
Testing submodularity and other properties of
valuation functions
Eric Blais1 and Abhinav Bommireddi2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada
eric.blais@uwaterloo.ca

2 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada
vabommir@uwaterloo.ca

Abstract
We show that for any constant ε > 0 and p ≥ 1, it is possible to distinguish functions f :
{0, 1}n → [0, 1] that are submodular from those that are ε-far from every submodular function
in `p distance with a constant number of queries.

More generally, we extend the testing-by-implicit-learning framework of Diakonikolas et al. (2007)
to show that every property of real-valued functions that is well-approximated in `2 distance by
a class of k-juntas for some k = O(1) can be tested in the `p-testing model with a constant
number of queries. This result, combined with a recent junta theorem of Feldman and Von-
drák (2016), yields the constant-query testability of submodularity. It also yields constant-query
testing algorithms for a variety of other natural properties of valuation functions, including frac-
tionally additive (XOS) functions, OXS functions, unit demand functions, coverage functions,
and self-bounding functions.

1998 ACM Subject Classification F.2.0 ANALYSIS OF ALGORITHMS AND PROBLEM
COMPLEXITY

Keywords and phrases Property testing, Testing by implicit learning, Self-bounding functions

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Property testing is concerned with approximate decision problems of the following form:
given oracle access to some function f : X → Y and some fixed property P of such functions,
how many oracle calls (or queries) to f does a bounded-error randomized algorithm need to
distinguish the cases where f has the property P from the case where f is ε-far—under some
appropriately defined metric—from having the same property? Remarkably, many natural
properties of functions can be tested with a number of queries that is independent of the
size of the function’s domain. For example, for any constant ε > 0 and t ≥ 1, a constant
number of queries suffices to test whether a Boolean function f : {0, 1}n → {0, 1} is linear [7];
a polynomial of degree at most t [28]; a t-junta [5, 18]; a monomial [27]; computable by a
Boolean circuit of size t [10]; or a linear threshold function [25].

In this work, we consider the problem of testing properties of bounded real-valued functions
over the Boolean hypercube. In particular, are there natural examples of such properties
that are testable with a constant number of queries? This question is best considered in the
`p testing framework introduced by Berman, Raskhodnikova, and Yaroslavtsev [4]. In this
setting, the distance between a function f : {0, 1}n → [0, 1] and some property P of these
functions is distp(f,P) = infg∈P ‖f − g‖p.

© Eric Blais and Abhinav Bommireddi;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Testing submodularity and other properties of valuation functions

1.1 Testing properties of valuation functions
Natural properties of bounded real-valued Boolean functions have been studied extensively
in the context of valuation functions in algorithmic game theory. For a sequence of n goods
labeled with the indices 1, . . . , n, we can encode the value of each subset of these goods to
some agent with a function f : {0, 1}n → [0, 1] by setting f(x) to be the (possibly normalized)
value of the subset {i ∈ [n] : xi = 1} to the agent. Such a valuation function f is

Additive if there are weights w1, . . . , wn such that f(x) =
∑
i:xi=1 wi;

a Coverage function if there exists a universe U , non-negative weights {wu}u∈U , and subsets
A1, ..., An ⊆ U such that f(x) =

∑
u∈
⋃
i:xi=1

Ai
wu.

Unit demand if there are weights w1, . . . , wn such that f(x) = max{wi : xi = 1};
OXS if there are k ≥ 1 unit demand functions g1, . . . , gk such that f(x) = max{g1(x(1)), . . . , gk(x(k))}

where the maximum is taken over all x(1), . . . , x(k) such that for every i ∈ [n], xi =∑k
j=1 x

(j)
i ;

Gross Substitutes if for any p′ ≤ p ∈ Rn and any x, x′ that maximize f(x)−
∑
i:xi=1 pi and

f(x′)−
∑
i:x′

i
=1 p

′
i, respectively, every j ∈ [n] for which xj = 1 and pj = p′j also satisfies

x′j = 1;
Submodular if f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) for every x, y ∈ {0, 1}n, where ∧ and ∨

are the bitwise AND and OR operations;
Fractionally subadditive (XOS) iff there are non-negative real valued weights {wij}i,j≤n

such that f(x) = maxi
∑
j wij · xj ;

Self-bounding if f(x) ≥
∑
i(f(x) −minxi f(x)), where minxi f(x) = min{f(x), f(x ⊕ ei)}

and ⊕ is the bitwise XOR operator; and
Subadditive if f(x ∪ y) ≤ f(x) + f(y) for every x, y ∈ {0, 1}n.

Each of these properties enforces some structure on valuation functions, and much work
has been devoted to better understanding these structures (and their algorithmic implications)
by studying the properties through the lenses of learning theory [2,3,15], optimization [13,14],
approximation [16, 17], and sketching [1]. The problem of testing whether an unknown
valuation function satisfies one of these properties offers another angle from which we can
learn more about the structure imposed on the functions that satisfy these properties.

Indeed, there has already been some recent developments on the study of testing these
properties. Notably, Seshadhri and Vondrák [30] initiated the study of testing submodularity
for functions over the hypercube and showed that in the setting where we measure the distance
to submodularity in terms of Hamming distance (rather than `p distance), submodularity
can be tested with ε−

√
n logn queries and that it cannot be tested with a number of queries

that is independent of n. Subsequently, Feldman and Vondrák [17] showed that in the `1
testing framework, we can do much better: testing submodularity in this model requires a
number of queries that is only logarithmic in n. Our first result shows that, in fact, for any
value of p ≥ 1, it is possible to test submodularity in the `p setting with a number of queries
that is completely independent of n.
I Theorem 1.1. For any ε > 0 and any p ≥ 1, there is an ε-tester for submodularity in the `p
testing model with query complexity 2Õ(1/εmax{2,p}).

Another property that has been considered in the (standard Hamming distance) testing
model is that of being a coverage function. Chakrabarty and Huang [8] showed that for
constant values of ε > 0, O(nm) queries suffice to ε-test whether a function f is a coverage
function on some universe U of size |U | ≤ m. Note that, unlike in the learning and
approximation settings, bounds on the number of queries required to test some property

E. Blais and A. Bommireddi 23:3

P do not imply anything about number of queries required to test properties P ′ ⊂ P, so
even though coverage functions are submodular, results on testing submodularity do not
imply any bounds on the query complexity for testing coverage functions. Nonetheless, our
next result shows that this property—along with most of the other properties of valuation
functions listed above—can also be tested with a number of queries that is independent of n.
I Theorem 1.2. For any ε > 0 and any p ≥ 1, there are ε-testers in the `p testing model
for additive functions, coverage functions, unit demand functions, OXS functions, and gross
substitute functions that each have query complexity 2Õ(1/εmax{2,p}), and there are ε-testers
in the `p testing model for fractional subadditivity and self-bounded functions that have
query complexity 22Õ(1/εmax{2,p}) .

Theorems 1.1 and 1.2 are both special cases of a general testing result that we obtain
by extending the technique of testing by implicit learning of Diakonikolas et al. [10]. We
describe this general result in more details below.

1.2 Testing real-valued functions by implicit learning
There is a strong connection between property testing and learning theory that goes back to
the seminal work of Goldreich, Goldwasser, and Ron [21]. As they first observed, any proper
learning algorithm for the class of functions that have some property P can also be used to
test P: run the learning algorithm, and verify whether the resulting hypothesis function h
is close to the tested function f or not. This approach yields good bounds on the number
of queries required to test many properties of functions, but, as simple information theory
arguments show, it cannot yield query complexity bounds that are smaller than logn for
almost all natural properties of functions over {0, 1}n.

Diakonikolas et al. [10] bypassed this limitation for the special case when every function
that has some property P is close to a junta. A function f : {0, 1}n → [0, 1] is a k-junta
if there is a set J ⊆ [n] of cardinality |J | ≤ k such that the value of f on any input x is
completely determined by the values xi for each i ∈ J . Every k-junta f has corresponding
“core” functions fcore : {0, 1}k → {0, 1} that define its value based on the value of the
k relevant coordinates of its input. Diakonikolas et al.’s key insight is that for testing
properties whose functions are (very) close to juntas, it suffices to learn the core of the input
function—without having to identify the identity of the relevant coordinates.

The wide applicability of the testing-by-implicit-learning methodology is due to the
fact that for many natural properties of Boolean functions, the functions that have these
properties must necessarily be close to juntas under the Hamming distance. The starting
point for the current research is a recent breakthrough of Feldman and Vondrák, who showed
that a similar junta theorem holds for many properties of real-valued functions when closeness
is measured according to `2 distance.

I Feldman–Vondrák junta theorem. Fix any ε ∈ (0, 1
2). For every submodular function

f : {0, 1}n → [0, 1], there exists a submodular function g : {0, 1}n → [0, 1] that is a
O(1

ε2 log 1
ε)-junta such that ‖f − g‖2 ≤ ε. Furthermore, for every self-bounding function

f : {0, 1}n → [0, 1], there exists a self-bounding function g : {0, 1}n → [0, 1] that is a
2O(1

ε2)-junta such that ‖f − g‖2 ≤ ε.

The logarithmic dependence on n for the problem of testing submodularity in the `1
testing model [17] follows directly from Feldman and Vondrák’s junta theorem and the
(standard) testing-by-proper-learning connection. This junta theorem also suggests a natural
approach for obtaining a constant query complexity for the same problem by combining it

CVIT 2016

23:4 Testing submodularity and other properties of valuation functions

with a testing-by-implicit-learning algorithm. In order to implement this approach, however,
new testing-by-implicit-learning techniques are required to overcome two obstacles.

The first obstacle is that most existing testing-by-implicit-learning algorithms [9–11,22]
are designed for properties that contain functions which are close to juntas in Hamming
distance, not `p distance. This is a stronger condition, and enables the analysis of these
algorithms to assume that with large probability, when f is very close to a k-junta f ′, the
queries x made by the algorithm all satisfy f(x) = f ′(x). In the `p distance model, however,
we can have a function f that is extremely close to a k-junta but still has f(x) 6= f ′(x) for
many (or even every!) input x.

The second (related) obstacle that we encounter when considering submodular functions
is that current testing-by-implicit-learning algorithms only work in the regime where the
functions in P are ε-close to k-juntas for some k < ε−1/2. (See for example the discussion
in §2.5 of [29].) This condition is satisfied by the properties of Boolean functions that have
been studied previously, but the bounds in the Feldman–Vondrák junta theorem, however,
do not satisfy this requirement.

We give a new algorithm for testing-by-implicit-learning that overcomes both of these
obstacles. As a result, we obtain the following general theorem.
I Theorem 1.3. For any 0 < ε < 1

2 and any property P of functions mapping {0, 1}n → [0, 1],
if k ≥ 1 is such that for every function f ∈ P , there is a k-junta h that satisfies ‖f−h‖2 ≤ ε

106 ,
then there is an ε-tester for P in the `2 testing model with query complexity 2O(k log k)

ε10 .
Theorems 1.1 and 1.2 are both obtained directly from Theorem 1.3, the Feldman–Vondrák

junta theorem and Fact 2.1.
I Remark. Another testing-by-implicit-learning algorithm, the Implicit Sieve algorithm of
Wimmer and Yoshida [31] based on the Kushilevitz–Mansour learning algorithm [23], was
introduced to test properties in the Hamming model but has a natural analogue in the `2
testing model as well. It would be quite interesting to determine what properties can be
tested efficiently in the `p models by this algorithm (or extensions of it).

1.3 Overview of the proofs
1.3.1 The algorithm.
The current testing-by-implicit-learning algorithms proceed in two main stages. In the first
stage, the coordinates in [n] are randomly partitioned into poly(k) parts, and an influence
test is used to identify the (at most k) parts that contain relevant variables of an unknown
input function f that is very close to being a k-junta. In the second stage, inputs x ∈ [n] are
drawn at random according to some distribution, the value f(x) is observed, and the value
of the relevant coordinate in each of the parts identified in the second stage is determined
using more calls to the influence test.

The Implicit Learning Tester algorithm that we introduce in this paper reverses
the order of the two main stages. In the first stage, it draws a sequence of q queries
X = (x(1), . . . , x(q)) at random and queries the value of f on each of these queries. It also
uses X to partition the coordinates in [n] into 2q random parts according to the values of
the coordinate on the q queries. In the second stage, the algorithm then uses an influence
estimator to identify the k parts that contain the relevant coordinates of a k-junta that is
close to f and, since all the coordinates in a common part have the same value on each of
the q queries, learn the value of the k relevant coordinates on each of these initial queries.
The algorithm then checks whether the core function thus learned is consistent with those of
functions in the property being tested.

E. Blais and A. Bommireddi 23:5

The main advantage of the Implicit Learning Tester algorithm that its analysis does
not require the assumption that our samples are exactly consistent with those of an actual
k-junta (instead of those of a function that is only promised to be close to a k-junta). This
feature enables us to overcome the obstacles listed in the previous section, at the cost of
adding a few complications to the analysis, as described below.

1.3.2 The analysis.
There are two main technical ingredients in the analysis of the algorithm. The first, established
in Lemma 3, is used to show that when f is close to a k-junta in `2 distance, the search
procedure identifies parts that contain the k relevant coordinates of some k-junta that is
close to f . (Note that the search is not guaranteed to find the parts that contain the relevant
coordinates of the k-junta that is closest to f , but it suffices to find those of any close
k-junta.)

The second technical ingredient addresses the fact that by drawing the q samples
x(1), . . . , x(q) first and then using these samples to provide the initial partition of the
coordinates in [n], we no longer will obtain uniformly random samples of the core fcore of
the input function f . Nonetheless, in Lemma 4, we show that when f is close to a k-junta,
the distribution of these samples on the core function still enables us to accurately estimate
the distance of fcore to the core functions of any other k-junta.

1.4 Discussion and open problems
Theorems 1.1–1.3 raise a number of intriguing questions. The most obvious question left open
is whether we can also test subadditivity of real-valued functions with a constant number of
queries: subadditive functions need not be close to juntas, so such a result would appear to
require a different technique.

It is also useful to compare our bounds for submodularity testing with those for testing
monotonicity: in the Hamming distance testing model, Seshadhri and Vondrák [30] showed
that the query complexity for testing submodularity is at least as large as that for testing
monotonicity. However, the best current bounds for testing monotonicity in the `p testing
model have a linear dependence on n [4]. Is it also possible to test monotonicity with a
constant number of queries? Or is it the case that testing submodularity is strictly easier
than testing monotonicity in the `p testing setting?

2 Preliminaries

Let Fn denote the set of functions mapping {0, 1}n to [0, 1]. For any f ∈ Fn and S ⊆ [n]
with complement S = [n] \ S, when x ∈ {0, 1}S and y ∈ {0, 1}S , we write f(x, y) to denote
the value f(z) for the input z that satisfies zi = xi for each i ∈ S and zi = yi otherwise.

We use the standard definitions and notation for the Fourier analysis of functions
f : {0, 1}n → [0, 1]. For a complete introduction to the topic, see [26]. Throughout the paper,
unless otherwise specified all probabilities and expectations are over the uniform distribution
on the random variable’s domain.

2.1 Property testing
A property P of functions in Fn is a subset of these functions that is invariant under rela-
beling of the n coordinates. The Hamming distance between f, g ∈ Fn is distHam(f, g) =

CVIT 2016

23:6 Testing submodularity and other properties of valuation functions

Prx[f(x) 6= g(x)] and the Hamming distance between f and a property P is distHam(f,P) =
infg∈P distHam(f, g). For p ≥ 1, the `p distance between f and g is distp(f, g) = ‖f − g‖p =
(Ex[|f(x)− g(x)|p])1/p and the `p distance between f and P is distp(f,P) = infg∈P distp(f, g).

Given ε > 0, An ε-tester in the Hamming testing model (resp., `p testing model) for
some property P ⊆ Fn is a randomized algorithm that (i) accepts every function f ∈ P with
probability at least 2

3 and (ii) rejects every function f that satisfies distHam(f,P) ≥ ε (resp.,
distp(f,P) ≥ ε) with probability at least 2

3 . An ε-tester for P is an (ε′, ε)-tolerant tester, for
some ε′ < ε if it additionally accepts every function f that satisfies distHam(f,P) ≤ ε′ (resp.,
distp(f,P) ≤ ε) with probability at least 2

3 .
Our proofs of Theorems 1.1–1.3 are established in the `2 testing model. The result for

general `p testing models is obtained from the following elementary relation between the
query complexities of testing any property in different `p testing models.

I Fact 2.1 (c.f. Fact 5.2 in [4]). For any P ⊆ Fn, any ε > 0, and any p ≥ 1, the number
Qp(P, ε) of queries required to ε-test P in the `p testing model satisfies Q2(P, ε) ≤ Qp(P, ε) ≤
Q2(P, ε

p
2).

Theorem 1.2 also relies on the following hierarchy of properties. (See, e.g., [24].)

I Lemma 1. The properties of Fn defined in the introduction satisfy the inclusion hierarchy

Additive ⊆ Coverage ⊆ Unit demand ⊆ OXS ⊆ Gross substitute ⊆ Submodularity ⊆ XOS ⊆ Self-bounding.

2.2 Juntas
The function f : {0, 1}n → [0, 1] is a junta on the set J ⊆ [n] if for every x, y ∈ {0, 1}n that
satisfy xi = yi for every i ∈ J , we have f(x) = f(y). The function f is a k-junta if it is a
junta on some set J ⊆ [n] of cardinality |J | ≤ k. The function fcore : {0, 1}k → [0, 1] is a
core function of the k-junta f : {0, 1}n → [0, 1] if there is a projection ψ : {0, 1}n → {0, 1}k
defined by setting ψ(x) = (xi1 , . . . , xik) for some distinct i1, . . . , ik ∈ [n] such that for every
x ∈ {0, 1}n, f(x) = fcore

(
ψ(x)

)
.

I Definition 2.2. For any function f : {0, 1}n → [0, 1] and set J ⊆ [n], the J-junta projection
of f is the function fJ : {0, 1}J → [0, 1] defined by setting fJ(x) = E

y∈{0,1}J [f(x, y)] for
every x ∈ {0, 1}J .

A basic fact that we will require is that fJ is the J-junta that is closest to f under the `2
metric.

I Proposition 2.3. For every f : {0, 1}n → [0, 1] and J ⊆ [n], if g : {0, 1}n → [0, 1] is a
J-junta, then dist2(f, fJ) ≤ dist2(f, g).

Proof. By applying the identity ‖f − g‖2
2 = ‖f − fJ + fJ − g‖2

2 and by expanding the
right-hand side, we obtain

‖f − g‖2
2 = E

x∈{0,1}J

[
E

y∈{0,1}J

[(
f(x, y)− fJ(x, y) + fJ(x, y)− g(x, y)

)2
]]

= ‖f − fJ‖2
2 + ‖fJ − g‖2

2 + 2 E
x

[
E
y

[(
f(x, y)− fJ(x, y)

)(
fJ(x, y)− g(x, y)

)]]
.

Since fJ − g is a J-junta, it does not depend on y and, by the definition of fJ , the last term
equals 0. Therefore, ‖f − g‖2

2 = ‖f − fJ‖2
2 + ‖fJ − g‖2

2 and the claim follows. J

E. Blais and A. Bommireddi 23:7

The property P ⊆ Fn is a property of k-juntas if every function f ∈ P is a k-junta.
The core property of a property P of k-juntas is the property Pcore ⊆ Fk defined by
Pcore = {fcore : f ∈ P}. For any γ > 0, the γ-discretized approximation of a function
f ∈ Fn is the function f (γ) obtained by rounding the value f(x) for each x ∈ {0, 1}n to
the nearest multiple of γ. The γ-discretized approximation of a property P is the property
P(γ) = {f (γ) : f ∈ P}.

2.3 Influence
The notion of influence of coordinates in functions over the Boolean hypercube plays a central
role in both our algorithm and its analysis. Informally, the influence of a set of coordinate
measures how much re-randomizing these coordinates affects the value of the function. This
notion is made precise as follows.

I Definition 2.4. The influence of a set S ⊆ [n] of coordinates in the function f : {0, 1}n →
[0, 1] is

Inff (S) := E
x∈{0,1}S

[
Var

y∈{0,1}S
f(x, y)

]
= 1

2 E
x∈{0,1}S

[
E

y,y′∈{0,1}S

[(
f(x, y)− f(x, y′)

)2
]]
.

Our proofs make use of a few standard facts regarding the influence of sets of coordinates
in f .

I Fact 2.5. The influence of S ⊆ [n] in f ∈ Fn is Inff (S) =
∑
T :T∩S 6=∅ f̂

2(T).

I Fact 2.6. For every f ∈ Fn and S, T ⊆ [n], we have Inff (S) ≤ Inff (S ∪ T) ≤ Inff (S) +
Inff (T).

I Fact 2.7. For every f ∈ Fn and J ⊆ [n], we have Inff (J) = dist2(f, fJ)2.

I Proposition 2.8. Fix ε > 0, and let f, g : {0, 1}n → [0, 1] satisfy dist2(f, g) ≤ ε. Then for
any set S ⊆ [n], |Inff (S) 1

2 − Infg(S) 1
2 | ≤ ε.

Proof. By Fact 2.7, we have Inff (S) 1
2 = ‖f − fS‖2 and Infg(S) 1

2 = ‖g − gS‖2. By Pro-
position 2.3, we also have that ‖f − fS‖2 ≤ ‖f − gS‖2. Combining these observations
with the triangle inequality, we obtain Inff (S) 1

2 − Infg(S) 1
2 = ‖f − fS‖2 − ‖g − gS‖2 ≤

‖f − gS‖2 − ‖g − gS‖2 ≤ ‖f − g‖2 ≤ ε. Hence Inff (S) 1
2 − Infg(S) 1

2 ≤ ε and, similarly,
Infg(S) 1

2 − Inff (S) 1
2 ≤ ε as well. J

I Proposition 2.9. There is an algorithm EstimateInf such that for every f : {0, 1}n → [0, 1],
S ⊆ [n], m ≥ 1, and t ≥ 0, it makes m queries to f and returns an estimate of the influence
of S in f that satisfies

Pr
[
|Inff (S)−EstimateInf(f, S,m)| ≥ t

]
≤ 2e−2mt2 .

We also use the following key lemma from [6].

I Lemma 2 (Lemma 2.3 in [6]). Let f : {0, 1}n → [0, 1] be a function that is ε-far from
k-juntas and P be a random partition of [n] into r > 20k2 parts. Then with probability at
least 5

6 , Inff (J) ≥ ε2

4 for any union J of k parts from P .

For the reader’s convenience, we include the proof of Lemma 2 in Appendix A; though the
original lemma in [6] was only for Boolean-valued functions, the proof remains essentially
unchanged.

CVIT 2016

23:8 Testing submodularity and other properties of valuation functions

Algorithm 1: Implicit Learning Tester(F , k, ε)

Data: q = 2O(k)

ε5 , m = O(k
6

ε5), r = log 2k
100k4

1 Draw x(1), . . . , x(q) ∈ {0, 1}n independently and uniformly at random;
2 For each c ∈ {0, 1}q, define Sc ←

{
i ∈ [n] :

(
x

(1)
i , . . . , x

(q)
i

)
= c
}
;

3 Let P1, . . . , P100k4 be a random equi-partition of {0, 1}q;
4 for each J ⊆ [100k4] of size |J | = k do
5 SJ ←

⋃
j∈J

⋃
c∈Pj Sc;

6 ηJ ← EstimateInf(f, [n] \ SJ ,m);
7 {j∗1 , . . . , j∗k} ← argminJ ηJ ;
8 (P0,1, . . . , P0,k)← (Pj∗1 , . . . , Pj∗k);

9 for ` = 1, . . . , r do
10 Let P`,i,0, P`,i,1 be a random equi-partition of P`−1,i for each i ≤ k;
11 for every z ∈ {0, 1}k do
12 Sz ←

⋃
i≤k
⋃
c∈P`,i,zi

Sc;
13 ηz ← EstimateInf(f, [n] \ Sz,m);
14 z∗` ← argminz ηz;
15 For each i ≤ k, update P`,i ← P`,i,z∗

`
;

16 Let B = {b1, ..., bk} ←
⋃
i≤k Pr,i;

17 If EstimateInf(f, [n] \ SB ,m) > ε2/1000, reject;
18 Let φ : {0, 1}n → {0, 1}k be any projection that satisfies φ(x)i ∈ Sbi for each i ≤ k;

19 for h ∈ F (ε
1000)

core do
20 If 1

q

∑q
i=1
(
f(x(i))− h(φ(x(i)))

)2 ≤ 0.35ε, accept and return h;
21 Reject;

3 Testing by implicit learning

The proof of Theorem 1.3 is established by analyzing the Implicit Learning Tester
algorithm.

3.1 Proof of Theorem 1.3
The analysis of the Implicit Learning Tester relies on two technical lemmas. The first
shows that when the input function f is close to a k-junta, then with reasonably large
probability, the function f is close to a junta on the set B of k parts that is identified by the
algorithm.

I Lemma 3. For any ε > 0, if the function f : {0, 1}n → [0, 1] is ε-close to a k-junta and
every call to EstimateInf returns an influence estimate with additive error at most ε2

100k2 ,
then the set B obtained by the Junta-Property Tester satisfies Pr

[
Inff ([n] \ SB) >

100ε2] ≤ 1
20 .

The second lemma shows that the estimate in Step 20 provides a good estimate of the
distance between f and the functions in P.

I Lemma 4. Fix ε > 0. Let f : {0, 1}n → [0, 1] be a function that satisfies dist2(f, g) ≤ ε

for some function g that is a junta on J ⊆ [n], |J | ≤ k. Then for every hcore ∈ F
(ε

1000)
core , the

E. Blais and A. Bommireddi 23:9

mapping ψ : {0, 1}n → {0, 1}k defined in the Implicit Learning Tester and the function
h = hcore ◦ ψ satisfy∣∣∣(1

q

q∑
i

(
f(x(i)))− h(x(i))

)2
) 1

2 − dist2(g, h)
∣∣∣ ≤ 3ε

except with probability at most 2e−16qε4 + 5k2

2q .

The proofs of these lemmas are presented in Sections 3.2 and 3.3. We now show how they
are used to complete the proof of Theorem 1.3.

As a first observation, we note that by Hoeffding’s inequality and the union bound, all of
the calls to EstimateInf have additive error at most ε2

106k2 except with probability at most
1
6 . In the following, we assume that this condition holds and show how, when it does, the
algorithm correctly accepts or rejects with probability with probability at least 5

6 .
I Claim 3.1 (Completeness). When f is ε

106 -close to the property F of k-juntas, the Implicit
Learning Tester accepts with probability at least 5

6 .

Proof. First, by Lemma 3, the probability that f is rejected on step 17 is at most 1
18 . In the

rest of the proof, we will show that except with probability at most 1
9 , there is a function

hcore ∈ F
(ε

1000)
core for which the algorithm accepts on line 20.

Let g ∈ F be a function that satisfies dist2(f, g) ≤ ε
106 . Without loss of generality, we can

assume that g is a junta on [k]. Let J = [k] ∩ SB be the set of the junta variables of g that
are contained in the final parts selected by the algorithm. Again without loss of generality
(by relabeling the input variables once again if necessary), we can assume that J = [j] for
some j ≤ k, and i ∈ Sbi , for i ≤ j.

Define ψ : {0, 1}n → {0, 1}k to be the mapping defined by ψ(x) = (x1, . . . , xj , xi1 , . . . , xik−j)
where i1, . . . , ik−j ∈ [n] \ [k] are representative coordinates from the remaining parts b ∈ B
for which Pb ∩ [k] = ∅.

Let gcore ∈ Fcore be the core of g corresponding to the projection ψ(x) = (x1, . . . , xk),
and let hcore ∈ F

(ε
106)

core be the discretized approximation to gcore. Define h = hcore ◦ ψ. By
our choice of g, we have dist2(f, g) ≤ ε

106 . In order to invoke Lemma 4, we now want to
bound dist2(g, h).

Let h∗ ∈ F (ε
106), be the discretized approximation of g. Then dist2(g, h∗) ≤ ε

106 and the
triangle inequality implies that

dist2(f, h∗) ≤ dist2(f, g) + dist2(g, h∗) ≤ 2ε
106

and that

dist2(g, h) ≤ dist2(g, h∗) + dist2(h∗, h) ≤ dist2(h∗, h) + ε
106 .

Furthermore, since hcore = h∗core,

dist2(h∗, h) = E
x

[(
h∗core(x1, . . . , xk)− h∗core(x1, . . . , xj , xi1 , . . . , xik−j)

)2] 1
2

= 2 Infh∗core
([k] \ [j]) 1

2 = 2 Infh∗([n] \ [j]) 1
2 .

By Proposition 2.8 and Lemma 3, except with probability at most 1
18 ,

Infh∗([n] \ [j]) 1
2 ≤ Inff ([n] \ [j]) 1

2 + dist2(f, h∗) ≤ Inff ([n] \ SB) 1
2 + 2ε

106 ≤ 12ε
106

and the distance between g and h is bounded by dist2(g, h) ≤ 13
106 ε. When this bound holds,

by Lemma 4 with ε = ε
100 , the algorithm accepts f for this h except with probability at most

1
18 . J

CVIT 2016

23:10 Testing submodularity and other properties of valuation functions

I Claim 3.2 (Soundness I). If f is ε
100 -far from being a k-junta, then the Implicit Learning

Tester rejects with probability at least 5
6 .

Proof. The initial partition SP1 , . . . , SP100k4 is a random partition of [n] with more than
20k2 parts so, by Lemma 2, with probability at least 5

6 , for any union J ⊆ [n] of at most
k of these parts we have Inff ([n] \ J) ≥ ε2

400 . When this is the case, the inclusion SB ⊆ L0
and the fact that L0 is the complement of the union of some set of k parts in the random
partition imply that

Inff ([n] \ SB) ≥ Inff (L0) ≥ ε2

400
and, under the assumed accuracy of EstimateInf calls, the algorithm rejects f in Step
17. J

I Claim 3.3 (Soundness II). If f is ε
100 -close to a k-junta, but is 99ε

100 -far from F , then the
Implicit Learning Tester rejects with probability at least 5

6 .

Proof. Let g be any k-junta that satisfies dist2(f, g) ≤ ε
100 . For any hcore ∈ F

(ε
1000)

core and any
injective mapping ψ : {0, 1}n → {0, 1}k, the function h = hcore ◦ ψ is in F (ε

1000) and so by
the triangle inequality,

dist2(f,F (ε
1000)) ≥ dist2(f,F)− ε

1000

and

dist2(g, h) ≥ dist2(f, h)− dist2(f, g) ≥ 99
100ε−

ε
1000 −

ε
100 ≥

97
100ε.

Then, by Proposition 2.8 and the union bound over all |F (ε
1000)

core | ≤ (1000/ε)2k functions
in F (ε

1000)
core , with probability at least 5

6 , the condition in Step 20 is never satisfied and the
algorithm rejects. J

To complete the proof of Theorem 1.3 in the case where p = 2, consider now any property
P that contains only functions which are ε

106 -close to some k-junta. Let F be the property
that includes all k-juntas that are ε

106 -close to P . Claim 3.1 shows that Implicit Learning
Tester accepts every function in P with the desired probability, and Claims 3.2 and 3.3
shows that it rejects all functions that are ε-far from P. Finally, we note that the query
complexity of the algorithm is at most q + 2m(2O(k log(k)) + 2kq) = 2O(k log k)

ε10 , as claimed.
Finally, the general result for `p testing when p 6= 2 follows from Fact 2.1.

3.2 Proof of Lemma 3
Let f be any function ε-close to a k-junta and assume without loss of generality (by
relabeling the input variables if necessary) that f is close to a junta on [k]. The definition of
P1, . . . , P100k4 in step 3, means that SP1 , . . . , SP100k4 is a random partition of [n]. So by the
union bound, the probability that any two of the coordinates in [k] land in the same part is
at most 1

100k2 .
For each ` = 0, 1, 2, . . . , r, let L` = [n] \

⋃k
i=1 SP`,i denote the set of variables that have

been “eliminated” after ` iterations of the loop. Then [n] \ SB = Lr and

Inff ([n] \ SB) = Inff (L0) +
r∑
`=1

(
Inff (L`)− Inff (L`−1)

)
. (1)

E. Blais and A. Bommireddi 23:11

We bound both terms on the right-hand side of the expression separately.
By Proposition 2.8, we have Inff ([n] \ [k]) ≤ ε2 and so by the monotonicity of influence

there is a choice of J ⊆ [k2] of size |J | ≤ k for which Inff ([n] \ SJ) ≤ ε2. The guaranteed
accuracy on EstimateInf then implies that

Inff (L0) ≤ (1 + 2
100k2)ε2. (2)

Define E = {` ≤ r : (L` \L`−1) ∩ [k] 6= ∅} to be the set of rounds for which the algorithm
eliminated at least one of the coordinates in [k]. By this definition, each ` ∈ [r] \ E satisfies
(L` \ L`−1) ∩ [k] = ∅ and∑

`∈[r]\E

Inff (L`)− Inff (L`−1) =
∑

`∈[r]\E

∑
T :T∩L` 6=∅∧T∩L`−1=∅

f̂(T)2

≤
∑

T⊆[n]\[k]

f̂(T)2 ≤ Inff ([n] \ [k]) ≤ ε2. (3)

For each ` ∈ E , define X` = {∪ki=1SP`,i,1−(z∗
`

)i
: SP`,i,1−(z∗

`
)i
∩ [k] 6= ∅} to be the set of

coordinates in the parts that contain a coordinate in [k] that was eliminated in the `th
iteration of the loop. Let also Y` = {∪ki=1SP`,i,(z∗

`
)i

: SP`,i,1−(z∗
`

)i
∩ [k] 6= ∅} be the coordinates

in the parts that were kept instead. Then the guaranteed accuracy of EstimateInf and the
choice of z∗` implies that

Inff (L`) ≤ Inff
(
(L` \X`) ∪ Y`

)
+ 2 ε2

100k2

and, therefore,∑
`∈E

Inff (L`)− Inff (L`−1) ≤ 2ε2

1000k +
∑
`∈E

Inff
(
(L` \X`) ∪ Y`

)
− Inff (L`−1)

≤ 2ε2

1000k +
∑
`∈E

∑
T :T∩(L`\X`) 6=∅∧T∩L`−1=∅

f̂(T)2 +
∑
`∈E

∑
T :T∩Y` 6=∅∧T∩L`−1=∅

f̂(T)2.

(4)

As above, since (L` \X`) ∩ [k] = ∅,∑
`∈E

∑
T :T∩(L`\X`) 6=∅∧T∩L`−1=∅

f̂(T)2 ≤
∑

T⊆[n]\[k]

f̂(T)2 ≤ ε2. (5)

It remains to bound the last sum on the right-hand side of (4). By splitting up the terms in
this sum according to whether |T | ≤ k or not, we obtain∑

T :T∩Y` 6=∅∧T∩L`−1=∅

f̂(T)2 ≤
∑
|T |≤k

f̂(T)2 · 1[T ∩ Y` 6= ∅] +
∑
|T |>k

f̂(T)2 · 1[T ∩ L`−1 = ∅].

Let Z ⊆ [n] \ [k] denote the set of coordinates that occur in one of the the original parts
SP1 , . . . , SP100k4 that also contains one of the elements in [k]. Then Y` ⊆ Z and∑
`∈E

∑
|T |≤k

f̂(T)2 ·1[T ∩Y` 6= ∅] ≤
∑
`∈E

∑
|T |≤k

f̂(T)2 ·1[T ∩Z 6= ∅] ≤ k ·
∑
|T |≤k

f̂(T)2 ·1[T ∩Z 6= ∅].

The probability, over the choice of P1, . . . , P100k4 , that T ∩ Z 6= ∅ is at most |T |/100k3, so
the expected value of the last expression (again over the choice of the initial partition) is
bounded above by

E
[∑
`∈E

∑
|T |≤k

f̂(T)2·1[T∩Y` 6= ∅]
]
≤ k·

∑
|T |≤k,T\[k]6=∅

f̂(T)2·
(k

100k3

)
≤ 1

100k ·Inff ([n]\[k]) ≤ ε2

100k .

CVIT 2016

23:12 Testing submodularity and other properties of valuation functions

(6)

Lastly, since L0 ⊆ L`−1 for each ` ≥ 1,∑
|T |>k

f̂(T)2 · 1[T ∩ L`−1 = ∅] ≤
∑
|T |>k

f̂(T)2 · 1[T ∩ L0 = ∅].

A set T can be disjoint from L0 only when its elements are contained in at most k of the
parts of the initial random partition, which happens with probability at most 1

100k2 when
|T | > k, so

E
[∑
`∈E

∑
|T |>k

f̂(T)2·1[T∩L`−1 = ∅]
]
≤ E

[
k
∑
|T |>k

f̂(T)2·1[T∩L0 = ∅]
]
≤ 1

100k
∑
|T |>k

f̂(T)2 ≤ ε2

100k ,

(7)

where the last inequality uses the fact that
∑
|T |>k f̂(T)2 ≤ Inff ([n] \ [k]).

Combining the inequalities (1)–(7), we obtain that the expected value of Inff ([n] \ SB) is
bounded above by

E
[
Inff ([n] \ SB)

]
≤ (1 + 2

100k2)ε2 + 2ε2

100k + (1 + 2
100k)2ε2 ≤ 4ε2.

Applying Markov’s inequality and adding the probability that the junta variables are com-
pletely separated in the partition P1, . . . , P100k4 completes the proof of the lemma.

3.3 Proof of Lemma 4

For any X = (x(1), . . . , x(q)), let distX(f1, f2) =
(

1
q

∑q
i=1
(
f1(x(i)) − f2(x(i))

)2
)1/2

denote
the empirical distance between f1 and f2 according to X. To prove the lemma, we want to
show that distX(f, h) is within the specified bounds.

The function distX is a metric, so we can apply the triangle inequality to obtain

distX(f, h) ≤ distX(f, g) + distX(g, h).

By Hoeffding’s inequality, when x(1), . . . , x(q) are drawn independently and uniformly at
random, the upper bound

distX(f, g) ≤ dist2(f, g) + ε ≤ 2ε

holds except with probability at most e−16qε4 .
We now want to show that distX(g, h) is also close to dist2(g, h). This analysis is a bit

more subtle, however, because the choice of samples x(1), . . . , x(q) is not independent of h
(as it affects what mapping ψ will be chosen by the algorithm). So before we can apply
concentration inequalities, we must “decouple” X and h. To do so, we introduce a new
random process for generating X. Let λ : [n]→ {0, 1}q be chosen uniformly at random. This
function corresponds to a random partition of the set [n] of coordinates into 2q parts. Let
π : {0, 1}q → {0, 1}q be a random permutation. Then the random variable X obtained by
setting x(i)

j = π(λ(j))i has the desired uniform distribution over sequences of q vectors in
{0, 1}n.

This random process is designed so that the choice of ψ in the algorithm (and therefore
also h) is independent of π; the only information about X used in determining it is the

E. Blais and A. Bommireddi 23:13

identity of the parts defined by λ, not what values the coordinates in each parts receive on
the q queries. Then

E
X

[distX(g, h)] = E
λ,r

[E
π

[distX(g, h)]]

where r represents the internal randomness of the algorithm outside of that used to generate
X. With probability at least k2/2q, the partition λ completely separates the indices in J .
Fix such a partition λ. Define J∗ = J ∪ supp(ψ). Then |J∗| ≤ 2k. Define Y = (y(1), . . . , y(q))
by setting y(i) = x

(i)
J∗ . Since distX(g, h) only depend on the coordinates in J∗, we can write

it equivalently as distY (g, h).
Let D denote the distribution on Y induced by π. The distribution D is close to but not

equal to the uniform distribution U on {0, 1}q×|J∗|, since D is equivalent to the distribution
obtained by making drawing (y(1)

i , . . . , y
(q)
i) for each i ∈ J∗ without replacement from {0, 1}q.

Then

Pr
Y∼D

[|distY (g, h)− E
Y∼U

distY (g, h)| ≥ ε] ≤ dTV(D,U) + Pr
Y∼U

[|distY (g, h)− E
Y∼U

distY (g, h)| ≥ ε]

≤ 4k2

2q + e−16qε4
.

In the last inequality, the bound dTV(D,U) ≤ (2k)2

2q is by the standard total variation bound
between sampling with and without replacement [19] and the other bound on the other term
is by Hoeffding’s inequality.

4 Applications

In this short section, we show how Theorems 1.1 and 1.2 both follow directly from Theorem 1.3
and the junta theorem of Feldman and Vondrák.

Proof of Theorem 1.1. By the first part of the Feldman–Vondrák junta theorem, every
submodular function f ∈ Fn is ε

106 -close to a k-junta for some k = O(1
ε2 log 1

ε). Therefore,
by Theorem 1.3, submodularity can be tested with 2O(k log k)/ε10 = 2Õ(1/ε2) queries in the `2
testing model. By Fact 2.1, the number of queries for testing submodularity in the `p testing
model for any 1 ≤ p < 2 is also 2Õ(1/ε2) and for any p > 2 it is 2Õ(1/(εp/2)2) = 2Õ(1/εp). J

Proof of Theorem 1.2. By Lemma 1, additive functions, coverage functions, unit demand
functions, OXS functions, and gross substitute functions are all also submodular. Therefore,
the first part of the Feldman–Vondrák junta theorem also applies to these functions and the
rest of the proof is identical to that of Theorem 1.1.

Lemma 1 also implies that fractionally subadditive functions are self-bounding, so the
second part of the Feldman–Vondrák junta theorem shows that every function f that
has either of these properties is ε

106 -close to a k-junta for some k = 2O(1
ε2). Therefore,

by Theorem 1.3, fractional subadditivity and self-boundedness can both be tested with
2O(k log k)/ε10 = 22Õ(1/ε2) queries in the `2 testing model; the general result for the `p testing
model again follows directly from Fact 2.1. J

A Missing proofs from Section 2

We begin with the proof of Lemma 2. We emphasize that the proof below is essentially as
found in [6]; the reason we include it here is that the original statement of the proof only
applied to Boolean-valued functions. As we see below, however, the same argument also
holds for real-valued functions.

CVIT 2016

23:14 Testing submodularity and other properties of valuation functions

I Theorem A.1. (Dinur and Safra [12]; Friedgut [20]) Let G be a t-intersecting family of
subsets of [n] for some t ≥ 1. For any p < 1

t+1 , the p-biased measure of G is bounded by
µp(G) ≤ pt.

Proof of Lemma 2. For 0 ≤ t ≤ 1
2 , let Gt = {J ⊆ [n] : Inff (J) < tε2} be the family of all

the sets whose compliments have influence less than tε2. For any two sets J,K ∈ G 1
2
, the

subadditivity of influence implies that

Inff (J ∩K) = Inff (J ∪K) ≤ Inff (J) + Inff (K) < ε2.

But f is ε-far from every k-junta, so for any two sets J,K ∈ G 1
2
, |J ∩ K| > k, from

Proposition 2.8. Which means G 1
2
is a k + 1 intersecting family. There are two cases now,

first one is, there is at least one set J ∈ G 1
2
such that |J | < 2k, second one is all the sets

J ∈ G 1
2
will have |J | ≥ 2k. We will show that in both the cases our lemma holds. In the first

case let J ∈ G 1
2
be a set which has fewer than 2k elements, with high probability the set J is

completely separated by the partition P , and we know that for any K ∈ G 1
2
, |J ∩K| ≥ k+ 1,

which means K is not covered by any union of k-parts in P. Therefore, Inff (J) ≥ ε2

2 > ε2

4
as we wanted to show.

Consider the case where, all the sets in G 1
2
have more than 2k elements. Then G 1

4
is a 2k

intersecting family. Otherwise, if there are two sets J,K ∈ G 1
4
such that |J ∩K| < 2k, then

Inff (J ∩K) ≤ Inff (J) + Inff (K) < ε2

4 + ε2

4 < ε2

2 , thus contradicting our assumption.
Let J ⊆ [n] be the union of k parts in P. Since P is a random partition, J is a

random subset obtained by including each element of [n] in J independently with probability
p = k

r <
1

2k+1 . By Theorem A.1, PrP [If (J) < ε2

4] = Pr[J ∈ G 1
4
] = µ k

r
(G 1

4
) ≤ (kr)2k. By the

union bound the probability that there exists a set J ⊆ [n] that is the union of k parts in P
for which Inff (J) < ε2

4 is bounded above by
(
r
k

)
(kr)2k ≤ (erk)k(kr)2k ≤ (ekr)k < 1

6 . J

The proof of Proposition 2.9 is obtained by considering the EstimateInf algorithm below.

Algorithm 2: EstimateInf(f, S,m)

1 Draw x1, . . . , xm uniformly and independently at random from {0, 1}S ;
2 Draw y1, . . . , ym, y

′
1, . . . , y

′
m uniformly and independently at random from {0, 1}S ;

3 Return 1
2m
∑m
i=1
(
f(xi, yi)− f(xi, y′i)

)2;

The concentration of the estimated influence is obtained via the following (standard)
version of Hoeffding’s inequality.

I Hoeffding’s inequality. Let X1, ..., Xn be independent random variables bounded by a1 ≤
Xi ≤ bi. Let X = X1 +X2 + · · ·Xn have expected value E[X] = µ. Then for any t > 0,

Pr[|X − µ| ≥ t] ≤ 2e
− 2t2∑n

i=1
(bi−ai)2

.

Acknowledgments

The authors wish to thank the anonymous referees for valuable feedback, Amit Levi for
insightful discussions and Karl Wimmer for pointing out [31] to us. E.B. is supported by an
NSERC Discovery Grant.

E. Blais and A. Bommireddi 23:15

References

1 Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan,
and Tim Roughgarden. Sketching valuation functions. In Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan,
January 17-19, 2012, pages 1025–1035, 2012. URL: http://portal.acm.org/citation.
cfm?id=2095197&CFID=63838676&CFTOKEN=79617016.

2 Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valu-
ation functions. In COLT 2012 - The 25th Annual Conference on Learning Theory, June
25-27, 2012, Edinburgh, Scotland, pages 4.1–4.24, 2012. URL: http://www.jmlr.org/
proceedings/papers/v23/balcan12b/balcan12b.pdf.

3 Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 793–802, 2011. URL: http://doi.acm.org/10.1145/
1993636.1993741, doi:10.1145/1993636.1993741.

4 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 164–173, 2014. URL: http://doi.acm.org/10.1145/2591796.2591887, doi:10.
1145/2591796.2591887.

5 Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June
2, 2009, pages 151–158, 2009. URL: http://doi.acm.org/10.1145/1536414.1536437,
doi:10.1145/1536414.1536437.

6 Eric Blais, Amit Weinstein, and Yuichi Yoshida. Partially symmetric functions are ef-
ficiently isomorphism testable. SIAM J. Comput., 44(2):411–432, 2015. URL: http:
//dx.doi.org/10.1137/140971877, doi:10.1137/140971877.

7 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applic-
ations to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993. URL: http:
//dx.doi.org/10.1016/0022-0000(93)90044-W, doi:10.1016/0022-0000(93)90044-W.

8 Deeparnab Chakrabarty and Zhiyi Huang. Recognizing coverage functions. SIAM Journal
on Discrete Mathematics, 29(3):1585–1599, 2015. URL: http://dx.doi.org/10.1137/
140964072, arXiv:http://dx.doi.org/10.1137/140964072, doi:10.1137/140964072.

9 Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Efficient sample extract-
ors for juntas with applications. In Automata, Languages and Programming - 38th In-
ternational Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, pages 545–556, 2011. URL: http://dx.doi.org/10.1007/978-3-642-22006-7_46,
doi:10.1007/978-3-642-22006-7_46.

10 Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco A. Servedio, and Andrew Wan. Testing for concise representations. In 48th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23,
2007, Providence, RI, USA, Proceedings, pages 549–558, 2007. URL: http://dx.doi.org/
10.1109/FOCS.2007.70, doi:10.1109/FOCS.2007.70.

11 Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, and Andrew Wan.
Efficiently testing sparse GF(2) polynomials. In Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Pro-
ceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pages 502–
514, 2008. URL: http://dx.doi.org/10.1007/978-3-540-70575-8_41, doi:10.1007/
978-3-540-70575-8_41.

12 Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162:2005, 2004.

CVIT 2016

http://portal.acm.org/citation.cfm?id=2095197&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095197&CFID=63838676&CFTOKEN=79617016
http://www.jmlr.org/proceedings/papers/v23/balcan12b/balcan12b.pdf
http://www.jmlr.org/proceedings/papers/v23/balcan12b/balcan12b.pdf
http://doi.acm.org/10.1145/1993636.1993741
http://doi.acm.org/10.1145/1993636.1993741
http://dx.doi.org/10.1145/1993636.1993741
http://doi.acm.org/10.1145/2591796.2591887
http://dx.doi.org/10.1145/2591796.2591887
http://dx.doi.org/10.1145/2591796.2591887
http://doi.acm.org/10.1145/1536414.1536437
http://dx.doi.org/10.1145/1536414.1536437
http://dx.doi.org/10.1137/140971877
http://dx.doi.org/10.1137/140971877
http://dx.doi.org/10.1137/140971877
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1016/0022-0000(93)90044-W
http://dx.doi.org/10.1137/140964072
http://dx.doi.org/10.1137/140964072
http://arxiv.org/abs/http://dx.doi.org/10.1137/140964072
http://dx.doi.org/10.1137/140964072
http://dx.doi.org/10.1007/978-3-642-22006-7_46
http://dx.doi.org/10.1007/978-3-642-22006-7_46
http://dx.doi.org/10.1109/FOCS.2007.70
http://dx.doi.org/10.1109/FOCS.2007.70
http://dx.doi.org/10.1109/FOCS.2007.70
http://dx.doi.org/10.1007/978-3-540-70575-8_41
http://dx.doi.org/10.1007/978-3-540-70575-8_41
http://dx.doi.org/10.1007/978-3-540-70575-8_41

23:16 Testing submodularity and other properties of valuation functions

13 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM
J. Comput., 39(1):122–142, 2009. URL: http://dx.doi.org/10.1137/070680977, doi:
10.1137/070680977.

14 Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. SIAM J. Comput., 40(4):1133–1153, 2011. URL: http://dx.doi.org/10.1137/
090779346, doi:10.1137/090779346.

15 Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release
of marginals. In Proceedings of The 27th Conference on Learning Theory, COLT 2014,
Barcelona, Spain, June 13-15, 2014, pages 679–702, 2014. URL: http://jmlr.org/
proceedings/papers/v35/feldman14a.html.

16 Vitaly Feldman and Jan Vondrák. Tight bounds on low-degree spectral concentration
of submodular and XOS functions. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 923–942,
2015. URL: http://dx.doi.org/10.1109/FOCS.2015.61, doi:10.1109/FOCS.2015.61.

17 Vitaly Feldman and Jan Vondrák. Optimal bounds on approximation of submodular and
XOS functions by juntas. SIAM J. Comput., 45(3):1129–1170, 2016. URL: http://dx.doi.
org/10.1137/140958207, doi:10.1137/140958207.

18 Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky. Testing
juntas. J. Comput. Syst. Sci., 68(4):753–787, 2004. URL: http://dx.doi.org/10.1016/
j.jcss.2003.11.004, doi:10.1016/j.jcss.2003.11.004.

19 David Freedman. A remark on the difference between sampling with and without re-
placement. Journal of the American Statistical Association, 72(359):681–681, 1977. doi:
10.1080/01621459.1977.10480637.

20 Ehud Friedgut. On the measure of intersecting families, uniqueness and stability. Combin-
atorica, 28(5):503–528, 2008. URL: http://dx.doi.org/10.1007/s00493-008-2318-9,
doi:10.1007/s00493-008-2318-9.

21 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. URL: http://doi.acm.org/
10.1145/285055.285060, doi:10.1145/285055.285060.

22 Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
Testing fourier dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100, 2011. URL:
http://dx.doi.org/10.1137/100785429, doi:10.1137/100785429.

23 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993. URL: http://dx.doi.org/10.1137/0222080,
doi:10.1137/0222080.

24 Benny Lehmann, Daniel J. Lehmann, and Noam Nisan. Combinatorial auctions with de-
creasing marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006. URL:
http://dx.doi.org/10.1016/j.geb.2005.02.006, doi:10.1016/j.geb.2005.02.006.

25 Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing half-
spaces. SIAM J. Comput., 39(5):2004–2047, 2010. URL: http://dx.doi.org/10.1137/
070707890, doi:10.1137/070707890.

26 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
URL: http://www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/
analysis-boolean-functions.

27 Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae.
SIAM J. Discrete Math., 16(1):20–46, 2002. URL: http://epubs.siam.org/sam-bin/
dbq/article/40744.

http://dx.doi.org/10.1137/070680977
http://dx.doi.org/10.1137/070680977
http://dx.doi.org/10.1137/070680977
http://dx.doi.org/10.1137/090779346
http://dx.doi.org/10.1137/090779346
http://dx.doi.org/10.1137/090779346
http://jmlr.org/proceedings/papers/v35/feldman14a.html
http://jmlr.org/proceedings/papers/v35/feldman14a.html
http://dx.doi.org/10.1109/FOCS.2015.61
http://dx.doi.org/10.1109/FOCS.2015.61
http://dx.doi.org/10.1137/140958207
http://dx.doi.org/10.1137/140958207
http://dx.doi.org/10.1137/140958207
http://dx.doi.org/10.1016/j.jcss.2003.11.004
http://dx.doi.org/10.1016/j.jcss.2003.11.004
http://dx.doi.org/10.1016/j.jcss.2003.11.004
http://dx.doi.org/10.1080/01621459.1977.10480637
http://dx.doi.org/10.1080/01621459.1977.10480637
http://dx.doi.org/10.1007/s00493-008-2318-9
http://dx.doi.org/10.1007/s00493-008-2318-9
http://doi.acm.org/10.1145/285055.285060
http://doi.acm.org/10.1145/285055.285060
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1137/100785429
http://dx.doi.org/10.1137/100785429
http://dx.doi.org/10.1137/0222080
http://dx.doi.org/10.1137/0222080
http://dx.doi.org/10.1016/j.geb.2005.02.006
http://dx.doi.org/10.1016/j.geb.2005.02.006
http://dx.doi.org/10.1137/070707890
http://dx.doi.org/10.1137/070707890
http://dx.doi.org/10.1137/070707890
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://epubs.siam.org/sam-bin/dbq/article/40744
http://epubs.siam.org/sam-bin/dbq/article/40744

E. Blais and A. Bommireddi 23:17

28 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with ap-
plications to program testing. SIAM J. Comput., 25(2):252–271, 1996. URL: http:
//dx.doi.org/10.1137/S0097539793255151, doi:10.1137/S0097539793255151.

29 Rocco A. Servedio. Testing by implicit learning: A brief survey. In Property Testing -
Current Research and Surveys, pages 197–210, 2010. URL: http://dx.doi.org/10.1007/
978-3-642-16367-8_11, doi:10.1007/978-3-642-16367-8_11.

30 C. Seshadhri and Jan Vondrák. Is submodularity testable? In Innovations in Computer
Science - ICS 2010, Tsinghua University, Beijing, China, January 7-9, 2011. Proceed-
ings, pages 195–210, 2011. URL: http://conference.itcs.tsinghua.edu.cn/ICS2011/
content/papers/21.html.

31 Karl Wimmer and Yuichi Yoshida. Testing linear-invariant function isomorphism. In Auto-
mata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga,
Latvia, July 8-12, 2013, Proceedings, Part I, pages 840–850, 2013. URL: http://dx.doi.
org/10.1007/978-3-642-39206-1_71, doi:10.1007/978-3-642-39206-1_71.

CVIT 2016

http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1007/978-3-642-16367-8_11
http://dx.doi.org/10.1007/978-3-642-16367-8_11
http://dx.doi.org/10.1007/978-3-642-16367-8_11
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/21.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/21.html
http://dx.doi.org/10.1007/978-3-642-39206-1_71
http://dx.doi.org/10.1007/978-3-642-39206-1_71
http://dx.doi.org/10.1007/978-3-642-39206-1_71

	Introduction
	Testing properties of valuation functions
	Testing real-valued functions by implicit learning
	Overview of the proofs
	The algorithm.
	The analysis.

	Discussion and open problems

	Preliminaries
	Property testing
	Juntas
	Influence

	Testing by implicit learning
	Proof of Theorem 1.3
	Proof of Lemma 3
	Proof of Lemma 4

	Applications
	Missing proofs from Section 2

