A Worst-Case Analysis of Constraint-Based
Algorithms for Exact Multi-Objective
Combinatorial Optimization

Jianmei Guo'*, Eric Blais?, Krzysztof Czarnecki?, and Peter van Beek?*

! East China University of Science and Technology, China
gjm@ecust.edu.cn
2 University of Waterloo, Canada
{eric.blais,k2czarnecki,peter.vanbeek}Quwaterloo.ca

Abstract. In a multi-objective combinatorial optimization (MOCO)
problem, multiple objectives must be optimized simultaneously. In past
years, several constraint-based algorithms have been proposed for finding
Pareto-optimal solutions to MOCO problems that rely on repeated calls
to a constraint solver. Understanding the properties of these algorithms
and analyzing their performance is an important problem. Previous work
has focused on empirical evaluations on benchmark instances. Such eval-
uations, while important, have their limitations. Our paper adopts a dif-
ferent, purely theoretical approach, which is based on characterizing the
search space into subspaces and analyzing the worst-case performance
of a MOCO algorithm in terms of the expected number of calls to the
underlying constraint solver. We apply the approach to two important
constraint-based MOCO algorithms. Our analysis reveals a deep con-
nection between the search mechanism of a constraint solver and the
exploration of the search space of a MOCO problem.

1 Introduction

In a multi-objective combinatorial optimization (MOCO) problem, multiple ob-
jectives must be optimized simultaneously. MOCO problems arise in many areas
where there are tradeoffs, such as engineering, finance, and logistics. For exam-
ple, in the design of systems, one often has to choose between different candidate
designs that balance multiple objectives, such as low cost, high performance, and
high reliability. Since these objectives are often conflicting, there is usually no
single optimal solution that excels in all objectives. Therefore, decision makers
would like to know various, ideally all, Pareto-optimal solutions that trade off
the multiple objectives, such that they can choose a posteriori the solution that
best meets their needs.

Over the last four decades, constraint programming has emerged as a fun-
damental technology for solving hard combinatorial problems, as it provides

* Corresponding Authors.

rich languages to express combinatorial structures and to specify search proce-
dures at a high level of abstraction [16]. Building on the strengths of this work,
constraint-based algorithms and improvements to those algorithms have been
proposed for finding Pareto-optimal solutions to MOCO problems [12,8, 13,15,
11]. These MOCO algorithms rely on modeling using constraint programming
and on solving by repeated calls to a constraint solver to find feasible solutions.?

Understanding the properties of these constraint-based MOCO algorithms
and analyzing their performance is an important problem. This is true both to
understand their strengths and weaknesses, and also for the design of improved
algorithms. Previous work has focused on empirical evaluations on benchmark
instances. Such evaluations, while important, have their limitations, as any con-
clusions may not necessarily generalize to all instances. Our paper adopts a dif-
ferent, purely theoretical approach, which is based on characterizing the search
space into subspaces and analyzing the worst-case performance of a MOCO al-
gorithm in terms of an upper bound on the expected number of calls to the
underlying solver to find each Pareto-optimal solution to a given MOCO in-
stance. Our worst-case analysis holds for every MOCO instance and, in contrast
to an average-case analysis, our bounds do not rely on any assumptions about
the distribution of the input instances.

To determine the expected number of calls to a constraint solver, we build
a general probability model that takes into account two uncertain factors: (a)
how are all solutions distributed in the search space of a given MOCO instance,
and (b) how likely is an arbitrary solution to be returned by the constraint
solver. To address the first factor, we introduce a good ordering property that
labels all solutions in the search space and identifies an important total-order
relation on all solutions. To address the second factor, we introduce a bounded
bias assumption where it is (weakly) assumed that for every solution s in the
search space, the probability that a call to the constraint solver returns s is
bounded from below and non-zero.

Our analysis framework reveals a deep connection between the search mecha-
nism of the constraint solver and the exploration of the search space of a MOCO
instance. In brief, if the probability that the solver returns a solution is bounded
from below by ¢/n, where n is the number of all solutions in the search space,
for some constant ¢, a constraint-based MOCO algorithm A satisfying the good
ordering property finds each Pareto-optimal solution in O(logn) expected calls
to the solver. If ¢ is a function of n and ¢ is in w(lo%)—intuitively, ¢ grows
asymptotically faster than IofL "—A finds each Pareto-optimal solution in o(n)
expected calls to the solver, which is strictly better than the naive worst-case
bound O(n). Our study thus has implications for the best choice and design of
the underlying constraint solver for a constraint-based MOCO solver.

We apply our framework to two important constraint-based MOCO algo-
rithms: (i) Le Pape et al.’s [12] influential and widely-used algorithm for bi-
objective optimization problems (see also [20] for an earlier proposal restricted

3 From here after, we use solution unqualified to refer to a feasible solution and Pareto-
optimal solution to refer to an optimal solution to a MOCO instance.

to a particular scheduling problem), and (ii) Rayside et al.’s [15] guided improve-
ment algorithm (GIA), which has shown good performance empirically on sev-
eral benchmark instances and has been incorporated into a widely-used system
to support MOCO: the Z3 constraint solver, developed at Microsoft Research
[2]. Both algorithms are designed to find one or more exact Pareto-optimal so-
lutions. We prove that both algorithms satisfy the good ordering property and
thus fit our analysis framework and theoretical results.

2 Notation and Preliminaries

In the context of constraint programming, a MOCO problem is a quadruple P =
(X,D,C,F), where X = {x1,...,21} is a set of variables, D = {D1,...,Dp} is
a set of finite domains of variables in X, C' is a set of constraints on variables in
X,and F ={f1,..., fm} is a set of m objective functions to minimize simultane-
ously.* A solution s to a MOCO problem P is a total assignment of all variables
in X to values in the corresponding domains, such that all constraints in C are
satisfied. For a combinatorial optimization problem [14], all solutions constitute
a finite search space S, and we denote |S| by n. Each objective function f;(S)
assigns a discrete value to each solution s € S, and is bounded by the minimal
and maximal values regarding the corresponding objective.

There are two classes of approaches to solving MOCO problems [7]: a priori,
where weights or rankings are specified for the objectives prior to solving, and a
posteriori, where a representative set of Pareto-optimal solutions are presented
to a decision maker. Our interest is in a posteriori methods and, in particular,
constraint-based MOCO algorithms for finding sets of Pareto-optimal solutions.

Given two solutions s and s’ to a MOCO problem P, we say that s dominates
', denoted by s < &, if and only if s is not worse than s’ regarding all objectives
and s is better than s’ regarding at least one objective:

Vie{l,....,m}: fi(s) < fi(s") and
Jje{l,...,m}: f;(s) < f;(s) (1)

A solution to P is Pareto-optimal, which we denote by 3, if and only if no other
solution s in § dominates 5: s e S:s<s. All the Pareto-optimal solutions
constitute the Pareto front S, and we denote |S| by p.

3 Exact Constraint-Based MOCO Algorithms

A common approach to solving single-objective constraint optimization problems
is to find an optimal solution by solving a sequence of constraint satisfaction
problems [19, 1]. The idea is to, at each iteration, post an additional constraint
that excludes solutions that are worse than the most recently found solution.
This approach has been generalized in various ways to obtain constraint-based

4 Without loss of generality, we consider minimization problems.

Algorithm 1: Le Pape et al. (1994) Algorithm
input : BOCO instance P with objectives f1 and f2
output: Pareto front S

18«0

2 SupCs < true

3 s < solver(P)

4 while s # null do /* while a SAT call */
5 while s # null do /* minimizing f; */
6 s+ s

7 InfC — f1(S) > f1(8,)

8 s < solver(P A =InfC A SupCs)

9 | SupCi < fi(S) < fu(s")
10 while s’ # null do /* minimizing fa */
11 s+ ¢
12 InfC «+ f2(S) > fa(s)
13 s« solver(P A SupC; A —=InfC)

/* s becomes Pareto-optimal */

14 | S« Su{s}
15 SupCs + f2(5) < fa(s)
16 s < solver(P A SupCsz)

17 return S

algorithms for solving multi-objective problems. In this section, we examine in
detail the two algorithms that we subsequently analyze.

The first algorithm we consider was proposed by Le Pape et al. [12], denoted
by LePape from here after, which is a classical algorithm for bi-objective combi-
natorial optimization (BOCO) problems (see Algorithm 1). The idea is to find
the optimal value for one of the objective functions, constrain its value, and
restart the search to find the optimal value for the second objective function.
The subroutine solver(P) (Line 3) indicates a call to a constraint solver for a
solution to a MOCO problem P. A call is SAT if the solver returns a solution
successfully, and UNSAT otherwise. The inner loop in Lines 5-8 finds the opti-
mal value for the objective function fi: every time a solution s is returned, the
algorithm incrementally searches for a better solution than s regarding f; by
excluding all solutions scoped by the constraint InfC = f1(S) > fi(s), which
indicates all s’ € S, subject to fi1(s’) > fi(s). Then, the algorithm constrains
the optimal value regarding f1 (Line 9) and finds the optimal value for the other
objective function f (Lines 10-13). A Pareto-optimal solution is found when
there is no solution better than the currently-found solution regarding fo (Line
14). Next, the algorithm constrains the optimal value regarding fo (Line 15),
implicitly retracts the constraint regarding fi, and keeps searching for other
Pareto-optimal solutions (the outer loop in Lines 4-16).

The second algorithm we consider was proposed by Rayside et al. [15], called
guided improvement algorithm (GIA), which is designed for MOCO problems

(see Algorithm 2). On some benchmarks GIA has been shown empirically to out-
perform other constraint-based algorithms [8,13] in terms of the actual running
time of solving a given problem instance [15]. To formalize GIA, we introduce
the following notation. According to the definition of Pareto dominance, a solu-
tion s to a MOCO problem P partitions the original search space S into three
subspaces: inferior, superior, and incomparable. Correspondingly, we de-
fine three types of constraints scoping these subspaces. The inferior constraint
of a solution s defines the inferior subspace leading to all solutions that are
dominated by s:

inf(s) ={s' € S:s<s'}. (2)

The superior constraint of solution s defines the superior subspace leading to
all solutions dominating s:

sup(s) ={s' € S: ¢ < s}. (3)

The incomparable constraint of solution s defines the incomparable subspace
leading to all solutions that do not dominate s and are not dominated by s
either:

incp(s) = S\ (inf(s) U sup(s) U {s}). (4)

GIA, at each iteration, uses the superior constraint of a newly-found solu-
tion, defined in Equation (3), to augment constraints for the next search. GIA
always searches for the next solution only in the superior subspaces that lead
to better solutions, regarding all objectives, than the ones already found. This
results in inexpensive operations during the search as GIA only needs to keep
track of the one solution that is currently the best. A Pareto-optimal solution
is found when there is no solution in its superior subspace. Afterwards, GIA
searches for other Pareto-optimal solutions in the incomparable subspace of the
Pareto-optimal solution already found, defined in Equation (4).

Algorithm 2 lists the pseudo-code of GIA. The inner loop (Lines 5-8) is the
procedure of searching for one Pareto-optimal solution: every time a solution
s is returned by a SAT call in the superior subspace of the previous solution,
the current constraints are incrementally augmented by the superior constraint
(denoted by SupC) of solution s. The outer loop (Lines 4-11) serves finding all
Pareto-optimal solutions: every time an UNSAT call in the superior subspace
of solution s’ is returned, solution s’ becomes a Pareto-optimal one and the con-
straints are incrementally augmented by the incomparable constraint (denoted
by IncpC) of solution s'.

Theoretically, in the best case, LePape finds one Pareto-optimal solution
using one SAT call and two UNSAT calls to a constraint solver, while GIA
needs one SAT call and one UNSAT call to reach a Pareto-optimal solution.
However, a naive analysis suggests that in the worst case, both algorithms may
take O(n) calls to find even one Pareto-optimal solution.

Algorithm 2: Guided Improvement Algorithm (GIA)

input : MOCO instance P with objectives fi,..., fm
output: Pareto front S
S« 0
IncpC < true
s < solver(P)
while s # null do /* while a SAT call */
while s # null do /* while a SAT call */
s s
SupC' <« getSupC(P,s)
s < solver(P A IncpC N SupC')

® N O Uk W N

/* s’ becomes Pareto-optimal */
9 S+ Su{s}

10 IncpC <+ IncpC A getInepC(P,s')

11 s < solver(P A IncpC')

12 return S

4 A Framework for Worst-Case Analysis

In this section, we propose an analysis framework for systematically investi-
gating the worst-case performance of a constraint-based MOCO algorithm for
finding each Pareto-optimal solution in terms of the expected number of calls
to a constraint solver. In general, the performance of a constraint-based MOCO
algorithm for finding a Pareto-optimal solution in a search space S of a given
MOCO problem P is determined by the following two uncertain factors:

Factor 1: How are the solutions distributed in S?
Factor 2: How likely is any particular solution in S to be returned by the solver?

Given an underlying constraint solver, a constraint-based MOCO algorithm
that finds one or more Pareto-optimal solutions, denoted by A, searches for a
Pareto-optimal solution following a process that we call improvement search:

Step 1 (constraint solving): A asks the solver to return an arbitrary solu-
tion;

Step 2 (decision making): If no solution exists (an UNSAT call), the process
terminates as all Pareto-optimal solutions have been found; if a solution s is
returned (a SAT call), go to Step 3;

Step 3 (constraint improvement): A delimits the next search space by aug-
menting the constraints using the currently-found solution s; go to Step 1.

Given a MOCO problem P, the search space S with n solutions to P is fixed.
In all cases, an UNSAT call is returned at the end of the improvement search. If
n = 0 (i.e., P has no solution), then no SAT call happens in S. If n = 1, only one
SAT call is required to reach the only solution in S, which is Pareto-optimal as

well. If n > 1, a SAT call is required to return an arbitrary solution s in S, and
subsequently the algorithm A defines the next search space using the constraints
of solution s.

Let @ C S be any subspace of S, which we call a query space. Let target(s) be
the target subspace defined by the algorithm A for the next search after finding
solution s. Note that a target subspace, target(s) C S, is a query space. Also, a
query space can represent the original search space S. For any query space @,
let T'(Q) be the expected number of SAT calls that .4 makes until it reaches any
Pareto-optimal solution in @, and Pr[solver(Q)) = s] the probability of returning
solution s in @ by the solver. We define the following general probability model
of T(Q) when the first query space of algorithm A is Q:

Definition 1 (General probability model). If Q = 0 has no solution, then
T(Q)=0. If Q # 0 contains at least one solution, then:

T(Q) = Z Prsolver(Q) = s] - T'(target(s)) + 1. (5)
s€Q

Consider Factor 1: the target subspace target(s) is determined by the specific
algorithm A. Moreover, given a certain solution s € @), the number of solutions
contained in target(s) is uncertain. To address the uncertainty, we define the
good ordering property of the algorithm A as follows:

Definition 2 (Good ordering property). Given any query space Q C S, let
|Q| = n. The algorithm A has the good ordering property, if we can label all
solutions s1, Sa, +++, Sp, such that

s; € target(s;) i< j (6)

Remark 1. By Equation (6), target(s;) C {s1,$2, -, Si—1}, and thus [target(s;)| <
1.

For any integer k > 0, let T'(k) be the maximum of T'(Q) for any query space
@ that contains at most k solutions:

T(k) = QR Q). (7)

Remark 2. By Definition (7), T'(k) > T(k — 1) for every integer k > 1.

Consider Factor 2: the probability of returning any particular solution in
a given query space by the underlying solver is uncertain. The probability is
determined by the search mechanism designed in the solver, which varies for
different solvers, depending, for example, on the amount of randomization used
in the variable and value ordering heuristics adopted by the solvers [17,9]. As an
approximation of realistic constraint solvers, we make the following assumption
regarding the probability. We merely suppose that the probability of returning
any solution by the solver has a bounded bias:

Definition 3 (Bounded bias assumption). Given a search space S including
n solutions to a given MOCO problem P, there exists a mon-zero parameter
cn <1 such that for every @ C S and every solution s € Q,

Pr[solver(Q) = s] > Ln

Q|
Remark 3. When the parameter ¢, = 1, the solver returns any solution in @
uniformly at random.

Theorem 1. Let A be a constraint-based MOCO algorithm with the good order-
ing property and let ¢, be a parameter for which the bounded bias assumption
holds for the underlying constraint solver used by A. Given a search space S
including n solutions to a given MOCO problem P, the expected number of SAT
calls that A requires to find a Pareto-optimal solution is at most (2logn)/cy,.

Proof. Given S including n solutions to problem P, we want to show that T'(S) <
c% logn. To do so, it suffices to show that for any k < n, T'(k) < % log k.

Let Q* = argmaxgcs. /o<1 (Q). Then by Definition (7), T(Q*) = T'(k). By
the good ordering property and Remark 1, let |Q*| = ¢ < k and label all the
solutions in Q* by s1,...,s.. Let E denote the event where solver(Q*) returns
one of the solutions in {s1,...,sy/21}. By the bounded bias assumption,

[k/2]
Pr[E] = Z Pr[solver(Q*) = s;] >
i=1

Cn

v

n Cn

k2

NSRS

>

N |
%)

When event E occurs, by Remark 1, the solver returns a solution s such that
target(s)| < [k/2]—1 < |k/2] solutions; furthermore, by Remark 2, T'(target(s)) <
maxgcs:|g|<|k/2) T(Q) = T(|k/2]). Likewise, when event E does not occur, the
solver returns a solution s such that |target(s)] < k — 1 < k solutions and

T (target(s)) < T(k). Therefore, we have that

T(Q") < Pr[E] - T([k/2]) + (1 = Pr[E]) - T(k) + 1
< T(k) + - (T(Lk/2)) = T(k)) + 1. (8)

Since T'(Q*) = T'(k), the above inequality implies that

T(k) <T(lk/2])+ 3

n

Hence, T'(k) < % and thus T(S) < T(n) < 208,

Cn

Corollary 1. In Theorem 1, if parameter ¢, is a constant, the algorithm A finds
each Pareto-optimal solution in O(logn) expected SAT calls; if ¢, is a function
of n and ¢, = w(logn/n), A finds each Pareto-optimal solution in o(n) expected
SAT calls.

According to Definition 3 and Corollary 1, if parameter ¢,, is a positive con-
stant ¢ < 1, then the probability of returning any solution s in the search space
S of all n solutions is not less than <, i.e., Pr[solver(S) = s] > £; in such a case,

T'(n) reaches an ideal logarithmic bound O(logn). Note that if ¢ = 1, then the

solver returns any solution uniformly at random, i.e., Pr[solver(S) = s] = L. If

logn
n
there exists a positive constant ng such that 0 < Ck’% < ¢y, for all n > ng, and

the probability of returning any solution Pr[solver(S) = s] > 012#; in such a

case, T'(n) < % is bounded in o(n). Intuitively, if ¢,, grows asymptotically faster
than 8™ then T'(n) is bounded in o(n), which is strictly (i.e., asymptotically)

n
better than the naive worst-case bound O(n).

parameter ¢, is a function bounded in w(), then for any positive constant c,

5 Application of the Framework

To apply the proposed analysis framework to a certain MOCO algorithm, one has
to check if the algorithm meets the good ordering property and if the underlying
constraint solver used by the algorithm satisfies the bounded bias assumption.
The bounded bias assumption embodies and relaxes an active research point of
generating uniformly-distributed solutions (Remark 3) [6,10], and it only needs
a lower bound on the probability of returning any solution. Moreover, our anal-
ysis proves that not only uniformly random generators but also bounded bias
generators are ideal. However, it is non-trivial to design a constraint solver that
works efficiently and simultaneously guarantees either rigorous the uniformity or
bounded bias assumptions. A state-of-the-art scalable generator supports near-
uniformity [4] or almost-uniformity [3,5], which also guarantees the bounded
bias assumption, but only for Boolean satisfiability (SAT) problems. For general
constraint-satisfaction problems (CSPs), a uniformly random generator has been
proposed but suffers from exponential complexity [6]. In practice, we believe that
an efficient generator that approximately guarantees the bounded bias assump-
tion might be sufficient, e.g., by designing randomization heuristics based on
variable and value ordering, which would be explored in future. In this section,
we apply the proposed framework to two constraint-based optimization algo-
rithms. We suppose that the underlying solver used in the algorithms satisfies
the bounded bias assumption, and we prove that the good ordering property
holds for the algorithms.

5.1 LePape

According to Algorithm 1, LePape essentially performs two improvement search
processes to find one Pareto-optimal solution: the first process (Lines 5-8) min-
imizes one of the objective functions f1, and the second one (Lines 10-13) mini-
mizes the objective function f5. In each process, the search retains the constraints
of the optimal value for one of the objective functions and incrementally finds a
better solution in the target subspace of the currently-found one regarding the

other objective function. For example, in the first process, target(s) retains the
constraint SupCy for fa and scopes all solutions constrained by f1(S) < f(s) (i-e.,
—InfC in Line 8); while in the second process, target(s) retains the constraint
SupCy for fi (Line 9) and scopes all solutions constrained by f2(S) < f(s) (i.e.,
—InfC in Line 13). According to the characteristics of the target subspaces in
two processes, we have the following claim:

Claim. The good ordering property holds for LePape.

Proof. The good ordering property holds when the condition (6) is satisfied. To
label all n solutions in the entire search space, we perform a “bucket sorting”:
firstly, suppose that there are ny distinct values for one of objective functions
f1, we partition all solutions into n; buckets, each of which contains all solutions
with the same value for f;, and we sort buckets in the ascending order of the
values for fi; secondly, we sort all solutions inside each bucket in the ascending
order of the values for the other objective function fs; finally, we label all solu-
tions from index 1 to n firstly following the bucket order and secondly following
the solution order inside each bucket, with breaking ties arbitrarily. For example,
after the above bucket sorting, the first bucket of solutions are labeled as sq, - - -,
S|p,| (b1 is the size of the first bucket) that have the minimum value for f; and
are ordered ascendingly by their values regarding fs.

Following the above labeling tactic, given a solution s; with the bucket index
b, in the first search process that minimizes fi, any solution s; € target(s;)
must belong to a bucket with a smaller index than b; while in the second search
process that minimizes fo, any solution s; € target(s;) must be a solution that
has a smaller index than j in the same bucket as s;. Thus, in both improvement
search processes of LePape, we have i < j.

By Claim 5.1 and the bounded bias assumption, Theorem 1 and Corollary 1
hold for LePape. Moreover, LePape has two improvement search processes, and
it requires at least one SAT call and two UNSAT calls to identify one Pareto-
optimal solution. Hence, LePape finds all p Pareto-optimal solutions using at
most (4plogn)/c, SAT calls and at most 2p UNSAT calls. In addition, the
Pareto-optimal solutions founded by LePape follows a certain order, i.e., the
ascending order of values regarding either of two objectives.

5.2 GIA

According to Algorithm 2, GIA performs the improvement search process once
to reach some Pareto-optimal solution (Lines 5-8), and we have:

Claim. The good ordering property holds for GIA.

Proof. For GIA, the target subspace target(s) of the currently-found solution s
is the superior subspace sup(s). If we label all n solutions in the entire search
space, such that

|sup(s1)| < [sup(s2)| < -+ < [sup(s,)| 9)

then for every ¢ = 1,...,n, we have
|sup(s;)| < i. (10)

To prove Equation (10), by contradiction, suppose that all solutions have been
indexed following the rule defined in Equation (9) and that there is a solution
s; for which |sup(s;)| > . Then, there must exist some index j > 4, such that
s; € sup(s;). But then sup(s;) C sup(s;) \ {s;} and so [sup(s;)| < |sup(s;)| — 1,
in contradiction to Equation (9). According to Equation (10), any solution s; €
sup(s;) must have a smaller index than j, i.e., i < j.

By Claim 5.2 and the bounded bias assumption, Theorem 1 and Corollary 1
hold for GIA. Moreover, GIA requires at least one SAT call and at least one
UNSAT calls to identify one Pareto-optimal solution. Hence, GIA finds all p
Pareto-optimal solutions using at most (2plogn)/c, SAT calls and at most p
UNSAT calls. In addition, the Pareto-optimal solutions founded by GIA does
not follow a certain order, which is different from LePape.

6 Conclusion

We presented the first theoretical analysis of the worst-case performance of two
constraint-based MOCO algorithms. The algorithms rely on modeling using con-
straint programming and on solving the MOCO problem by repeated calls to
an underlying constraint solver. We characterized the original search space into
subspaces during the search and developed a general probability model of T'(n),
the expected number of (SAT) calls to the underlying constraint solver that
the algorithms require to find each Pareto-optimal solution to a given MOCO
problem. We identified a total-order relation on all solutions by introducing a
good ordering property. Under only a (weak) bounded bias assumption—the
probability that a call to the underlying solver returns any particular solution is
bounded from below and non-zero, we proved that T'(n) is bounded in O(logn)
or o(n), determined by a parameter ¢, that depends on how the underlying
solver behaves for the MOCO problem.

Our analysis reveals the connection between the search mechanism of a con-
straint solver and the exploration of the search space of a MOCO problem. Our
study has implications for the best choice and design of the underlying constraint
solver for a constraint-based MOCQO solver. In brief, the underlying constraint
solver used in a constraint-based MOCO solver should randomize the genera-
tion of feasible solutions, ideally meeting the uniformly random or bounded bias
assumption, such that the MOCO solver is able to find each Pareto-optimal
solution in a bound strictly better than the naive worst-case O(n) .

Some extensions to our current analysis framework would be considered in fu-
ture. We plan to perform a worst-case analysis of other constraint-based MOCO
algorithms. Furthermore, we plan to investigate a smoothed analysis [18] of
constraint-based MOCO algorithms.

Acknowledgments

This work has been partially supported by Shanghai Municipal Natural Science
Foundation (No. 17ZR1406900) and NSERC Discovery Grant.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer (2001)

Bjorner, N., Phan, A.D.: vZ - maximal satisfaction with Z3. In: Proc. SCSS. pp.
632-647 (2014)

Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Proc. AAAL pp. 1722
1730 (2014)

Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator
of sat witnesses. In: Proc. CAV. pp. 608-623 (2013)

Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
sat witness generator. In: Proc. DAC. pp. 1-6 (2014)

Dechter, R., Kask, K., Bin, E., Emek, R.: Generating random solutions for con-
straint satisfaction problems. In: Proc. AAAIL pp. 15-21 (2002)

Ehrgott, M.: Multicriteria Optimization. Springer, 2nd edn. (2005)

Gavanelli, M.: An algorithm for multi-criteria optimization in CSPs. In: Proc.
ECAL pp. 136-140 (2002)

Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through random-
ization. In: Proc. AAAI. pp. 431-437 (1998)

Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using xor constraints. In: Proc. NIPS. pp. 481-488 (2006)

Hartert, R., Schaus, P.: A support-based algorithm for the bi-objective pareto
constraint. In: Proc. AAAIL pp. 2674-2679 (2014)

Le Pape, C., Couronné, P., Vergamini, D., Gosselin, V.: Time-versus-capacity com-
promises in project scheduling. In: Proceedings of the Thirteenth Workshop of the
UK Planning Special Interest Group. Strathclyde, UK (1994)

Lukasiewycz, M., Gla}, M., Haubelt, C., Teich, J.: Solving multi-objective pseudo-
boolean problems. In: Proc. SAT. pp. 56-69 (2007)

Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover (1998)

Rayside, D., Estler, H.C., Jackson, D.: The guided improvement algorithm for ex-
act, general purpose, many-objective combinatorial optimization. Tech. rep., MIT-
CSAIL-TR-2009-033 (2009)

Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

Sadeh, N., Fox, M.: Variable and value ordering heuristics for the job shop schedul-
ing constraint satisfaction problem. Artificial Intelligence 86(1), 1-41 (1996)
Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex al-
gorithm usually takes polynomial time. J. ACM 51(3), 385-463 (2004)

Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press
(1989)

van Wassenhove, L., Gelders, L.: Solving a bicriterion scheduling problem. Eur. J.
Oper. Res. 4(1), 42-48 (1980)

