let c be either a+ 1 or b+ 1, each with probability 1/2;
5 Query f(a), f(b) and f(c) and test whether a, b, c form a convex triple;

We claim that if the function f is ε-far from convex, then this test fails with probability
Ω(ε/ log(εn)). Thus, this test has to be repeated O(log(εn)/ε) times.

We will construct a subset A ⊆ [n] of size εn such that every a ∈ A fails one of its triple tests
with height at most 2εn. Start with S ← [n]. We treat S as a sorted list. While |[n] \ S| < εn,
the function f |S is non-convex. Choose three neighbouring elements x < y < z in S that violate
convexity. Let (a, b, c) be the non-convex triple constructed in Lemma 3.2. The height of this triple
is at most 2εn. Remove a from S. When |[n] \ S| ≥ εn, let A← [n] \ S.

4 Algorithm for testing convexity on the [3]× [n] stripe

In this section, we prove the upper bound in Theorem 1.5.

4.1 High-level description

Our approach to testing convexity on the stripe [3]× [n] is as follows. This set is very close to the
1-dimensional line, so we can draw a lot from the tester of Section 3. In this vein, for i ∈ [3], let
fi : [n]→ R be the restrictions of f to the column {i}× [n]. We will construct a convex replacement
f̃ of f so that every point where f and f̃ disagree fails some test. Sampling a ∈ [3] × [n] from D
and executing the test on a will give us a distribution-free tester of convexity.

Any simplex centred at a point in the line {0}×[n] or {2}×[n] is completely contained inside this
line. Hence, for f0 and f2 we can simply take convex replacements f̃0 and f̃2 from Definition 3.2,
and assume that f̃ restricted to {0} × [n] or {2} × [n] is f̃0 or f̃2, respectively.

Let us define a function h : {0, 1/2, 1, 3/2, . . . , n− 1} → R as

h(x) = min
δ

f̃0(x− δ) + f̃2(x+ δ)

2
. (4)

Note that h(x) = g(1, x) where g is the convex extension, as in Equation (2), of the function f̃
restricted to {0, 2} × [n]. (We have not defined f̃ on the line {1} × [n] yet.) By Lemma 2.2 and

8

Lemma 2.1, the function h is convex. Its value can be computed by minimising the convex function
δ 7→

(
f̃0(x− δ) + f̃2(x+ δ)

)
/2. This is exactly the place where our tester uses adaptivity.

The main part of our algorithm deals with interplay between the functions h and f1. Let
us give some relations between h and f1 for the case when f is convex. First, the function f
is convex on any simplex of the form (0, x − δ), (2, x + δ) centred at (1, x), which implies that
f1(x) ≤ h(x) for every x ∈ [n]. Next, for every {x, x + 1} ⊆ [n], let β : R → R be the affine
function agreeing with f1 at x and x + 1. We have that the function f is convex on any simplex
of the form (0, z − δ), (1, x), (2, z + δ) centred at (1, x + 1), which implies that β(z) ≤ h(z) for all
z > x+ 1.3 Similarly, considering simplices (0, z − δ), (1, x+ 1), (2, z + δ) centred at (1, x), we get
that β(z) ≤ h(z) for all z < x. Our tester will check these conditions.

4.2 Subroutines

We are now ready to describe the subroutines used by our tester. The first subroutine is the
convexity test for the line from Section 3.

Algorithm 2: 1DTest(i, x)

1 Execute all the triple tests rooted on x for the function fi as in Definition 3.1;
2 If at least one of the tests fails, output that f is not convex and terminate the

algorithm;

The complexity of this subroutine is O(log n). The following claim is a direct consequence of
Definition 3.2.

Claim 4.1. If 1DTest(i, x) does not fail for i = 0 or i = 2, then f̃i(x) = fi(x).

The next subroutine evaluates the function h.

Algorithm 3: Evaluate(x)

1 Find a point δ∗ where the function g(δ) = 1
2(f0(x− δ) + f2(x+ δ)) attains its

minimum, assuming this function is convex;
2 For y ∈ {x− δ∗ − 1, x− δ∗, x− δ∗ + 1} perform 1DTest(0, y);
3 For y ∈ {x+ δ∗ − 1, x+ δ∗, x+ δ∗ + 1} perform 1DTest(2, y);
4 Check that g(δ∗) ≤ g(δ∗ − 1) and g(δ∗) ≤ g(δ∗ + 1);
5 Return g(δ∗);

Claim 4.2. The subroutine either finds a violation of convexity or returns h(x). The complexity
of the subroutine is O(log n).

Proof. Define g̃(δ) = 1
2(f̃0(x − δ) + f̃2(x + δ)) so that h(x) = minδ g̃(δ). Steps 2 and 3 of the

subroutine ensure that g and g̃ agree on δ∗ − 1, δ∗ and δ∗ + 1. If Step 4 fails, we get that g 6= g̃,
meaning that the function f is not convex. Otherwise, we get that g̃(δ∗) ≤ g̃(δ∗ − 1) and g̃(δ∗) ≤
g̃(δ∗ + 1). As g̃ is convex, this implies that the minimum of g̃ is attained at δ∗. The complexity
estimate is obvious.

3Note that this observation does not immediately follow from the first observation and convexity of f1, because it
also incorporates half-integer values of z, where f1 is not defined.

9

4.3 The algorithm

Now let us state the test for convexity over the stripe.

Algorithm 4: ConvexityTestStripe

1 Sample (i, x) from D;
2 Perform 1DTest(i, x);
3 if i = 1 then
4 Evaluate h(x) and verify that f1(x) ≤ h(x);
5 Perform 1DTest(1, x− 1) and 1DTest(1, x+ 1);
6 Let β− : [n]→ R be the affine function satisfying β−(x− 1) = f1(x− 1) and

β−(x) = f1(x);
7 Minimise the convex function h− β− on the interval

{x+ 1, x+ 3
2 , x+ 2, . . . , n− 1} and verify that the minimum is non-negative;

8 Let β+ : [n]→ R be the affine function satisfying β+(x) = f1(x) and
β+(x+ 1) = f1(x+ 1);

9 Minimise the convex function h− β+ on the interval {0, 1
2 , 1, . . . , x− 1} and

verify that the minimum is non-negative;

10 end

The tester uses one sample from D and O(log2 n) queries to f , since steps 7 and 9 each require
O(log n) calls to the Evaluate subroutine, which in turn makes O(log n) queries to f .

By the discussion at the beginning of the section, any convex function f passes the test with
probability 1. Let f : [3] × [n] → R be any function that is ε-far from convex with respect to D.
Let S be the set of points that pass the test. We claim that f restricted to S is convex. Hence, the
error probability of the test is at least ε, and it suffices to repeat the test O(1/ε) times.

In order to prove that f is convex on S, we extend it to a slightly larger domain. This is done
to better handle possible minimal centred simplices. Let as above f̃i be convex replacement of fi.
We claim that the function f̃ : ({0, 2} × [n]) ∪ S → R defined by

f̃(i, x) =

{
f̃i(x), if i = 0 or i = 2;

f(i, x), if (i, x) ∈ S;

is convex (the two values are equal when both conditions apply). As f and f̃ agree on S, this
implies that f restricted to S is convex.

By Theorem 2.3 and above discussion, it suffices to consider minimal simplices centred at points
of the form (1, x) ∈ S. From Lemma 3.2, we get that the function f̃ is convex on a centred simplex
of the form {(1, x), (1, y), (1, z)} ⊆ S. The function f̃ is also convex on a simplex (0, x−δ), (2, x+δ)
centred at (1, x) because h(x) ≥ f1(x) by Step 4.

Any other minimal simplex centred at (1, x) is of the form (0, a), (1, b), (2, c). Let y = (a+ c)/2,
and assume b < x < y (the case y < x < b is similar). From Step 7 of the algorithm, we know that
the function g : {x− 1, x, y} → R defined by

g(x− 1) = f1(x− 1),

g(x) = f1(x),

g(y) = h(y)

is convex. Both (1, b) and (1, x) are in S and so they pass the test. Thus, from Steps 2 and 5, we
have that f1 and f̃1 agree on b, x− 1 and x. As f̃1 is convex, and using Corollary 2.4, we have that

10

the function g′ : {b, x− 1, x, y} → R defined by

g′(b) = f1(b),

g′(x− 1) = f1(x− 1),

g′(x) = f1(x),

g′(y) = h(y)

is also convex. Finally, since h(y) ≤ (f̃0(a) + f̃2(c))/2, we get that f̃ is convex on the simplex
(0, a), (1, b), (2, c) centred at (1, x).

5 Lower bounds for testing convexity in high dimensions

In this section we prove the Ω
(

(nd)
d
2

)
lower bound for non-adaptive algorithms that test convexity

on the [n]d grid in Theorem 1.6 and the Ω(
√
n) lower bound for non-adaptive algorithms that test

convexity over the stripe [3]× [n] in Theorem 1.5.

5.1 Overview of the proof

The lower bounds in Theorems 1.5 and 1.6 are both obtained using the same general construction.
We describe it in the setting of functions over [n]d for simplicity.

The key idea is that we can construct convex functions whose increase in slope (i.e., second
derivative) is small in a particular direction and large in the rest of the directions. We can perturb
the values of such functions by ±1 in a way that yields functions which are far from convex but
for which the only violation of convexity on the hypergrid will contain at least two points that
form a line along the direction where the slope was increasing slowly. So any algorithm that does
not query two points which give a line in that direction cannot catch any violations of convexity.
To get a strong lower bound from this key idea, we show that it is possible to “hide” the slowly-
increasing direction among Ω

(
(nd)d

)
possible directions. Since a set of q queries contains pairs of

points that form at most q2 different directions, this construction shows that any non-adaptive
convexity testing algorithm with one-sided error—i.e., that always accepts convex functions—must
have query complexity at least Ω

(
(nd)d/2

)
.

To generalize this argument in a way that gives a lower bound for non-adaptive testing algo-
rithms with two-sided error as well, we consider a different perturbation of the convex functions of
±1 that preserves convexity. We can do this by performing the same perturbation (i.e., either all
+1 or all −1) for every point along a line in the slowly-increasing direction. The perturbations for
each line are chosen independently at random; by ensuring that the slope of the original function
is large enough in all other directions, these independent perturbations do not violate convexity.
As we show in the rest of this section, non-adaptive algorithms with query complexity o

(
(nd)d/2

)
cannot distinguish this type of perturbation from the type that breaks convexity.

5.2 Preliminaries

We write x[a,b] to denote the coordinates xa, xa+1, . . . , xb of an input x. We use the following
standard results in our proof.

11

Lemma 5.1 (Hoeffding’s inequality). Let x1, . . . , xn ∈ R be negatively correlated random variables
bounded by xi ∈ [bi, ai] and define x = 1

n(x1 + · · ·+ xn). Then

Pr [|x− E[x]| ≥ t] ≤ 2e
2n2t2∑n

i=1
(bi−ai)

2
.

Lemma 5.2 (Yao’s minimax). Fix any disjoint sets P and N of functions mapping X to Y. Let
DP and DN be probability distributions on functions mapping X to Y that satisfy

Prf∼DP [f ∈ P] = 1 and Prg∼DN [f ∈ N] = 1− o(1).

Let D be the distribution where with probability 1
2 we sample from DY and with probability 1

2 we
sample from DN . If any non-adaptive deterministic algorithm Π with query complexity q can
not answer correctly with probability 2

3 , then any non-adaptive randomized algorithm that decides
whether f ∈ P or f ∈ N with error at most 1

4 makes Ω(q) queries.

Proposition 5.3 (Theorem 332 [13]). Let a, b ∈ [n] be two numbers picked uniformly at random.
The probability that the pair (a, b) is co-prime is > 0.5.

5.3 Change of basis and convexity

Definition 5.1. A lattice basis is a matrix B = [b1, . . . , bk] ∈ Rd×k whose columns are linearly
independent vectors in Rd. The lattice generated by B is the set

L(B) =
{
Bx | x ∈ Zk

}
=
{ k∑
i=1

xibi | x1, . . . , xk ∈ Z
}
.

Fact 5.4 (Lemma 1.2 [18]). B ∈ Z[d]×[d] is a basis of Zd if and only if its determinant is ±1.

Definition 5.2. Given any vector a ∈ Zd whose first two coordinates a1 and a2 are coprime, the
canonical basis completion of a is the basis B(a) = [b1(a), . . . , bd(a)] ∈ Zd×d whose ith column is

bi(a) =

a if i = 1

c1e1 + c2e2 if i = 2

ei if 3 ≤ i ≤ d

where c1 and c2 are the integers that satisfy a1c1 − a2c2 = 1 and ei ∈ Zd is the vector with value 1
in the ith coordinate and 0 in all other coordinates.

The next proposition shows that the canonical basis completion of any vector a ∈ Zd that
satisfies the condition of the above definition generates the lattice Zd.

Proposition 5.5. Given any vector a ∈ Zd whose first two coordinates a1 and a2 are coprime, the
canonical basis completion B(a) of a generates the lattice L(B(a)) = Zd.

Proof. Follows from Fact 5.4.

If x ∈ Zd be the representation of a point according to the basis I, then xB = B−1x is the
representation according to the basis B. So y = x+ a and yB = xB + e1 are equivalent.

12

5.4 Constructions

In this subsection we show how to construct the distributions DY ,DN . We also prove that every
function in DY is convex and every function in DN is 1

20 -far from convex.

Let B be the distribution over bases obtained by drawing a vector a ∈ Zd uniformly at random
among all vectors whose coordinates are in the range 0 ≤ a1, a2, . . . , ad ≤ n

4d and whose first two
coordinates a1 and a2 are coprime and returning the canonical basis B(a) for a.

The distributions DY and DN are both obtained by drawing a basis from B and starting with
a convex function gB associated with that basis that we will call the canonical convex function for
B.

Definition 5.3. The canonical convex function for a basis B of Zd is the function gB : Zd → Z
defined by

gB(x) = (xB1)2 + 2
d∑
i=2

(xBi)2.

Our distribution on convex functions is obtained by shifting the values of the canonical convex
function gB in a way that preserves convexity.

Definition 5.4 (DY). Let SB to be the distribution on functions h : [n]d → Z obtained by drawing
values σ(z) ∈ {±1} independently and uniformly at random for each z ∈ Zd−1 and defining

h(x) = gB(x) + σ(xB2 , . . . , x
B
d)

for each x ∈ [n]d. Let DY be the distribution obtained by drawing B ∼ B and then drawing a
function h ∼ SB.

Our distribution on functions that are far from convex is similar, except that the shifts of the
canonical convex function gB are now constructed in a way that will create many disjoint violations
of convexity.

Definition 5.5 (DN). Let AB be the distribution on functions h : [n]d → Z obtained by drawing
values σ(z) ∈ {±1} independently and uniformly at random for each z ∈ Zd−1 and defining

h(x) = gB(x) + σ(xB2 , . . . , x
B
d) · (−1)x

B
1

for each x ∈ [n]d. Let DN be the distribution obtained by drawing B ∼ B and then drawing a
function h ∼ AB.

We complete this section by showing that the functions in the support of DY are indeed convex
and that the functions in the support of DN are far from convex.

Claim 5.6. Every function in the support of DY is convex.

Proof. Fix any B in the support of B, any h in the support of SB, and any points z, x1, . . . , xk ∈ Zd
such that z =

∑k
i=1 λixi is a convex combination of the points x1, . . . , xk, λ1, . . . , λk ≥ 0 and∑k

i=1 λi = 1. We will show that
∑k

i=1 λih(xi) ≥ h(z).

13

Let us define δ1, . . . , δk ∈ Zd to be the vectors for which xBi = zB + δi for each i ∈ [k]. Then

the identity
∑k

i=1 λi(x
B
i − zB) = 0 implies that

∑k
i=1 λiδij = 0 for every j ∈ [d] and that

k∑
i=1

λigB(xi) =

k∑
i=1

λi

(
(xBi1)2 + 2

d∑
j=2

(xBij)
2
)

=

k∑
i=1

λi

(
(zB1 + δi1)2 + 2

d∑
j=2

(zBj + δij)
2
)

= gB(z) +

k∑
i=1

λi

(
δ2
i1 + 2

d∑
j=2

δ2
ij

)
.

Define I = {i ∈ [k] | zB[2,d] 6= xBi[2,d]}. For each i ∈ I, the vector δi satisfies
∑d

j=2 δ
2
ij ≥ 1 so we have

that
k∑
i=1

λigB(xi)− gB(z) ≥ 2
k∑
i=1

λi

d∑
j=2

δ2
ij ≥ 2

∑
i∈I

λi.

Furthermore, since σ(xBi[2,d]) − σ(zB[2,d]) is always bounded below by −2 and the difference is zero

whenever i /∈ I, we obtain

k∑
i=1

λih(xi)− h(z) ≥
k∑
i=1

λigB(xi)− gB(z)− 2
∑
i∈I

λi ≥ 0.

Claim 5.7. Every function in the support of DN is 1
20 -far from convex.

Proof. Fix any B in the support of B and any h in the support of AB. For any points x, y, z ∈ [n]d

that satisfy yB = xB + e1 and zB = yB + e1, if we have

h(x) = gB(x)− 1, h(y) = gB(y) + 1, and h(z) = gB(z)− 1

Then the triple (x, y, z) is a witness of non-convexity of h since

1
2h(x) + 1

2h(z) = 1
2gB(x) + 1

2gB(z)− 1 = gB(y) < h(y) = h(1
2x+ 1

2z).

Hence from how we defined h, any four points w, x, y, z ∈ [n]d that satisfy xB = wB + e1,
yB = xB + e1 and zB = yB + e1 one of (w, x, y), (x, y, z) is a witness on non-convexity. Let
L = [n2d , n −

n
2d]d. For s ∈ Zd−1, let Ls = {x | x ∈ [n]d, ∃y ∈ L s.t yB[2..d] = xB[2..d] = s}. Since

a1, a2, ..., ad < n
4d we have that |Ls| ≥ 4. And since any 4 consecutive points with the same

[2, d] coordinates, in basis B, have a witness of non-convexity, the number of witnesses in Ls is

≥ |Ls|
7 . Also L ⊆ ∪s∈Zd−1Ls, hence the number of disjoint witnesses of non-convexity is greater

than |L|
7 = 1

7(1 − 1
d)dnd ≥ 1

20n
d. In every disjoint non-convexity witness we have to change the

value of at least one point to make the function convex. Therefore h is 1
20 -far from convex.

5.5 Proof of Theorem 1.6

Let D be the distribution where with probability 1
2 we pick something from DY and with probability

1
2 we pick something from DN . In this section we prove that there does not exist a non-adaptive

deterministic algorithm with query complexity q < 0.01(n4d)
d
2 that answers correctly with proba-

bility 2
3 on the distribution D. From Lemma 5.2 this would prove Theorem 1.6 as from Claim 5.6

14

and Claim 5.7 we know that every function in the support of DY is convex and every function in
the support of DN is 1

10 -far from convex.

Let us assume there exists such a deterministic algorithm Π that answers correctly on a distri-
bution D = 1

2DY + 1
2DN with probability greater than 2

3 . We can think of the distribution D as
pick a B ∼ B and pick a σ : Zd−1 → ±1 uniformly at random. And at the end with probability 1

2
we choose whether we want a function in the support of DY or DN . Let the points the algorithm
Π queries be Q = x1, x2,, xq ∈ Zd.

We refer to a B in the support of B to be exposed if there exists i, j < q such that xBi[2,d] = xBj[2,d],
otherwise we refer to it as hidden.

Claim 5.8. On the distribution D the probability that Π answers correctly is less than 0.6.

Proof. When B is hidden then there is no way the algorithm Π can answer correctly with probability
greater than 1

2 . This is because Prf∼DY |B is hidden
[f |Q = α] = Prg∼DN |B is hidden

[g|Q = α]. In fact it
is even stronger, along with function values at the queried points even if we give what the hidden
basis B is, the algorithm can not answer correctly with probability greater than 1

2 . This is because,
as for any i, j < q, xBi[2,d] 6= xBj[2,d], we have f |Q − gB|Q = s, for each s ∈ {−1,+1}q, with

probability 1
2q irrespective of f being in SB or AB. We can assume that the algorithm always

answers correctly when B is exposed. The probability that the algorithm Π answers correctly is
≤ Pr[B is exposed] · 1 + Pr[B is hidden] · 1

2 .

Since there are only
(
q
2

)
< q2, i, j < q pairs, there are at most q2 exposed B. From Proposi-

tion 5.3 and the construction of B we know that |B| ≥ 0.5(n4d)d and if q < 0.01(n4d)
d
2 the probability

that a B ∼ B is exposed is ≤ 1
100 .

Hence the success probability of the algorithm is ≤ 1
100 · 1 + 99

100 ·
1
2 ≤

101
200 .

This a contradiction on the assumption that the algorithm answers correctly with probability
2
3 . Hence there can not exist such a non-adaptive deterministic algorithm Π.

5.6 Non-adaptive lower bound for [3]× [n]

In this section we prove a Ω(
√
n) lower bound for non-adaptively testing convexity on the [3]× [n]

grid. The proof is almost the same as the the higher dimensional setting with slight changes.

Let B be the distribution over bases obtained by drawing a vector a ∈ Z2 uniformly at random
among all vectors whose first coordinate is 1 and the second coordinate is in the range 0 ≤ a2 ≤ n

100
and returning the canonical basis B(a) for a.

Define the distributions DY and DN as above with the one modification that the domain of h is
set to be [3]× [n] instead of [n]d. In this setting, we again have that every function in the support
of DY is convex, using the same argument as in Claim 5.6. But now it is no longer true that every
function in the support of DN is 1

10 -far from convex. Instead, we have that a function f ∼ DN is
1
10 -far from convex with probability 1− o(1).

Claim 5.9. A function f ∼ DN is 1
10 -far from convex with probability 1− o(1).

Proof. For any B in the support of B, a function h ∼ AB is 1
10 -far from convex with probability

1 − o(1). Let X = {x | x1 = 0, 0 ≤ x2 ≤ 9n
10 }. For any points x ∈ X and y, z ∈ Z2 that satisfy

yB = xB + e1 and zB = yB + e1 we have that y, z ∈ [3]× [n] and

h(x) = gB(x)− 1, h(y) = gB(y) + 1, and h(z) = gB(z)− 1

15

with probability 1
2 . Therefore, x, y, z form a witness for non-convexity with probability 1

2 . This is
true for all x ∈ X. Using Hoeffding’s inequality the probability that the number of witnesses for
non-convexity is less than n

3 is ≤ e−cn. Hence with probability 1− e−cn the distance to convexity

is at least
n
3

3n ≥
1
10 .

Any non-adaptive deterministic algorithm which performs q <
√
n

100 can not answer correctly
with probability grater than 0.6. The proof is similar to that of Claim 5.8. From Lemma 5.2 this
completes the proof of the lower bound in Theorem 1.5.

6 Lower bound for testing convexity on the line

The lower bound in Theorem 1.3 is obtained by using similar ideas to the ones in [1] used to prove
the analogous lower bound for testing monotonicity. The key idea is to introduce violations of
convexity that are only visible at a given scale.

We first show a lower bound of Ω(logn) for 1
9 -testing convexity and then extend it to general ε.

6.1 General principle

In this section, we formulate the general principle our proof is based on in an abstract form to
give the overall structure of our proof. In the next sections, we show how to apply it to convexity
testing.

We deal with randomised query algorithms whose inputs are functions f : [n]→ [r], and which
want to distinguish the set of positive inputs P from the set of negative inputs N , that is, accept
all f ∈ P and reject all g ∈ N . If T is a deterministic decision tree, then T (f) denotes the terminal
leaf of the decision tree T on input f .

Lemma 6.1. Let P and N be two disjoint sets of functions mapping [n] to [r]. Let A and B be
sets of labels, and assume there are mappings A 3 a 7→ fa ∈ P and B 3 b 7→ gb ∈ N . Let µ and ν
be two probability measures supported on A and B, respectively.

Assume that for every deterministic decision tree T of depth q, one can find a partial mapping
η : B → A such that

• T (fη(b)) = T (gb) for every b in the domain of η;

• µ(η(B)) = Ω(1);

• ν(η−1(a)) = Ω(µ(a)) for every a ∈ η(B).

Then, every randomised query algorithm distinguishing P from N makes Ω(q) queries.

Proof. Assume µ(η(B)) ≥ C1 and ν(η−1(a)) ≥ C2µ(a) for every a ∈ η(B), where C1, C2 > 0 are
constants. Performing standard error reduction, we may assume that the error probability of the
algorithm is a constant ε > 0, which depends on C1 and C2 in a way to be determined later.

By standard Yao’s principle, there exists a deterministic decision tree T that accepts with
probability ≥ 1− 2ε on fa where a ∼ µ, and rejects with probability ≥ 1− 2ε on gb where b ∼ ν.

Let P be the set of a ∈ A such that T accepts fa. By the first property of η, T accepts all gb
with b ∈ η−1(P). We have

ν(η−1(P)) ≥ C2µ(P ∩ η(B)) ≥ C2(C1 − 2ε).

16

As this quantity is supposed to be less then 2ε, we get a contradiction when 2ε < C2(C1 − 2ε), or

ε <
C1C2

2(1 + C2)
,

which is a positive constant.

6.2 The case of ε = Ω(1)

In this subsection we prove the following theorem, which covers the ε = Ω(1) case of Theorem 1.3.

Theorem 6.2. For an integer k, it takes Ω(k) queries to 1
9 -test a function f : [3k] → [(9k)3k] for

convexity.

We will define the required objects from Lemma 6.1. Clearly, n = 3k and r = (9k)3k. The sets
P and N consist of convex and 1/9-far-from-convex functions, respectively.

Let m = 3k3. Denote by [3]<k the set of ternary strings of length strictly less than k, including
the empty string. The set A consists of all the functions from [3]<k into [k3 − 1]. For a ∈ A, the
value of a on s ∈ [3]<k is denoted by as. We define the function fa ∈ P corresponding to a ∈ A by
giving its discrete derivative, which is a monotone function ∂fa : [3k]→ [mk]. That is,

fa(x) =
∑
z<x

∂fa(z). (5)

It is clear that if the function ∂fa is monotone, the function fa is convex. Also, the maximal value
of fa is at most 3k ·mk < (9k)3k.

The function ∂fa is defined as follows. Assume that the argument x ∈ [3k] is written in ternary
and the value ∂fa(x) ∈ [mk] in m-ary. We prepend leading zeroes if necessary so that each number
has exactly k digits. We enumerate the digits from left to right with the elements of [k], so that the
0-th digit is the most significant one, and the (k− 1)-st digit is the least significant one. We use xi
to denote the ith digit of x. For an interval [a..b], we define x[a..b] as the substring of x formed by
the digits xi as i ranges over [a..b].

Let

φa(x, i) =

ax[i] if xi = 0;

ax[i] + 1 if xi = 1;

m− 2ax[i] − 1 if xi = 2;

(6)

for x ∈ [3k] and i ∈ [k]. The i-th digit of ∂fa(x) is equal to φ(x, i). That is,

∂fa(x) =

k−1∑
i=0

mk−1−iφa(x, i). (7)

Let us make some clarifying comments here. The main case of interest in Equation (6) is xi = 0
and xi = 1. In the far-from-convex case, the first two cases will be essentially switched. This makes
the function far from convex, but it is hard to see that just by observing the xi = 0 or xi = 1
case independently. The xi = 2 case is necessary to ensure that the sum of the elements on the
right-hand side of Equation (6) is independent of as, see Claim 6.4.

Claim 6.3. Every function fa is convex.

Proof. Every function ∂fa is monotone because as < as + 1 < m− 2as − 1 for every s ∈ [3]<k.

17

Claim 6.4. The value fa(x) only depends on the values of as as s ranges over the prefixes of x,
and is independent from the remaining values of as.

Proof. From Equation (5) and Equation (7), we can write

fa(x) =
k−1∑
i=0

mk−1−i
∑
z<x

φa(z, i). (8)

Note that the sum of the elements on the right-hand-side of Equation (6) is m for every value of
ax[i]. This means that for every s ∈ [3]i−1 such that s < x[i], we have∑

z<x:z[i]=s

φa(z, i) = 3k−1−i ·m.

The number of such s is exactly x[i]. Using this, and summing explicitly over z < x : z[i] = x[i], we
get that

f(x) =
k−1∑
i=0

(3m)k−1−imx[i] +
k−1∑
i=0

mk−i−1 ·

x[i+1..k] · ax[i] , if xi = 0;

3k−1−i · ax[i] + x[i+1..k](ax[i] + 1), if xi = 1;

3k−1−i(2ax[i] + 1) + x[i+1..k](m− 2ax[i] − 1), if xi = 2.

The set B is defined as A× [k]. For a ∈ A, j ∈ [k], and δ = ±1, let a[j, δ] denote the function
b : [3]<k → [−1..k3] defined by

bs =

{
as + δ, if |s| = j;

as, otherwise.

Note that the value of bs may lie outside of [k3 − 1], but the definition fb still makes sense, and
Claim 6.4 still holds.

For (a, j) ∈ B, the corresponding function ga,j is defined by

ga,j(x) =

fa[j,+1](x), if xj = 0;

fa[j,−1](x), if xj = 1;

fa(x), if xj = 2.

Claim 6.5. Every function ga,j is 1
9 -far from convex.

Proof. First consider the case j < k − 1. Partition the domain of ga,j into 9-tuples which differ
only in the jth and the last (k − 1)th ternary digits. In a given 9-tuple, let x and y be the inputs
that satisfy xj = 0, xk−1 = 0 and yj = 1, yk−1 = 0. The definition of ga,j implies that

∂ga,j(x) = mk−1−j(ax[j] + 1) +

j−1∑
i=0

mk−1−iφa(x, i) +
k−1∑
i=j+1

mk−1−iφa(x, i)

and

∂ga,j(y) = mk−1−jay[j] +

j−1∑
i=0

mk−1−iφa(y, i) +

k−1∑
i=j+1

mk−1−iφa(y, i).

18

Since y[j] = x[j], we have ay[j] = ax[j] and φa(y, i) = φa(x, i) for each i < j. Therefore,

∂ga,j(y)− ∂ga,j(x) = −mk−1−j +
k−1∑
i=j+1

mk−1−i(φa(y, i)− φa(x, i))

≤ −mk−1−j +
k−1∑
i=j+1

mk−1−i(m− 1)

= −mk−1−j + (mk−1−j − 1) < 0

and so ∂ga,j(y) < ∂ga,j(x). Any convex function must disagree with ga,j on at least one of the four
points x, x+ 1, y, or y + 1.

The case j = k− 1 is similar, but only considering the triples which differ in the last, (k− 1)st,
digit.

The probability distributions µ and ν are uniform on A and B, respectively.

Let T be a deterministic decision tree of depth q ≤ k/2. Now we define the mapping η : B → A
which depends on T .

We will define η in the inverse direction, starting from a potential image a ∈ A. Let Q =
{x1, . . . , xq} ⊆ [3k] be the values which the decision tree T queries on input of fa. Denote S =
{x[j] | x ∈ Q, j ∈ [k]}. We will proceed only if

as ∈ [1..k3 − 2] for all s ∈ S. (9)

Take j ∈ [k], and define b as

bs =

as − 1 if s = x[j] for some x ∈ Q with xj = 0;

as + 1 if s = x[j] for some x ∈ Q with xj = 1;

as if s = x[j] for some x ∈ Q with xj = 2;

as otherwise.

(10)

if there are no conflicts among the first three cases in this definition. Note that Equation (9) implies
that b ∈ A. If b is well-defined, we let η(b, j) = a.

Claim 6.6. The mapping η is well-defined and T (fa) = T (gb,j) in the above notation.

Proof. By definition of gb,j and b, and using Claim 6.4, we have that fa(x) = gb,j(x) for all x ∈ Q.
This proves that T (fa) = T (gb,j).

Now consider (b, j) in the domain of η. By the previous paragraph it can only come from a ∈ A
such that T (fa) = T (gb,j). Then, the set Q is known, and the mapping in Equation (10) can be
inverted, proving that η is well-defined.

Claim 6.7. We have µ(η(B)) = Ω(1) and |η−1(a)| ≥ k/2 for every a ∈ η(B).

Proof. We will prove first that a ∈ η(B) if condition Equation (9) is satisfied. Indeed, in this case,
we do not set η(b, j) = a only if there are two inputs x, y ∈ Q such that x[j] = y[j] and xj 6= yj . By
a simple modification of [1, Lemma 6], there are at most |Q|− 1 values of j for which this happens.
As |Q| ≤ k/2, this proves the second part of the claim.

For the first part of the claim, the probability that Equation (9) does not hold is upper bounded
by the union bound over at most k/2 elements of Q and k prefixes of each x ∈ Q as

Pra∼µ[Equation (9) does not hold] ≤ k

2
· k · 2

k3 − 1
= o(1).

19

Now we can apply Lemma 6.1 and get that complexity of 1/9-testing functions for convexity is
Ω(k) = Ω(logn) as required.

6.3 General lower bound for the line

The lower bound can be strengthened for general values of ε as follows.

Theorem 6.8. Fix any 1
n ≤ ε ≤ 1

9 . Any ε-tester for convexity of functions [n] → Z has query
complexity

Ω
(

1
ε log(εn)

)
The proof of Theorem 6.8 is a slight extension of the proof of Theorem 6.2.

Define ` = d 1
9εe, k = blog3

n
` c, and m = 3k3. We will show that ε-testing the convexity of a

function mapping [`3k]→ Z requires Ω(`k) queries.

We will use notations with tilde for objects referring to the proof of Theorem 6.8, and non-tilde
notation for the objects from Section 6.2.

Let A be as in Section 6.2, and define Ã = A`. For a ∈ Ã, we have a = (a0, . . . , a`−1) with each
at ∈ A. The partial derivative is given by

∂̃fa(t · 3k + x) = t ·mk + ∂fat(x),

for t ∈ [`], x ∈ [3k], and ∂fa as in Section 6.2. The function f̃a is given by

f̃a(t · 3k + x) =
∑

z<t·3k+x

∂̃fa(t · 3k + x).

Similarly to Claims Claim 6.3 and Claim 6.4, we have the following result

Claim 6.9. Every function f̃a is convex. The value of f̃a(t · 3k + x) only depends on the values of
ats as s runs through the prefixes of x.

The set B̃ is defined as Ã × [`] × [k]. For a ∈ Ã, define a[t, j, δ] as b = (b0, . . . , b`−1) with
bt = at[j, δ] and bu = au for u 6= t. Then,

g̃a,t,j(t · 3k + x) =

f̃a[t,j,+1](t · 3k + x), if xj = 0;

f̃a[t,j,−1](t · 3k + x), if xj = 1;

f̃a(t · 3k + x), if xj = 2.

Claim 6.10. Every function g̃a is ε-far from convex.

Proof. This is due to the fact that there are 3k−2 ≥ ε · `3k disjoint pairs of values x < y for which
∂g(y) > ∂g(x), as in the proof of Claim 6.5.

The probability distributions µ and ν are defined as uniform on Ã and B̃, respectively.

The mapping η : B̃ → Ã is also defined similarly to Section 6.2. Let T be a deterministic
decision tree of depth q ≤ `k

4 . Take a ∈ Ã. Let Q be the set of variables queried by T on f̃a, and
let Qt = {x ∈ [3k] | t · 3k + x ∈ Q}. For (t, j) ∈ [`]× [k], let

bts =

ats − 1 if s = x[j] for some x ∈ Qt with xj = 0;

ats + 1 if s = x[j] for some x ∈ Qt with xj = 1;

ats if s = x[j] for some x ∈ Qt with xj = 2;

ats otherwise.

(11)

20

and b = (a0, . . . , at−1, bt, at+1, . . . , a`−1). We call the pair (t, j) good if there are no conflicts in the
first three cases of Equation (11) (that is, bts is well-defined) and b ∈ B̃. If there are at least `k/2
good pairs, we define η(b, t, j) = a for each good pair (t, j), where b, of course, depends on t and j.

Similarly to Claim 6.6, η is well-defined and T (f̃η(b)) = T (g̃b) for every b in the domain of η.

Also, by definition, ν(η−1(a)) = Ω(µ(a)) for every a ∈ η(B̃). In order to apply Lemma 6.1, it
remains to show the following.

Claim 6.11. We have µ(η(B)) = Ω(1).

Proof. Fix a ∈ Ã. Similarly to Claim 6.7, there can be at most q − 1 < `k
4 pairs such that there is

a contradiction in the first three cases of Equation (11). A pair (t, j) can be bad also because ats
equals 0 or k3− 2. The expected number of such pairs as a ∼ Ã is q · k · 2

k3−1
= O(`k). By Markov’s

inequality, probability that the number of such pairs is ≥ `k
4 is o(1). And if this does not happen,

the number of good pairs is at least `k/2.

Acknowledgements

Aleksandrs Belovs is supported by the ERDF grant number 1.1.1.2/VIAA/1/16/113. Eric Blais
and Abhinav Bommireddi are funded by an NSERC Discovery grant.

References

[1] Aleksandrs Belovs. Adaptive lower bound for testing monotonicity on the line. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2018, pages 31:1–31:10, 2018. 6, 16, 19

[2] Omri Ben-Eliezer. Testing local properties of arrays. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA,
pages 11:1–11:20, 2019. 2, 3, 4

[3] Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. lp testing. In STOC, pages
164–173, 2014. 2

[4] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing proper-
ties of functions over hypergrid domains. In Proceedings of the 29th Conference on Computa-
tional Complexity (CCC), pages 309–320, 2014. 2, 3, 4, 22

[5] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifi-
cation and estimation. In Quantum Computation and Quantum Information: A Millennium
Volume, volume 305 of AMS Contemporary Mathematics Series, pages 53–74, 2002. 3

[6] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and lipschitz
testing over hypercubes and hypergrids. In Symposium on Theory of Computing Conference
(STOC ’13), pages 419–428, 2013. 4

[7] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453–464, 2014. 4

[8] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000. 2

21

[9] Shahar Fattal and Dana Ron. Approximating the distance to convexity. 2010. 3

[10] Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–
116, 2004. 3

[11] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. 2

[12] Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007. 2

[13] Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the theory of numbers.
Oxford University Press, 1979. 12

[14] Ashley Montanaro and Ronald de Wolf. A survey of quantum property testing. Theory of
Computing, Graduate Surveys, 7:1–81, 2016. 3

[15] Kazuo Murota. Discrete convex analysis. Math. Program., 83:313–371, 1998. 23

[16] Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized prop-
erty testing of functions. ACM Transactions on Computation Theory (TOCT), 9(4):17, 2018.
2

[17] M. Parnas, D. Ron, and R. Rubinfeld. On testing convexity and submodularity. SIAM Journal
on Computing, 32(5):1158–1184, 2003. 2, 3, 4

[18] Thomas Rothvoss. Integer optimization and lattices. 2015. 12

[19] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996. 2

[20] C. Seshadhri and Jan Vondrák. Is submodularity testable? Algorithmica, 69(1):1–25, 2014. 5

[21] Min Yan. Extension of convex function. arXiv preprint arXiv:1207.0944, 2012. 24

A On convexity and line convexity

In the introduction, we mentioned that the notion of linear convexity studied in [4] is not equivalent
to the notion of convexity we study in this current work. In this section, we provide a proof of this
statement.

Definition A.1. Fix a set X ⊆ Rd. The function f : X → R is linearly convex if for every x, y ∈ X
and every 0 ≤ λ ≤ 1 for which λx+ (1−λ)y ∈ X, we have f(λx+ (1−λ)y) ≤ λf(x) + (1−λ)f(y).

When X = Rd or, more generally, when X is a convex set, then the notion of linear convexity
is equivalent to convexity. When X is a discrete set with dimension d ≥ 2, however, the two
definitions are not equivalent.

Proposition A.1. For any d ≥ 2 and any discrete set X ⊆ Rd, every convex function f : X → R
is also linearly convex. However, for every d ≥ 2 there are discrete sets X ⊆ Rd for which there
exist linearly convex functions g : X → R that are not convex.

22

5

1

3

3

2

1

1

3

5

Figure 1: Illustration of the function f constructed in the proof of Proposition A.1.

Proof. That every convex function f is also linearly convex follows directly from the definitions.
For the second statement, consider the function f : [3]× [3]→ R defined by

f(0, 2) = 3 f(1, 2) = 1 f(2, 2) = 5

f(0, 1) = 1 f(1, 1) = 2 f(2, 1) = 3

f(0, 0) = 5 f(1, 0) = 3 f(2, 0) = 1

The function f is linearly convex, but it has a violation of convexity on the point (1, 1) with respect
to the points (2, 0), (0, 1), and (1, 2).

We note that many other notions of convexity of functions over discrete domains have also been
considered in the context of discrete convex analysis. See [15] and the references therein for more
details on those notions.

B Missing proofs from Section 2

For completeness, we include proofs of Lemma 2.2 and Theorem 2.3 in this section.

B.1 Proof of Lemma 2.2

By convexity of f , we have that g(x) = f(x) for all x ∈ X. Hence, g indeed extends f . It remains
to prove that g is convex.

Claim B.1. The definition of g in Equation (2) does not change if we minimise over all possible
convex combinations z = λ1x1 + · · ·+ λkxk, where x1, . . . , xk need not form a simplex.

Proof. Let g(z) be defined as in the statement of this claim. Take a linear combination z =
λ1x1 + · · · + λkxk which minimises

∑
i λif(xi) and such that k is as small as possible. We claim

that then x1, . . . , xk form a simplex.

Indeed, assume x1, . . . , xk are not affinely independent. Then, there exists a non-trivial linear
combination β1x1 + · · · + βkxk = 0 such that β1 + · · · + βk = 0. Changing the sign of each βi if
necessary, we may assume that β1f(x1) + · · ·+βkf(xk) ≥ 0. Let t ≥ 0 be the maximal real number
such that λi − tβi ≥ 0 for all i.

Let λ′i = λi − tβi. We have that λ′i ≥ 0,
∑

i λ
′
i = 1,

∑
i λ
′
ixi = z, and

∑
i λ
′
if(xi) ≤

∑
i λif(xi).

Moreover, at least one of λ′i is equal to 0, which contradicts minimality of k.

Claim B.2. The function g is convex on the convex hull of X.

23

Proof. Consider a convex combination z = µ1z1 + · · ·+ µkzk, where all zi lie in the convex hull of
X. For each zi choose a convex combination zi =

∑
x∈X λi,xx such that g(zi) =

∑
x∈X λi,xf(x).

Then, λx =
∑

i µiλi,x give a convex combination over the elements of X such that z =
∑

x∈X λxx.
By Claim B.1,

g(z) ≤
∑
x∈X

λxf(x) = µ1g(z1) + · · ·+ µkg(zk),

proving that the function g is convex.

By [21], the function g can be extended from the convex hull of X to the whole Rd. This
completes the proof of Lemma 2.2.

B.2 Proof of Theorem 2.3

Assume that f is not convex. Then there exists a convex combination z = λ1x1 + · · ·+ λkxk such
that f(z) > λ1f(x1)+· · ·+λkf(xk). Choose such a convex combination that k is as small as possible
and the convex hull of x1, . . . , xk is inclusion-wise minimal. We claim that then x1, . . . , xk, z form
a minimal centred simplex.

Using the same argument as in Claim B.1, we get that x1, . . . , xk is a simplex. Assume it
contains more than two points in its convex hull minus the vertices. Let z be such that the
violation f(z)−λ1f(x1)− · · ·−λkf(xk) > 0 is as large as possible. Let y be any other point in the
convex hull of x1, . . . , xk except for its vertices. Then,

f(z)− λ1f(x1)− · · · − λkf(xk) ≥ f(y)− µ1f(x1)− · · · − µkf(xk), (12)

where y = µ1x1 + · · ·µkxk. Let t ≥ 0 be the largest real number such that λi − tµi ≥ 0 for all i.
Let λ′i = λi − tµi. We have the following convex combination:

z = ty + λ′1x1 + · · ·+ λ′kxk.

Moreover, one of λ′i is equal to 0. As z 6= y, we have that t < 1. This together with Equation (12)
yields

f(z) > tf(y) + λ′1f(x1) + · · ·+ λ′kf(xk).

This contradicts inclusion-wise minimality of x1, . . . , xk.

24

	Introduction
	Testing convexity on the line
	Testing convexity over 2-dimensional domains
	Testing convexity over high-dimensional domains
	Discussion and open problems
	Organization

	Basic facts about convexity
	Algorithms for testing convexity over the line
	Algorithm for testing convexity on the [3]x[n] stripe
	High-level description
	Subroutines
	The algorithm

	Lower bounds for testing convexity in high dimensions
	Overview of the proof
	Preliminaries
	Change of basis and convexity
	Constructions
	Proof of Theorem 1.6
	Non-adaptive lower bound for [3]x[n]

	Lower bound for testing convexity on the line
	General principle
	The case of epsilon = Omega(1)
	General lower bound for the line

	References
	On convexity and line convexity
	Missing proofs from Section 2
	Proof of Lemma 2.2
	Proof of Theorem 2.3

