
A New Minimax Theorem for Randomized Algorithms

SHALEV BEN-DAVID, University of Waterloo, Canada

ERIC BLAIS, University of Waterloo, Canada

The celebrated minimax principle of Yao (1977) says that for any Boolean-valued function 𝑓 with finite domain, there is a distribution

𝜇 over the domain of 𝑓 such that computing 𝑓 to error 𝜖 against inputs from 𝜇 is just as hard as computing 𝑓 to error 𝜖 on worst-case

inputs. Notably, however, the distribution 𝜇 depends on the target error level 𝜖 : the hard distribution which is tight for bounded error

might be trivial to solve to small bias, and the hard distribution which is tight for a small bias level might be far from tight for bounded

error levels.

In this work, we introduce a new type of minimax theorem which can provide a hard distribution 𝜇 that works for all bias levels at

once. We show that this works for randomized query complexity, randomized communication complexity, some randomized circuit

models, quantum query and communication complexities, approximate polynomial degree, and approximate logrank. We also prove

an improved version of Impagliazzo’s hardcore lemma.

Our proofs rely on two innovations over the classical approach of using Von Neumann’s minimax theorem or linear programming

duality. First, we use Sion’s minimax theorem to prove a minimax theorem for ratios of bilinear functions representing the cost and

score of algorithms.

Second, we introduce a new way to analyze low-bias randomized algorithms by viewing them as “forecasting algorithms” evaluated

by a certain proper scoring rule. The expected score of the forecasting version of a randomized algorithm appears to be a more

fine-grained way of analyzing the bias of the algorithm. We show that such expected scores have many elegant mathematical properties:

for example, they can be amplified linearly instead of quadratically. We anticipate forecasting algorithms will find use in future work

in which a fine-grained analysis of small-bias algorithms is required.

ACM Reference Format:
Shalev Ben-David and Eric Blais. 2023. A New Minimax Theorem for Randomized Algorithms. 1, 1 (September 2023), 59 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Yao’s minimax principle [Yao 1977] is a central tool in the analysis of randomized algorithms in many different models

of computation. In its most commonly-used form, it states that for every Boolean-valued function 𝑓 with a finite domain,

if R (𝑐) denotes the set of randomized algorithms with worst-case cost at most 𝑐 and Δ denotes the set of distributions

over the domain of 𝑓 , then

min

𝑅∈R (𝑐)
max

𝜇∈Δ
Pr[𝑅(𝑥) ≠ 𝑓 (𝑥)] = max

𝜇∈Δ
min

𝑅∈R (𝑐)
Pr[𝑅(𝑥) ≠ 𝑓 (𝑥)]

with both probabilities being over the choice of 𝑥 drawn from 𝜇 and the internal randomness of 𝑅. This identity implies

that there exists a distribution 𝜇 for which any algorithm that computes 𝑓 with bounded error over inputs drawn from

Authors’ addresses: Shalev Ben-David, University of Waterloo, Canada, shalev.b@uwaterloo.ca; Eric Blais, University of Waterloo, Canada, eric.blais@u

waterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Shalev Ben-David and Eric Blais

𝜇 must have cost at least R(𝑓), the cost of computing 𝑓 to worst-case bounded error. But it does not say anything else

about 𝜇 itself. Notably,

I. The minimax principle does not guarantee that the resulting distribution 𝜇 must be balanced on the sets 𝑓 −1 (0)
and 𝑓 −1 (1).

II. More generally, it does not rule out the possibility that 𝑓 is very easy to compute by randomized algorithms that

are only required to output the correct value with probability at least
1+𝛾
2

for some small bias measure 𝛾 > 0 over

inputs drawn from the distribution 𝜇.

A separate application of the minimax principle can be used to show that there is a distribution 𝜇′ for which all

randomized algorithms computing 𝑓 with bias 𝛾 over 𝜇′ have cost at least R 1−𝛾
2

(𝑓) (the cost of computing 𝑓 to worst-

case error (1 − 𝛾)/2), but then there is no guarantee that randomized algorithms with bounded error over 𝜇′ must have

cost anywhere close to R(𝑓).
Intuitively, it seems reasonable to expect that for every function 𝑓 , there is a distribution 𝜇 for 𝑓 that addresses issues

I and II: a distribution that is balanced on 𝑓 −1 (0) and 𝑓 −1 (1), and which is at least slightly hard even to solve to a small

bias level 𝛾 .

Question 1.1 (Informal). Is there a distribution 𝜇 which certifies the hardness of 𝑓 for all bias levels 𝛾 > 0 at the same

time?

More formally, observe that the cost of computing 𝑓 to worst-case bias 𝛾 cannot be smaller than 𝛾2 R(𝑓). This is
because randomized algorithms can be amplified: by repeating an algorithm𝑂 (1/𝛾2) times and outputting the majority

vote of the runs, we can increase its bias from 𝛾2 to Ω(1). Therefore, a natural refinement of Question 1.1 is as follows.

Question 1.2 (Refinement of Question 1.1). Is there a distribution 𝜇 such that for all bias levels 𝛾 > 0, any algorithm

computing 𝑓 to bias 𝛾 against 𝜇 must have cost at least Ω(𝛾2 R(𝑓))?

Question 1.2 is the primary focus of this work. We answer it affirmatively in a variety of computational models (we

can handle most models in which amplification and Yao’s minimax principle both apply). We note that the distribution

satisfying the conditions of Question 1.2 is hard for bounded error in Yao’s sense, since each algorithm solving 𝑓 to

bounded error against 𝜇 must have cost at least Ω(R(𝑓)). In addition to this, such 𝜇 must also be perfectly balanced

between 0- and 1-inputs of 𝑓 (by considering the limit as 𝛾 → 0), and must remain somewhat hard to solve even to

small bias levels.

The study of Question 1.2 has led us to consider randomized forecasting algorithms which output probabilistic

confidence predictions about the value of 𝑓 (𝑥), instead of a Boolean guess for 𝑓 (𝑥). When evaluated using a certain

proper scoring rule, the best possible score of a forecasting algorithm is intimately related to the best possible bias

of a randomized algorithm; in fact, the score appears to be a more fine-grained way of measuring the bias. Scores

of forecasting algorithms appear to be the “right” way of measuring the success of randomized algorithms, as such

scores satisfy elegant mathematical properties. The following question, which we answer affirmatively, turns out to be

a strengthening of Question 1.2.

Question 1.3. Is there a distribution 𝜇 such that for all 𝜂 > 0, any forecasting algorithm which achieves expected score at

least 𝜂 against 𝜇 must have cost at least Ω(𝜂 R(𝑓))?
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 3

1.1 Motivation from joint computation

The answers to Question 1.2 and Question 1.3 have a direct impact on the study of composition theorems and joint

computation problems in randomized computational models: a natural approach for such problems involves first

applying a minimax theorem and then establishing the required inequalities in the deterministic distributional setting.

However, as observed by Shaltiel [Shaltiel 2003], this approach runs into trouble if the hard distribution is easy to solve

to small bias. Specifically, Shaltiel considered distributions 𝜇 which are hard to solve most of the time, but which give a

completely trivial input with small probability 𝛾 . Then computing 𝑛 independent copies from 𝜇 is a little easier than 𝑛

times the cost of computing 𝑓 , because on average, 𝛾𝑛 of the copies are trivial; the cost of computing 𝑛 independent

inputs from 𝜇 is at most (1 − 𝛾)𝑛 times the cost of solving 𝑓 .

Things get even worse when the inputs have a promised correlation, as can happen when proving composition

theorems. For a concrete example, consider the partial function Trivial𝑛 , which is defined on domain {0𝑛, 1𝑛} and
maps 0

𝑛 → 0 and 1
𝑛 → 1. Suppose we want to prove a composition lower bound with Trivial𝑛 on the outside: that is,

we want to show that for every function 𝑓 , computing Trivial𝑛 composed with 𝑛 copies of 𝑓 requires Ω(R(𝑓)) cost. In
other words, we want to lower bound the cost of an algorithm which outputs 0 when given 𝑛 0-inputs to 𝑓 , outputs 1

when given 𝑛 1-inputs to 𝑓 , and outputs arbitrarily when given some other type of input.

Now, if we try to lower bound this using the hard distribution 𝜇 from Yao’s minimax principle, the natural approach

would be to either sample 𝑛 i.i.d. inputs from 𝜇0 (the distribution 𝜇 conditioned on 𝑓 (𝑥) = 0) or else 𝑛 i.i.d. inputs from

𝜇1. However, either 𝜇0 or 𝜇1 might give a trivial input with small probability 𝛾 , as Shaltiel observed; but then so long as

𝑛 = Ω(1/𝛾), one of the inputs to 𝑓 will be trivial with high probability, and we can solve this “all-0s vs all-1s” problem

simply by searching for the trivial copy – potentially much faster than the worst-case cost of computing a single copy

of 𝑓 !

The hard distributions we give in this work solve this issue by being hard for all bias levels. In our companion article

[Ben-David and Blais 2020], we use one of the query versions of our minimax theorem (Theorem 4.6) to prove a new

composition theorem for randomized query complexity.

1.2 Main tools

Minimax theorem for cost/score ratios. The first main result is a new minimax theorem for the ratio of the cost and

score of randomized algorithms. A special case of the theorem with a simple formulation is as follows.

Theorem 1.4. [Special case of Theorem 2.18] Let R be a set of randomized algorithms that can be expressed as a convex

subset of a real topological vector space. Let 𝑆 be a nonempty finite set, and let Δ be the set of all probability distributions

over 𝑆 , viewed as a subset of R |𝑆 | . Let cost : R×Δ→ (0,∞) and score : R×Δ→ [−∞,∞) be continuous bilinear functions.
Then using the convention 𝑟/0 = ∞ for all 𝑟 ∈ (0,∞) and the notation 𝑟+ = max{𝑟, 0} for all 𝑟 ∈ [−∞,∞], we have

inf

𝑅∈R
max

𝑥∈𝑆
cost(𝑅, 𝑥)

score(𝑅, 𝑥)+ = max

𝜇∈Δ
inf

𝑅∈R
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ .

Further, all of the above maximums are attained.

The general version of the minimax theorem in Theorem 2.18 shows that the same identity holds even when the cost

and score functions are semicontinuous and saddle (but not necessarily linear) under some mild additional restrictions.

Furthermore, a variant of the theorem also holds when we consider convex and compact subsets of distributions over

the finite set 𝑆 instead of the set Δ of all distributions over that set.

Manuscript submitted to ACM

4 Shalev Ben-David and Eric Blais

Minimax theorems for ratios of semicontinuous and saddle functions as in Theorem 2.18 do not seem to have

appeared in the literature previously in the precise form we need, but as we show in Section 2, they can be obtained by

extending Sion’s minimax theorem [Sion 1958] with standard arguments. We believe that the main contribution of

Theorem 2.18 is in its interpretation for randomized algorithms. Various extensions and variations of Yao’s minimax

theorem have been considered in the computer science literature previously [Blais and Brody 2019; Braverman 2015;

Braverman et al. 2018; Impagliazzo 1995; Vereshchagin 1998; Yao 1977], but all of them appear to consider the cost of an

algorithm (with the minimax theorem applied to algorithms with a fixed worst-case score), the score of an algorithm

(with the cost being fixed), or a linear combination of the two. None of those variants suffice to answer the questions

raised at the beginning of the introduction or to establish the results in the following subsections; what was needed in

those cases was a minimax theorem for the ratio of the cost/score of randomized algorithms, and we suspect that this

ratio minimax theorem will find further applications in computer science in the future as well.

Forecasting algorithms and linear amplification. To convert the statements obtained from Theorem 2.18 regarding the

cost/score ratios of randomized algorithms under some distribution 𝜇 into more familiar lower bounds on the cost

of randomized algorithms that achieve some bias on 𝜇, we need a linear amplification theorem. Ideally, we would

like to argue that if there exists a randomized algorithm 𝑅 with bias 𝛾 on 𝜇, then by combining 𝑂 (1/𝛾) instances of
𝑅 we can obtain a randomized algorithm 𝑅′ with cost(𝑅′, 𝜇) = 𝑂

(
1

𝛾 · cost(𝑅, 𝜇)
)
= 𝑂

(
cost(𝑅,𝜇)
bias𝑓 (𝑅,𝜇)

)
and constant bias.

Unfortunately, such a linear amplification property does not hold for most models of randomized algorithms, where

amplification from bias 𝛾 to bounded error requires combining 𝑂 (1/𝛾2) instances of the original algorithm. To obtain a

linear amplification result, we must turn our attention away from bias and error and consider other score functions

instead.
1

To describe our score function, we first generalize our computational model from randomized algorithms that output

0 or 1 to forecasting algorithms, which are randomized algorithms that output a confidence value in [0, 1] for the value
𝑓 (𝑥) of the function 𝑓 on their given input 𝑥 . A “low” confidence prediction is a value close to

1

2
whereas a “high”

confidence prediction would be a value very close to 0 or to 1. There are many natural ways to assign a score to a

confidence value for 𝑓 (𝑥). The study of such scoring rules and their properties has a rich history in the statistics and

decision theory communities (see for instance [Buja et al. 2005; Gneiting and Raftery 2007] and references therein); we

discuss some fundamental scoring rules and give relations between them in Section 3. Of particular importance to our

main purpose is the scoring rule hs : [0, 1] → [−∞, 1] defined by

hs𝑓 (𝑝) =

1 −

√︃
1−𝑝
𝑝 when 𝑓 (𝑥) = 1

1 −
√︃

𝑝
1−𝑝 when 𝑓 (𝑥) = 0.

We refer to this as the Hellinger scoring rule due to its connection to the Hellinger distance between probability

distributions. Define the score of a forecasting algorithm 𝑅 on an input 𝑥 in the domain of 𝑓 to be score
hs,𝑓 (𝑅, 𝑥) =

E[hs𝑓 (𝑅(𝑥))], the expectation of the hs score of the output of 𝑅 over the internal randomness of 𝑅. Then linear

amplification does hold for this score function.

1
The astute reader may have noticed that we obtain linear amplification if we simply set the score to be the squared bias of the randomized algorithm.

That is true, but this approach does not work in conjunction with the ratio minimax theorem since this score function no longer satisfies the appropriate

saddle property requirements of that theorem; this is why we instead consider forecasting algorithms as described below.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 5

Lemma 1.5. For any Boolean-valued function 𝑓 , any forecasting algorithm 𝑅, and any 𝑘 ≥ 1, there is a forecasting

algorithm 𝑅′ that combines the outputs of 𝑘 instances of 𝑅 and satisfies

score
hs,𝑓 (𝑅′, 𝑥) ≥ 1 − (1 − score

hs,𝑓 (𝑅, 𝑥))𝑘

for every 𝑥 in the domain of 𝑓 . In particular, when 𝑘 = max𝑥
2

score
hs,𝑓 (𝑅,𝑥) then for each 𝑥 ∈ Dom(𝑓), score

hs,𝑓 (𝑅′, 𝑥) ≥
1 − 𝑒−2 > 0.85.

To the best of our knowledge, Lemma 1.5 has not previously appeared in the literature. This lemma is sensitive to the

precise definition of hs𝑓 ; other scoring rules do not appear to satisfy this amplification property, which is crucial for

the proof of our main results. Additionally, the scoring rule hs𝑓 is special because there is a close connection between

hs score of forecasting algorithms and the bias of randomized algorithms.

Lemma 1.6. For any Boolean-valued function 𝑓 , any distribution 𝜇 on Dom(𝑓), and any parameter 𝛾 > 0,

• If there exists a randomized algorithm 𝑅 with bias𝑓 (𝑅, 𝜇) = 1 − 2 Pr[𝑅(𝑥) ≠ 𝑓 (𝑥)] ≥ 𝛾 , then there is a forecasting

algorithm 𝑅′ with score
hs,𝑓 (𝑅′, 𝜇) ≥ 1 −

√︁
1 − 𝛾2 ≥ 𝛾2/2, and

• If there exists a forecasting algorithm 𝑅 with score
hs,𝑓 (𝑅, 𝜇) ≥ 𝛾 then there is a randomized algorithm 𝑅′ with

bias𝑓 (𝑅′, 𝜇) ≥ 𝛾 .

Moreover, in both cases 𝑅′ can be explicitly constructed from 𝑅 by modifying its output.

Lemma 1.5 and Lemma 1.6 can be used to reprove the fact that 𝑂 (1/𝛾2) instances of a bias-𝛾 randomized algorithms

can be combined to obtain a bounded-error algorithm; combining those lemmas (or, more precisely, specific instantiations

of these lemmas that account for the explicit constructions of the relevant algorithms and their costs) with the minimax

theorem also leads to new results as described in the next section.

1.3 Main results

Hard distributions for bounded error and small bias. The minimax theorem for cost/score ratios and linear amplification

of forecasting algorithms can be combined to show that for many measures of randomized complexity, for every

Boolean-valued function 𝑓 with finite domain there exists a single distribution 𝜇 on which it is hard to compute 𝑓

with bounded error and with (any) small bias. For example, letting RDT(𝑓) denote the minimum (worst-case) query

complexity of a randomized algorithm computing 𝑓 (or equivalently the minimum worst-case depth of a decision tree

computing 𝑓) with error at most
1

3
on every input in Dom(𝑓) and RDT

𝜇

¤𝛾 denote the minimum query complexity of

a randomized algorithm that has error probability at most ¤𝛾 :=
1−𝛾
2

when inputs are drawn from 𝜇, we obtain the

following result.

Theorem 1.7. For any non-constant partial function 𝑓 : {0, 1}𝑛 → {0, 1}, there exists a distribution 𝜇 on Dom(𝑓) such
that for every 𝛾 ∈ [0, 1],

RDT
𝜇

¤𝛾 (𝑓) = Ω
(
𝛾2 RDT(𝑓)

)
.

We establish analogous theorems for multiple other computational models as well:

Manuscript submitted to ACM

6 Shalev Ben-David and Eric Blais

Randomized communication complexity RCC
𝜇

¤𝛾 (𝑓) = Ω
(
𝛾2 RCC(𝑓)

)
Corollary 4.8

Quantum query complexity QDT
𝜇

¤𝛾 (𝑓) = 𝛾 · Ω̃
(
QDT(𝑓)

)
Theorem 5.2

Quantum communication complexity QCC
𝜇

¤𝛾 (𝑓) = 𝛾 · Ω̃
(
QCC(𝑓)

)
Theorem 5.9

Polynomial degree deg
𝜇

¤𝛾 (𝑓) = 𝛾 · Ω̃(adeg(𝑓)) Theorem 6.5

Log-rank complexity log rank
𝜇

¤𝛾 (𝑓) = 𝛾 · Ω̃(log rank1/3 (𝑓)) Theorem 6.8

Circuit complexity Rcirc
𝜇

¤𝛾 (𝑓) = 𝛾
2 · Ω̃

(
Rcirc(𝑓)

)
Theorem 7.1

Log-depth circuit complexity RNC1
𝜇

¤𝛾 (𝑓) = 𝛾
2 · Ω̃

(
RNC1(𝑓)

)
Theorem 7.9

Threshold circuit complexity RTC0
𝜇

¤𝛾 (𝑓) = 𝛾
2 · Ω̃

(
RTC0(𝑓)

)
Theorem 7.10

(Here and throughout the rest of the paper, the notation Ω̃(·) is used to hide terms that are polylogarithmic in the

argument.) Note that as in Theorem 1.7, the novel aspect of all these results is that they guarantee that for each of the

stated inequalities, there exists a single distribution 𝜇 that satisfies the inequality for every value of 𝛾 simultaneously.

Hard distributions for forecasting algorithms. The theorems listed above settle Question 1.2 in the affirmative for the

specified models. For the models with quadratic dependence on 𝛾 (i.e. randomized query complexity, randomized

communication complexity, and the various randomized circuit models), we also get hard distributions which lower

bound the expected score of a forecasting algorithm, settling Question 1.3 affirmatively.

Distinguishing power of randomized algorithms and protocols. In the communication complexity setting, we can also

analyze how well a randomized communication protocol computes a function 𝑓 : X×Y → {0, 1} via its communication

transcripts. Let tran(𝑅, 𝜇0) denote the distribution on communication transcripts of the randomized protocol 𝑅 on

inputs drawn from 𝜇. Then one way to measure how well 𝑅 is able to distinguish 0- and 1-inputs of 𝑓 is to measure the

Hellinger distance between the distributions tran(𝑅, 𝜇0) and tran(𝑅, 𝜇1) of transcripts of 𝑅 on some distributions 𝜇0

over 𝑓 −1 (0) and 𝜇1 over 𝑓 −1 (1). We can use the minimax and linear amplification theorems to give a strong upper

bound on this Hellinger distance as a measure of the cost of the protocol.

Theorem 1.8. For any non-constant partial function 𝑓 : X × Y → {0, 1} over finite sets X and Y, there is a pair of
distributions 𝜇0 on 𝑓 −1 (0) and 𝜇1 on 𝑓 −1 (1) such that for any randomized communication protocol 𝑅, the squared Hellinger

distance between the distribution of its transcripts on 𝜇0 and 𝜇1 is bounded above by

h
2
(
tran(𝑅, 𝜇0), tran(𝑅, 𝜇1)

)
= 𝑂

(
min{cost(𝑅, 𝜇0), cost(𝑅, 𝜇1)}

RCC(𝑓)

)
.

Here cost(𝑅, 𝜇) denotes the expected amount of communication the protocol 𝑅 transmits when given inputs from 𝜇.

Theorem 4.6 establishes an analogous result for query complexity. In our companion article [Ben-David and Blais

2020], that theorem is one of the ingredients that enables us to establish a new composition theory for query complexity.

Hardcore lemma. Impagliazzo’s Hardcore Lemma [Impagliazzo 1995] states that for every 𝜖, 𝛿 > 0, if every circuit 𝐶 of

size at most 𝑠 that computes 𝑓 : {0, 1}𝑛 → {0, 1} has error probability at least 𝛿 on the uniform distribution over {0, 1}𝑛 ,
then there is a distribution 𝜇 = 𝜇 (𝛿, 𝜖) with density 𝛿—that is, which satisfies 𝜇 (𝑥) ≤ 1/𝛿2𝑛 for all 𝑥 ∈ {0, 1}𝑛—for
which every circuit that computes 𝑓 with bias at least 𝜖 on the distribution 𝜇 must have size Ω(𝜖2𝑠). Informally, the

lemma shows that if a function 𝑓 is mildly hard on average, it is because it is “very” hard to compute on a fairly large

subset of its inputs. But, interestingly, this version of the hardcore lemma leaves open the possibility that the hard core

might be different for various levels 𝜖 of hardness. Using our main theorems, we can show that this is not the case.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 7

Theorem 1.9. There exists a universal constant 𝑐 > 0 such that for any 𝛿 > 0 and function 𝑓 : {0, 1}𝑛 → {0, 1}, if every
circuit𝐶 of size at most 𝑠 satisfies Pr[𝐶 (𝑥) = 𝑓 (𝑥)] ≤ 1− 𝛿 when the probability is taken over the uniform distribution of 𝑥

in {0, 1}𝑛 , then there is a distribution 𝜇 with density 𝛿 such that for every 𝜖 > 0, any circuit𝐶′ of size at most 𝑐𝑠𝜖2/log(1/𝛿)
has success probability bounded by

Pr[𝐶′ (𝑥) = 𝑓 (𝑥)] ≤ 1 + 𝜖
2

.

The proof of Theorem 1.9 follows closely the original argument of Nisan in [Impagliazzo 1995] that established

the hardcore lemma via a minimax theorem. Since that original work, many extensions and different proofs of the

hardcore lemma have been established (e.g., [Barak et al. 2009; Impagliazzo 1995; Klivans and Servedio 2003; Trevisan

et al. 2009]), but to the best of our knowledge Theorem 1.9 represents the first version of the lemma which gives a

single distribution 𝜇 which is hard for all values of 𝜖 > 0 simultaneously.

1.4 Recent independent work

In independent work concurrent with this one, Bassilakis, Drucker, Göös, Hu, Ma, and Tan [Bassilakis et al. 2020] showed

the existence of a certain hard distribution for randomized query complexity. They showed every Boolean function

𝑓 has hard distributions 𝜇0 and 𝜇1 (on 0- and 1-inputs, respectively) such that given query access to 𝑘 independent

samples from 𝜇𝑏 , it is still necessary to use Ω(R(𝑓)) queries to the bits of the samples in order to decide the value of

𝑏 ∈ {0, 1} to bounded error.

The guarantee on the hard distribution provided by [Bassilakis et al. 2020] is formally stronger than the one we

provide in Theorem 4.6 (though in our companion article [Ben-David and Blais 2020], we prove a new composition

theorem for randomized query complexity, and use it to conclude that the guarantee of [Bassilakis et al. 2020] turns

out to be equivalent to the guarantee of Theorem 4.6 in our current work). The tools used by [Bassilakis et al. 2020]

are also completely different: they use arguments specific to query complexity that construct the hard distribution

more explicitly, but their arguments do not generalize to other models such as communication complexity or circuit

complexity.

1.5 Organization and overview of the remaining sections

Section 2 is devoted to proving the main minimax theorem for the cost/score ratio of randomized algorithms. The

main result of that section is Theorem 2.18; the rest of the section is devoted to introducing the mathematical

notions and preliminaries required to obtain a proof of that theorem from Sion’s minimax theorem.

Section 3 introduces the basic definitions and some basic scoring rules for forecasting algorithms. The section

establishes some of the core properties of scoring functions, including notably connections between the best

score achievable by forecasting algorithms on distributions over inputs and various distance measures on those

distributions. The final portions of this section then establish the main linear amplification theorem in general

form in Lemma 1.5 and the general form of the conversion between randomized and forecasting algorithms in

Lemma 3.15.

Section 4 focuses on the query and communication complexity settings. Conversions between randomized and

forecasting algorithms in the query complexity setting are straightforward, but there is one significant challenge

in applying the linear amplification theorem to obtain the results in Theorem 1.7 and Theorem 4.6: the cost and

score of a randomized algorithm 𝑅 on an input 𝑥 can both depend on 𝑥 itself. This is a problem because to obtain

a constant score (and after the final conversion, a bounded-error randomized algorithm), we want to amplify

Manuscript submitted to ACM

8 Shalev Ben-David and Eric Blais

𝑅 with a number 𝑘 of copies that depends on the score of 𝑅 on 𝑥—but since we don’t know 𝑥 we don’t know

what score(𝑅, 𝑥) is either. We get around this problem with “odometer” arguments: by empirically estimating

the expected number of queries 𝑅 makes on 𝑥 , we can obtain effective bounds on the number 𝑘 of copies of 𝑅

that we need to obtain successful amplification.

As we show in the section, the communication complexity results Corollary 4.8 and Theorem 1.8 follow immedi-

ately from their query complexity analogues.

Section 5 establishes the results in the quantum query and communication complexity settings. Unlike in the

classical setting, amplification that is linear in the bias of an algorithm does hold in the quantum query complexity

setting. However, the proof of Theorem 5.2 requires that the set of algorithms must be representable as a convex

subset of a real topological space, and that the cost of an algorithm is a convex function on this set. It is not

immediately clear how quantum query algorithms can satisfy this condition, because in the usual definition,

the cost of a mixture of two quantum algorithms would be the maximum of the costs of the algorithms rather

than the average. To overcome this issue, we instead establish Theorem 5.2 via consideration of what we call

probabilistic quantum algorithms, which correspond to probability distributions over quantum algorithms and

do easily satisfy the appropriate convexity requirements. Probabilistic quantum algorithms are harder to amplify

than regular quantum algorithms (due to their lack of coherence), but we show that a linear amplification theorem

still holds.

Another important difference between the quantum and the classical setting is that the communication complexity

result, Theorem 5.9, is not implied by the analogous query complexity result. Nonetheless, the same argument

used for quantum query algorithms also holds for quantum communication protocols as well. We complete the

proof of Theorem 5.9 by first providing an abstraction of the query complexity argument in Theorem 5.8 and

then showing how communication protocols satisfy the conditions of this abstract theorem.

Section 6 considers the approximate polynomial degree and the logrank complexity of functions. As with quantum

query complexity, approximate polynomial degree satisfies an amplification theorem that is linear in the bias,

meaning that we do not need to use forecasting algorithms or scoring rules. However, also as with quantum

query complexity, polynomials and their cost do not satisfy the right convexity requirements, as the degree of a

mixture of two polynomials is not the average of their degrees. We overcome this by considering probabilistic

polynomials. Proving an amplification theorem for probabilistic polynomials turns out to be somewhat tricky,

and requires tools from approximation theory such as Jackson’s theorem.

Approximate logrank inherits all of the problems of approximate polynomial degree, and adds a few more. To

handle approximate logrank, we switch over to the nearly-equivalent model of the logarithm of the approximate

gamma 2 norm, and then use the previous trick of considering the probabilistic approximate gamma 2 norm.

To prove an amplification theorem for probabilistic gamma 2 norm we apply the same tools as for probabilistic

polynomials.

Section 7 establishes the circuit complexity results. There are two main hurdles in establishing Theorem 7.1. The

first is that the notion of randomized circuits is not as trivially extendable to forecasting circuits as in other

computational models. We show that this conversion can be done efficiently when we discretize the set of

confidence values that can be returned by forecasting circuits, and that this discretization does not affect the

guaranteed relations between score and bias. The second is that the overhead required to combine the output of

multiple instances of a randomized circuit during linear amplification is not trivial. This second hurdle can be

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 9

overcome with the use of efficient circuit constructions for elementary arithmetic operations and the iterated

addition problem.

The proof of the universal hardcore lemma in Theorem 1.9 is obtained via a slight generalization of the ratio

minimax theorem. This variant of the minimax theorem is stated in Lemma 7.12 and the rest of the proof of

Theorem 1.9 is presented in Section 7.3.

1.6 Further remarks and open problems

We make a few remarks regarding other possible generalizations of Yao’s original minimax theorem. First, one may

wonder why we provide a hard distribution 𝜇 satisfying R
𝜇

¤𝛾 (𝑓) = Ω(𝛾2 R(𝑓)) for all 𝛾 , rather than the stronger statement

R
𝜇

¤𝛾 (𝑓) = Ω(R ¤𝛾 (𝑓)) for all 𝛾 . In other words, we’ve stated our lower bounds in terms of the bounded-error randomized

cost R(𝑓), which required amplification; why not directly compare the average-case complexity to bias 𝛾 , denoted

R
𝜇

¤𝛾 (𝑓), to the worst-case complexity to bias 𝛾 , denoted R ¤𝛾 (𝑓)?
The reason is that this stronger version of the minimax is actually false: that is, there need not be a distribution 𝜇 for

which R
𝜇

¤𝛾 (𝑓) = Ω(R ¤𝛾 (𝑓)) for all 𝛾 (even though for every given 𝛾 , such a distribution 𝜇 that depends on 𝛾 does exist, by

Yao’s minimax theorem). For a counterexample, consider the query complexity model. Let 𝑓 be the Boolean function on

𝑛 +𝑚 + 1 bits, where if the first bit is 0 the function 𝑓 evaluates to the parity of the next𝑚 bits, whereas if the first bit is

1 the function 𝑓 evaluates to the majority of the last 𝑛 bits. Say we take 𝑛 =𝑚2
. Then, since parity is hard to compute

even to small bias, we have R ¤𝛾 (𝑓) ≥ 𝑚 for all 𝛾 . We also have R
1/3 (𝑓) = Ω(𝑚2), since majority on𝑚2

bits requires

Ω(𝑚2) queries. Now, consider any distribution 𝜇 over the domain of 𝑓 . If 𝜇 places nonzero probability mass on inputs

with first bit 1, then 𝜇 can necessarily be solved to some sufficiently small bias using at most 2 queries (one query to the

first bit of the input, and one to a random position in the input to majority). In this case, we would have R
𝜇

¤𝛾 (𝑓) = 𝑂 (1)
and R ¤𝛾 (𝑓) = Ω(

√
𝑛) for this sufficiently small 𝛾 . Alternatively, if 𝜇 places zero probability mass on inputs with first bit

1, then solving 𝑓 against 𝜇 is solving parity on𝑚 = 𝑂 (
√
𝑛) bits; hence R𝜇

1/3 (𝑓) = 𝑂 (
√
𝑛), even though R

1/3 (𝑓) = Ω(𝑛).
Similar counterexamples can be constructed in other computational models.

Another possible generalization of Yao’s minimax is to a distribution 𝜇 for which R
𝜇 (𝑓) is large even when both the

error of the algorithm and the expected cost are measured against 𝜇. That is, in a normal application of Yao’s minimax,

we either consider randomized algorithms which only ever make at most 𝑇 queries (against any input) and measure

their expected error against 𝜇, or else we consider randomized algorithms which only ever make error at most 𝜖 (against

any input) and measure their expected cost against 𝜇. One may wonder if it is possible for one distribution to certify

the hardness of 𝑓 in both ways at once, with both the cost and the error measured in expectation against 𝜇.

The answer turns out to be yes, as first observed by Vereshchagin for query complexity [Vereshchagin 1998].

Vereshchagin stated his theorem for bounded error, but in the case of small bias 𝛾 , his techniques appear to give a

distribution 𝜇 (which depends on 𝛾) such that R
𝜇

¤𝛾 (𝑓) = Ω(𝛾 R ¤𝛾 (𝑓)) even where the left-hand side is defined as the

expected query complexity against 𝜇 to bias at least 𝛾 (also against 𝜇). This is in contrast to Yao-style minimax theorems,

which are stronger in that they lack the 𝛾 factor on the right hand side, but weaker in that the left-hand side has either

the cost or the error being worst-case (rather than both being average-case against 𝜇).

Our results in this work are “Vereshchagin-like” in that they hold even when R
𝜇

¤𝛾 (𝑓) has both the cost and the bias

defined in expectation against 𝜇. We prove such results for randomized query complexity and randomized communication

complexity, showing a single 𝜇 satisfies R
𝜇

¤𝛾 (𝑓) = Ω(𝛾2 R(𝑓)) for all 𝛾 > 0, even when both the error and the cost in the

definition of R
𝜇

¤𝛾 (𝑓) are average-case against 𝜇. (For models such as quantum query complexity or circuit complexity,

Manuscript submitted to ACM

10 Shalev Ben-David and Eric Blais

the expected cost of an algorithm does not have an obvious interpretation, since the algorithms generally have the same

cost for all inputs; therefore, for those models we do not give a theorem in which the cost is measured in expectation

against 𝜇.)

Note that our minimax theorem is not directly comparable to Vereshchagin, because we state our lower bounds in

an “amplified” form – that is, the lower bounds are with respect to R(𝑓) rather than R ¤𝛾 (𝑓). As previously mentioned,

this is necessary when proving that a single distribution works for all 𝛾 , and our theorems appear to be tight in that

setting. Moreover, Vereshchagin’s theorem is tight in its setting: the factor of 𝛾 is necessary, because average-case query

complexity can be smaller than worst-case query complexity (for example, consider the parity function on 𝑛 bits, which

has R ¤𝛾 (𝑓) = 𝑛 for all 𝛾 ; if we design a randomized algorithm which queries all the bits with probability 𝛾 and queries

no bits with probability 1 − 𝛾 , it will use only 𝛾𝑛 expected queries, and it will solve 𝑓 to bias 𝛾).2

A remaining open problem is as follows: can Vereshchagin’s theorem be modified to show

R
𝜇

¤𝛾 (𝑓) = Ω(R ¤𝛾 (𝑓)), (1)

where both cost and bias on the left are measured in expectation against 𝜇, and where R ¤𝛾 (𝑓) denotes the worst-case
(over the inputs of 𝑓) expected (over the internal randomness of the algorithm) query complexity of 𝑓 to bias 𝛾? Note

that in the bounded-error setting, R(𝑓) = Θ(R(𝑓)), so for bounded 𝛾 this result follows from both Vereshchagin’s

theorem and from our work here. For small 𝛾 , we leave this question as an intriguing open problem.

We also note that we cannot hope that a single distribution 𝜇 satisfies (1) for all 𝛾 , because one can construct a

counterexample via a modification of our earlier function: we let 𝑓 be defined on 1 +𝑚 + 𝑛 bits, where if 𝑥1 = 0 the

function evaluates to the parity of the next𝑚 bits, and if 𝑥1 = 1 the function evaluates to the majority of the last 𝑛

bits, as before; this time we will have 𝑛 =𝑚4/3
. We also add a promise: we require that the input always has Hamming

weight either at most 𝑛/2 −
√
𝑛 or at least 𝑛/2 +

√
𝑛 on the last 𝑛 bits, turning the majority part of the function into a

√
𝑛-gap majority function. Now, to compute 𝑓 to worst-case bias 𝛾 requires at least 𝛾𝑚 expected queries on inputs 𝑥

with 𝑥1 = 0, and requires at least 𝛾2𝑛 expected queries on inputs with 𝑥1 = 1, so at least Ω(max{𝛾𝑚,𝛾2𝑛}) expected
queries in the worst case. This is Ω(𝑛1/4) when 𝛾 = 𝑛−1/2 and Ω(𝑛) when 𝛾 is constant. Now fix a distribution 𝜇, let

𝑝 be the probability that 𝜇 assigns to inputs with 𝑥1 = 1. If 𝑝 ≤ 1/2, then we can compute 𝑓 to constant bias simply

by querying the first bit, guessing randomly if 𝑥1 = 1, and querying𝑚 bits to compute 𝑓 exactly when 𝑥1 = 0; this

uses 𝑂 (𝑛3/4) queries to achieve constant bias, instead of the Ω(𝑛) which were required in the worst case. On the other

hand, if 𝑝 ≥ 1/2, then we can compute 𝑓 against 𝜇 by querying the first bit and nothing else when 𝑥1 = 0 (guessing the

answer randomly), and otherwise making one additional query to estimate the gap majority function to bias 1/
√
𝑛. This

uses 2 queries and achieves bias 𝑛−1/2 against 𝜇, instead of the Ω(𝑛1/4) queries required in the worst case.

2 MINIMAX THEOREM FOR THE RATIO OF SADDLE FUNCTIONS

Minimax theorems take the form

inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦) = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦).

For any function 𝛼 , the left-hand side above is always at least the right hand side, but equality only holds under certain

conditions; when equality does hold, we call it a minimax theorem.

Broadly speaking, the following conditions are required to ensure that a minimax theorem holds. First, 𝑋 and 𝑌 must

be convex sets (and they must be subsets of some real vector spaces). Second, 𝛼 must be saddle – or at least quasisaddle

2
We thank an anonymous reviewer for this example.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 11

– meaning that it is convex as a function of 𝑥 and concave as a function of 𝑦 (or at least quasiconvex and quasiconcave).

Third, 𝛼 must satisfy some continuity conditions. And finally, one of 𝑋 or 𝑌 must be compact (importantly, it’s not

necessary for both to be compact).

In this section, we show that under certain conditions, minimax theorems also hold for ratios of positive saddle

functions. Such a ratio of saddle functions is not necessarily saddle, but the important insight is that it is still quasisaddle.

2.1 Background definitions

In order to formally state the conditions in which minimax theorems hold, we will need a few definitions. We assume

the reader is familiar with vector spaces and topological spaces, including standard terminology such as compact sets

and neighborhoods.

Definition 2.1 (Real topological vector space). A real topological vector space is a tuple (𝑉 , +, ·, 𝜏), where𝑉 is a set, + is
a function 𝑉 ×𝑉 → 𝑉 , · is a function 𝑉 × R→ 𝑉 , and 𝜏 ⊆ 2

𝑉 , such that

• (𝑉 , +, ·) is a vector space over R,
• (𝑉 , 𝜏) is a topological space,
• + is continuous under the topology 𝜏 , and
• · is continuous under the topology 𝜏 and the standard topology of R.

We note that any normed real vector space is a real topological space, as the norm induces a topology. We will

primarily focus on the real topological vector spaces R𝑛 for 𝑛 ∈ N, which have a standard topology.

Definition 2.2 (Extended reals). The extended reals is the set R B R∪{−∞,∞}. We use the extended interval notation

(𝑟,∞] B (𝑟,∞) ∪ {∞} for 𝑟 ∈ R, and similarly for [−∞, 𝑟) and [−∞,∞]. We associate with R the following topology. A

set 𝑆 ⊆ R is a neighborhood of 𝑥 ∈ R if it contains an open interval (𝑥 − 𝜖, 𝑥 + 𝜖) for some 𝜖 ∈ (0,∞), it is a neighborhood
of∞ if it contains the interval (𝑟,∞] for some 𝑟 ∈ R, and it is a neighborhood of −∞ if it contains the interval [−∞, 𝑟) for
some 𝑟 ∈ R.

We define addition, subtraction, multiplication, and division of extended reals in the intuitive way, with∞−∞, 0 · ∞,
∞/∞, and 𝑥/0 for 𝑥 ∈ R all undefined. Note also that the extended reals are ordered (for each 𝑥,𝑦 ∈ R, we have either
𝑥 = 𝑦, 𝑥 < 𝑦, or 𝑥 > 𝑦).

Note that while we define the extended reals and will often talk about extended-real-valued functions, our vector

spaces will always be over the reals, not over the extended reals. In particular, the extended reals are not a field.

Definition 2.3 (Convexity of sets). We say a subset 𝑋 of a real vector space 𝑉 is convex if

∀𝑥,𝑦 ∈ 𝑋, ∀𝜆 ∈ (0, 1) 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑋 .

Definition 2.4 (Convex hull). Let 𝑉 be a real vector space and let 𝑋 ⊆ 𝑉 . The convex hull of 𝑋 , denoted Conv(𝑋), is the
intersection of all convex subsets of 𝑉 that contain 𝑋 as a subset.

Note that it is easy to verify that an arbitrary intersection of convex sets is convex, which means that the convex

hull of any set is always convex.

Definition 2.5 ((quasi)convexity and (quasi)concavity of functions). Let𝑉 be a real vector space, let𝑋 ⊆ 𝑉 be convex, and

let 𝜙 : 𝑋 → R. We say that 𝜙 is convex if for all 𝑥,𝑦 ∈ 𝑋 and 𝜆 ∈ (0, 1), we have 𝜙 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝜙 (𝑥) + (1 − 𝜆)𝜙 (𝑦).
Manuscript submitted to ACM

12 Shalev Ben-David and Eric Blais

We say 𝜙 is quasiconvex if for all 𝑥,𝑦 ∈ 𝑋 and 𝜆 ∈ (0, 1), we have 𝜙 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ max{𝜙 (𝑥), 𝜙 (𝑦)}. We say that 𝜙 is

concave if −𝜙 is convex, and we say 𝜙 is quasiconcave if −𝜙 is quasiconvex. If 𝜙 is both convex and concave, we say it is

linear.

Note that if∞ and −∞ are both in the range of 𝜙 , then 𝜆𝜙 (𝑥) + (1 − 𝜆)𝜙 (𝑦) may be∞−∞, which is undefined; in

this case we say 𝜙 is neither convex nor concave. A function with both∞ and −∞ in its range may still be quasiconcave

or quasiconvex.

Definition 2.6 (Saddle and quasisaddle). Let𝑉1 and𝑉2 be real vector spaces, let𝑋 ⊆ 𝑉1 and𝑌 ⊆ 𝑉2, and let 𝛼 : 𝑋 ×𝑌 → R.
We say that 𝛼 is saddle if for all 𝑥 ∈ 𝑋 the function 𝛼 (𝑥, ·) is concave and for all 𝑦 ∈ 𝑌 the function 𝛼 (·, 𝑦) is convex.
We say that 𝛼 is quasisaddle if for all 𝑥 ∈ 𝑋 the function 𝛼 (𝑥, ·) is quasiconcave and for all 𝑦 ∈ 𝑌 the function 𝛼 (·, 𝑦) is
quasiconvex.

Definition 2.7 (Semicontinuity). Let 𝑋 be a topological space and let 𝜙 : 𝑋 → R. We say that 𝜙 is upper semicontinuous

at 𝑥 ∈ 𝑋 if for all 𝑦 ∈ (𝜙 (𝑥),∞] there exists some neighborhood𝑈 of 𝑥 on which the value of 𝜙 (𝑥 ′) for 𝑥 ′ ∈ 𝑈 is less than

𝑦. We say that 𝜙 is lower semicontinuous at 𝑥 if −𝜙 is upper semicontinuous at 𝑥 .

Let 𝑌 be another topological space and let 𝛼 : 𝑋 ×𝑌 → R be a function. We say that 𝛼 is semicontinuous if for all 𝑥 ∈ 𝑋
the function 𝛼 (𝑥, ·) is upper semicontinuous over all of 𝑌 , and for all 𝑦 ∈ 𝑌 the function 𝛼 (·, 𝑦) is lower semicontinuous

over all of 𝑋 .

We note the following two useful lemmas about upper and lower semicontinuous functions. These lemmas are

standard, but for completeness we reprove them in Appendix A.

Lemma 2.8 (An upper semicontinuous function on a compact set attains its max). Let 𝑋 be a nonempty compact

topological space, and let 𝜙 : 𝑋 → R be a function. Then if 𝜙 is upper semicontinuous, it attains its maximum, meaning

there is some 𝑥 ∈ 𝑋 such that for all 𝑥 ′ ∈ 𝑋 , 𝜙 (𝑥 ′) ≤ 𝜙 (𝑥). Similarly, if 𝜙 is lower semicontinuous, it attains its minimum.

Lemma 2.9 (A pointwise infimum of upper semicontinuous functions is upper semicontinuous). Let 𝑋 be a topological

space, let 𝐼 be a set, and let {𝜙𝑖 }𝑖∈𝐼 be a collection of functions 𝜙𝑖 : 𝑋 → R. Then if each 𝜙𝑖 is upper semicontinuous, the

function 𝜙 (𝑥) = inf𝑖∈𝐼 𝜙𝑖 (𝑥) is also upper semicontinuous. Similarly, if each 𝜙𝑖 is lower semicontinuous, the pointwise

supremum is lower semicontinuous.

From these lemmas, it follows that if 𝛼 : 𝑋 × 𝑌 → R is semicontinuous, the expressions

inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦)

sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦)

have all the infimums attained if 𝑋 is nonempty and compact, and all the supremums attained if 𝑌 is nonempty and

compact. Hence on compact sets, inf-sup theorems become min-max theorems.

The following lemma will also come in useful. We also prove it in Appendix A.

Lemma 2.10 (Quasiconvex functions on convex hulls). Let𝑉 be a real vector space, let 𝑋 ⊆ 𝑉 , and let 𝜙 : Conv(𝑋) → R
be a function. If 𝜙 is quasiconvex, then

sup

𝑥∈Conv(𝑋)
𝜙 (𝑥) = sup

𝑥∈𝑋
𝜙 (𝑥) .

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 13

Similarly, if 𝜙 is quasiconcave, then

inf

𝑥∈Conv(𝑋)
𝜙 (𝑥) = inf

𝑥∈𝑋
𝜙 (𝑥).

2.2 Minimax theorems

We are now ready to state Sion’s minimax theorem. Actually, we will need a version of Sion’s minimax for extended-

real-valued functions, while Sion [Sion 1958] originally only dealt with real-valued functions; luckily, proving this

extension is not hard given Sion’s original theorem, and we do so in Appendix A.

Theorem 2.11 (Sion’s minimax for extended reals). Let 𝑉1 and 𝑉2 be real topological vector spaces, and let 𝑋 ⊆ 𝑉1
and 𝑌 ⊆ 𝑉2 be convex. Let 𝛼 : 𝑋 × 𝑌 → R be semicontinuous and quasisaddle. If either 𝑋 or 𝑌 is compact, then

inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦) = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦) .

Next, we use Sion’s minimax theorem to show a minimax theorem for the ratio of positive saddle functions. To do so,

we will need the following lemma.

Lemma 2.12. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ (0,∞), and let 𝜆 ∈ (0, 1). Then

min

{𝑎
𝑏
,
𝑐

𝑑

}
≤ 𝜆𝑎 + (1 − 𝜆)𝑐
𝜆𝑏 + (1 − 𝜆)𝑑 ≤ max

{𝑎
𝑏
,
𝑐

𝑑

}
.

This still holds if any of 𝑎, 𝑏, 𝑐, 𝑑 are 0, or if 𝑎 or 𝑐 are∞, so long as we interpret 𝑥/0 = ∞ for 𝑥 ∈ [0,∞].

Proof. When 𝑎, 𝑐 ∈ [0,∞) and 𝑏, 𝑑 ∈ (0,∞), it’s easy to check that

𝜆𝑎 + (1 − 𝜆)𝑐
𝜆𝑏 + (1 − 𝜆)𝑑 =

𝑎

𝑏
· 1

1 + 𝑧 +
𝑐

𝑑
· 𝑧

1 + 𝑧 ,

where 𝑧 = (1 − 𝜆)𝑑/𝜆𝑏. Since 𝑧 > 0, this is a convex combination of 𝑎/𝑏 and 𝑐/𝑑 , from which the desired result follows.

When 𝑎 = ∞ or 𝑐 = ∞, both the middle expression and the max expression equal∞, and the result trivially holds. The

same thing happens when 𝑏 = 𝑑 = 0. Finally, when 𝑎, 𝑐 ∈ [0,∞) and exactly one of 𝑏 and 𝑑 is 0, the max expression is

again infinity, and the inequality on the left and side can be easily verified. □

The simple lemma above is enough to imply that a convex function divided by a concave function is quasiconvex,

and that a concave function divided by a convex function is quasiconcave.

Lemma 2.13. Let 𝑉 be a real topological vector space, and let 𝑋 ⊆ 𝑉 be convex. Let 𝜙 : 𝑋 → [0,∞] and𝜓 : 𝑋 → [0,∞)
be functions, and define 𝜌 : 𝑋 → [0,∞] by 𝜌 (𝑥) B 𝜙 (𝑥)/𝜓 (𝑥), with 𝑟/0 interpreted as∞ for 𝑟 ∈ [0,∞]. Then

(1) If 𝜙 is convex and𝜓 is concave, 𝜌 is quasiconvex.

(2) If 𝜙 is concave and𝜓 is convex, 𝜌 is quasiconcave.

(3) If 𝜙 is upper semicontinuous and𝜓 is lower semicontinuous, 𝜌 is upper semicontinuous.

(4) If 𝜙 is lower semicontinuous and 𝜓 is upper semicontinuous, and if 𝜙 is strictly positive on 𝑋 , then 𝜌 is lower

semicontinuous.

Manuscript submitted to ACM

14 Shalev Ben-David and Eric Blais

Proof. We start with (1). Fix 𝑥,𝑦 ∈ 𝑋 and 𝜆 ∈ (0, 1). Then

𝜌 (𝜆𝑥 + (1 − 𝜆)𝑦) = 𝜙 (𝜆𝑥 + (1 − 𝜆)𝑦)
𝜓 (𝜆𝑥 + (1 − 𝜆)𝑦)

≤ 𝜆𝜙 (𝑥) + (1 − 𝜆)𝜙 (𝑦)
𝜆𝜓 (𝑥) + (1 − 𝜆)𝜓 (𝑦)

≤ max

{
𝜙 (𝑥)
𝜓 (𝑥) ,

𝜙 (𝑦)
𝜓 (𝑥)

}
= max{𝜌 (𝑥), 𝜌 (𝑦)},

so 𝜌 is quasiconvex, as desired. Here we used the convexity of𝜙 and concavity of𝜓 in the first inequality, and Lemma 2.12

in the second inequality. (2) works similarly:

𝜌 (𝜆𝑥 + (1 − 𝜆)𝑦) = 𝜙 (𝜆𝑥 + (1 − 𝜆)𝑦)
𝜓 (𝜆𝑥 + (1 − 𝜆)𝑦)

≥ 𝜆𝜙 (𝑥) + (1 − 𝜆)𝜙 (𝑦)
𝜆𝜓 (𝑥) + (1 − 𝜆)𝜓 (𝑦)

≥ min

{
𝜙 (𝑥)
𝜓 (𝑥) ,

𝜙 (𝑦)
𝜓 (𝑥)

}
= min{𝜌 (𝑥), 𝜌 (𝑦)}.

Next, we prove (3). Fix 𝑥 ∈ 𝑋 ; our goal is to show 𝜌 is upper semicontinuous at 𝑥 . If 𝜌 (𝑥) = ∞, then any function

𝜌 is upper semicontinuous at 𝑥 by definition, so assume 𝜌 (𝑥) < ∞. In particular, this means that 𝜙 (𝑥) < ∞ and that

𝜓 (𝑥) > 0. Now, fix 𝑦 > 𝜌 (𝑥) = 𝜙 (𝑥)/𝜓 (𝑥). By the upper semicontinuity of 𝜙 , find a neighborhood𝑈1 of 𝑥 on which 𝜙 (·)
is at most 𝜙 (𝑥) + 𝜖 (with 𝜖 > 0 to be chosen later). By the lower semicontinuity of𝜓 , find a neighborhood𝑈2 of 𝑥 on

which𝜓 (·) is at least𝜓 (𝑥) − 𝜖 . Setting𝑈 B 𝑈1 ∩𝑈2, we see that on𝑈 we have 𝜌 (·) ≤ (𝜙 (𝑥) + 𝜖)/(𝜓 (𝑥) − 𝜖), assuming

we pick 𝜖 < 𝜓 (𝑥). We now simply pick 𝜖 small enough that this expression is less than 𝑦, giving us a neighborhood 𝑈

of 𝑥 on which 𝜌 (·) is less than 𝑦, as desired.
Finally, we prove (4). As before, we fix 𝑥 ∈ 𝑋 . Our goal is to show 𝜌 (𝑥) is lower semicontinuous at 𝑥 . Let 𝑦 < 𝜌 (𝑥).

We seek a neighborhood 𝑈 of 𝑥 on which 𝜌 (·) > 𝑦. To start with, the upper semicontinuity of 𝜓 ensures there is a

neighborhood 𝑈1 of 𝑥 on which𝜓 (·) < 𝜓 (𝑥) + 𝜖 , with 𝜖 > 0 arbitrarily small. Now, if 𝜙 (𝑥) = ∞, then 𝜌 (𝑥) = ∞. In this

case, the lower semicontinuity of 𝜙 ensures there is a neighborhood𝑈2 on which 𝜙 (·) is at least 𝑧, with 𝑧 ∈ R arbitrarily

large. Then in𝑈1 ∩𝑈2, the value of 𝜌 (·) is also arbitrarily large, and can be made to exceed 𝑦 ∈ R given appropriate

choices of 𝑧 and 𝜖 . Alternatively, if 𝜙 (𝑥) < ∞, then there is a neighborhood𝑈2 on which 𝜙 (·) > 𝜙 (𝑥) − 𝜖 . In this case,

on 𝑈1 ∩𝑈2 we have 𝜌 (·) > (𝜙 (𝑥) − 𝜖)/(𝜓 (𝑥) + 𝜖). By picking 𝜖 sufficiently small, we can again get a neighborhood

𝑈1 ∩𝑈2 of 𝑥 on which 𝜌 (·) > 𝑦, meaning that 𝜌 is lower semicontinuous. □

We now state the minimax theorem for the ratio of two positive saddle functions. In the statement below, it may

help to think of R as a set of randomized algorithms, and to think of Δ as the set of all probability distributions over a

finite input set. Further, think of cost(𝑅, 𝜇) as measuring the cost of the algorithm 𝑅 when run on 𝜇 (for some models,

this will depend only on 𝑅 and not on 𝜇), and think of score(𝑅, 𝜇) as quantifying the success or bias that the algorithm

𝑅 achieves against input distribution 𝜇.

Theorem 2.14 (Minimax theorem for the positive ratio of saddle functions). Let 𝑉1 and 𝑉2 be real topological

vector spaces. Let R ⊆ 𝑉1 be convex, and let Δ ⊆ 𝑉2 be nonempty, convex, and compact. Let the function cost : R × Δ→
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 15

(0,∞] be semicontinuous and saddle, and let the function score : R × Δ → [0,∞) be such that its negation, − score, is
semicontinuous and saddle. Then using 𝑥/0 = ∞ for 𝑥 ∈ (0,∞], we have

inf

𝑅∈R
max

𝜇∈Δ
cost(𝑅, 𝜇)
score(𝑅, 𝜇) = max

𝜇∈Δ
inf

𝑅∈R
cost(𝑅, 𝜇)
score(𝑅, 𝜇) ,

and the maximums are attained.

Proof. Let 𝛼 : R × Δ → (0,∞] be defined by 𝛼 (𝑅, 𝜇) B cost(𝑅, 𝜇)/score(𝑅, 𝜇), with 𝑥/0 interpreted as ∞ for

𝑥 ∈ (0,∞]. For any fixed 𝜇 ∈ Δ, the function 𝛼 (·, 𝜇) is quasiconvex and lower semicontinuous by Lemma 2.13. Similarly,

for any fixed 𝑅 ∈ R, the function 𝛼 (𝑅, ·) is concave and upper semicontinuous by Lemma 2.13. Hence 𝛼 is semicontinuous

and quasisaddle, and the desired minimax theorem follows from Theorem 2.11. Furthermore, since Δ is nonempty and

compact, the supremums are attained as maximums by Lemma 2.9 and Lemma 2.8. □

Finally, we will need two extensions of this theorem. First, we will want to allow the denominator to be a function

of the form score(𝑅, 𝜇)+, where the + superscript denotes the maximum of score(𝑅, 𝜇) with 0, and where we only

know about saddle properties of score(𝑅, 𝜇), not of score(𝑅, 𝜇)+. To do this, we need to show such a maximum with 0

preserves the properties we care about. We have the following lemma, which we prove in Appendix A.

Lemma 2.15. Let 𝑉 be a real topological vector space, and let 𝑋 ⊆ 𝑉 be convex. For a function𝜓 : 𝑋 → R, let𝜓+ denote
the function𝜓+ (𝑥) = max{𝜓 (𝑥), 0}. Then this operation on𝜓 preserves convexity, quasiconvexity, quasiconcavity, upper

semicontinuity, and lower semicontinuity, but not concavity.

This lemma is useful, but doesn’t quite give us everything we need, because the operation 𝜓+ does not preserve

concavity. We will need the following additional lemma, which says that Lemma 2.13 also works when dividing by𝜓+,

despite its lack of concavity.

Lemma 2.16. Let𝑉 be a real topological vector space, and let 𝑋 ⊆ 𝑉 be convex. Let 𝜙 : 𝑋 → [0,∞] and𝜓 : 𝑋 → [−∞,∞)
be functions, and define 𝜌 : 𝑋 → [0,∞] by 𝜌 (𝑥) B 𝜙 (𝑥)/𝜓 (𝑥)+, with 𝑟/0 interpreted as ∞ for 𝑟 ∈ [0,∞]. Then if 𝜙 is

convex and𝜓 is concave, 𝜌 is quasiconvex.

Proof. Fix 𝑥,𝑦 ∈ 𝑋 and 𝜆 ∈ (0, 1). If 𝜓 (𝑥) > 0 and 𝜓 (𝑦) > 0, we have 𝜌 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ max{𝜌 (𝑥), 𝜌 (𝑦)} using
the same argument as in Lemma 2.13. On the other hand, if𝜓 (𝑥) ≤ 0 or𝜓 (𝑦) ≤ 0, then we have max{𝜌 (𝑥), 𝜌 (𝑦)} = ∞,
and the inequality 𝜌 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ max{𝜌 (𝑥), 𝜌 (𝑦)} trivially holds. □

The second extension we will need in our final minimax theorem is to the case where the numerator is allowed to be

0. Unfortunately, as we can see from the statement of Lemma 2.13, the ratio does not preserve lower semicontinuity

in this setting. We will need to impose some additional conditions on the cost and score functions, particularly with

regard to their behavior around 0.

Definition 2.17. We say that cost : R × Δ→ [0,∞] and score : R × Δ→ [−∞,∞) are well-behaved if the following

conditions hold:

(1) (Finite cost and score can be achieved.) For each 𝜇 ∈ Δ, there is some 𝑅 ∈ R such that cost(𝑅, 𝜇) > 0, cost(𝑅, 𝜇) < ∞,
and score(𝑅, 𝜇) > 0.

(2) (A zero-cost algorithm has zero cost regardless of the input.) For each 𝑅 ∈ R, either cost(𝑅, 𝜇) = 0 for all 𝜇 ∈ Δ, or
else cost(𝑅, 𝜇) > 0 for all 𝜇 ∈ Δ.

Manuscript submitted to ACM

16 Shalev Ben-David and Eric Blais

(3) (Mixing a zero-cost algorithm with a nonzero-cost algorithm gives a nonzero-cost algorithm.) For each 𝜇 ∈ Δ, if

𝑅, 𝑅′ ∈ R are such that cost(𝑅, 𝜇) = 0 and cost(𝑅′, 𝜇) > 0, then cost(𝜆𝑅 + (1 − 𝜆)𝑅′, 𝜇) > 0 for all 𝜆 ∈ (0, 1).

Finally, we are ready for our main workhorse minimax theorem.

Theorem 2.18. Let 𝑉 be a real topological vector space, and let R ⊆ 𝑉 be convex. Let 𝑆 be a nonempty finite set, and let

Δ be the set of all probability distributions over 𝑆 , viewed as a subset of R |𝑆 | . Let cost : R × Δ→ [0,∞] be semicontinuous

and saddle, and let score : R × Δ → [−∞,∞) be such that its negation, − score, is semicontinuous and saddle. Suppose

cost and score are well-behaved. Then using the convention 𝑟/0 = ∞ for all 𝑟 ∈ [0,∞], we have

inf

𝑅∈R
max

𝜇∈Δ
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ = max

𝜇∈Δ
inf

𝑅∈R
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ .

Moreover, if cost(𝑅, ·) and score(𝑅, ·) are both linear in 𝜇 for each 𝑅 ∈ R, then

inf

𝑅∈R
max

𝑥∈𝑆
cost(𝑅, 𝑥)

score(𝑅, 𝑥)+ = max

𝜇∈Δ
inf

𝑅∈R
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ .

Further, all of the above maximums are attained.

Proof. First, note that if 𝑆 = {𝑥1, 𝑥2, . . . , 𝑥 |𝑆 | }, then we can view Δ as the convex hull of the set {𝑒1, 𝑒2, . . . , 𝑒 |𝑆 | } ⊆
R |𝑆 | , where the 𝑒𝑖 are the unit vectors 𝑒𝑖 = (0, 0, . . . , 0, 1, 0, 0, . . . , 0) with the 1 at position 𝑖 . Hence Δ is convex. It is also

closed and bounded, making it compact. We identify 𝑒𝑖 with 𝑥𝑖 , so that Δ = Conv(𝑆).
Note that since each 𝑅 ∈ R has either cost 0 for all 𝜇 or cost greater than 0 for all 𝜇, we can define the set R′ ⊆ R of

𝑅 with nonzero cost. Now, on R′, the function 𝛼 (𝑅, 𝜇) = cost(𝑅, 𝜇)/score(𝑅, 𝜇)+ is semicontinuous and quasisaddle by

Lemma 2.13 together with Lemma 2.16 and Lemma 2.15. Additionally, Δ is nonempty, convex, and compact. Thus by

Theorem 2.11, we know that

inf

𝑅∈R′
max

𝜇∈Δ
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ = max

𝜇∈Δ
inf

𝑅∈R′
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ ,

with the maximums attained.

What we want to show is this statement with the infimums over R instead of R′. The inf-sup is always at least the

sup-inf for every function, so we need only show that the sup-inf is at least the inf-sup. Moreover, since expanding the

domain can only decrease the infimum, we know that

max

𝜇∈Δ
inf

𝑅∈R′
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ = inf

𝑅∈R′
max

𝜇∈Δ
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ ≥ inf

𝑅∈R
max

𝜇∈Δ
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ ,

where the rightmost maximum is attained by virtue of the fact that we know it is attained when 𝑅 ∈ R′, and if 𝑅 ∈ R\R′,
then cost(𝑅, 𝜇)/score(𝑅, 𝜇)+ is either 0 or∞ for all 𝜇. Thus we only need to show that the max-inf over R is at least the

max-inf over R′, and that the former maximum is attained.

To see this, let 𝜇 ∈ Δ be the maximizing 𝜇 for the expression

max

𝜇∈Δ
inf

𝑅∈R′
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ .

Suppose by contradiction that there was some 𝑅 ∈ R \ R′ such that

cost(𝑅, 𝜇)
score(𝑅, 𝜇)+

< inf

𝑅∈R′
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ .

Since 𝑅 ∈ R \ R′, we must have cost(𝑅, 𝜇) = 0. Since 0/score(𝑅, 𝜇)+ is less than something, and since we’re interpreting

0/0 = ∞, wemust have score(𝑅, 𝜇) > 0, so that 0/score(𝑅, 𝜇)+ = 0.Wewish to show that inf𝑅∈R′ cost(𝑅, 𝜇)/score(𝑅, 𝜇)+
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 17

equals 0. To this end, pick 𝜖 > 0. We will find 𝑅 ∈ R′ such that cost(𝑅, 𝜇)/score(𝑅, 𝜇)+ < 𝜖 . The idea is to pick some

𝑅′ ∈ R′ such that cost(𝑅′, 𝜇) < ∞ and score(𝑅′, 𝜇) > 0, as guaranteed by the well-behaved condition on cost and score.

Then set 𝑅 B 𝜆𝑅′+ (1−𝜆)𝑅, with 𝜆 > 0 extremely small. Now, the well-behaved property of cost says that cost(𝑅, 𝜇) > 0,

so𝑅 ∈ R′. By convexity, we also have cost(𝑅, 𝜇) = cost(𝜆𝑅′+(1−𝜆)𝑅, 𝜇) ≤ 𝜆 cost(𝑅′, 𝜇)+(1−𝜆) cost(𝑅, 𝜇) = 𝜆 cost(𝑅′, 𝜇),
and by the concavity of score(·, 𝜇), we have score(𝑅, 𝜇) = score(𝜆𝑅′+ (1−𝜆)𝑅, 𝜇) ≥ 𝜆 score(𝑅′, 𝜇) + (1−𝜆) score(𝑅, 𝜇) ≥
(1/2) score(𝑅, 𝜇), assuming 𝜆 ≤ 1/2.

This means that score(𝑅, 𝜇) and score(𝑅, 𝜇) are both positive, and cost(𝑅, 𝜇)/score(𝑅, 𝜇) ≤ 2𝜆 cost(𝑅, 𝜇)/score(𝑅, 𝜇).
Since cost(𝑅, 𝜇) < ∞, setting 𝜆 > 0 to be small causes the ratio cost(𝑅, 𝜇)/score(𝑅, 𝜇)+ to be arbitrarily close to 0, as

desired. It follows that there exists 𝜇 ∈ Δ such that

inf

𝑅∈R
cost(𝑅, 𝜇)
score(𝑅, 𝜇) ≥ inf

𝑅∈R
max

𝜇′∈Δ
cost(𝑅, 𝜇′)
score(𝑅, 𝜇′) ,

and since the inf-max is always at least the max-inf, there does not exist a 𝜇 for which the left-hand infimum is any

larger; thus we get the desired result and the maximum is attained.

Finally, suppose that cost(𝑅, ·) and score(𝑅, ·) are linear for each𝑅 ∈ R. In that case, cost(𝑅, ·) is convex and score(𝑅, ·)
is concave, which means that cost(𝑅, ·)/score(𝑅, ·)+ is quasiconvex on Δ by Lemma 2.16. Then Lemma 2.10 implies that

the maximum over 𝜇 ∈ Conv(𝑆) is attained at a point in 𝑆 . Moreover, if 𝑅 ∈ R \ R′, then the maximum over 𝜇 ∈ Δ

evaluates to either 0 or∞. If it is 0, then it is clearly also attained in 𝑆 . If it is∞, it means some 𝜇 ∈ Δ has score(𝑅, 𝜇) ≤ 0;

the concavity of score(𝑅, ·) then gives us some 𝑥 ∈ 𝑆 such that score(𝑅, 𝑥) ≤ score(𝑅, 𝜇), meaning there is a point 𝑥 ∈ 𝑆
on which score(𝑅, 𝑥)+ = 0 and cost(𝑅, 𝑥)/score(𝑅, 𝑥)+ = ∞, as desired. □

Theorem 2.18 is the main tool we will use to prove minimax theorems for algorithmic models. We will usually

apply it in a setting where R is a set of algorithms, 𝑆 is a finite input set, Δ is a set of distributions over the inputs,

cost(𝑅, 𝜇) is a cost measure for the performance of an algorithm against a distribution, and score(𝑅, 𝜇) is some kind of

success measure. We will sometimes choose score(𝑅, 𝜇) = bias𝑓 (𝑅, 𝜇), where bias𝑓 (𝑅, 𝜇) is the bias 𝑅 achieves against

distribution 𝜇 in computing 𝑓 .

We will generally combine Theorem 2.18 with an amplification theorem; such a theorem will turn the left hand

side inf𝑅 max𝑥 cost(𝑅, 𝑥)/score(𝑅, 𝑥) into something more familiar, such as inf𝑅 max𝑥 cost(𝑅, 𝑥), where the infimum

is restricted to algorithms 𝑅 which achieve at least constant bias (i.e. bounded error) on each input. With such

an amplification theorem, the minimax result will guarantee the existence of a hard distribution 𝜇 against which

cost(𝑅, 𝜇)/score(𝑅, 𝜇) is large for all 𝑅; this means 𝜇 is hard to solve even to small bias.

While the above strategy works for models that can be amplified linearly in the bias (going from bias 𝛾 to constant

bias using 𝑂 (1/𝛾) overhead), such as quantum query complexity, for randomized algorithms the situation is more

complicated. For randomized algorithms, we may instinctively want to use something like score(𝑅, 𝜇) = bias𝑓 (𝑅, 𝜇)2,
but this does not work as it does not satisfy the right saddle properties. Instead, we introduce a new way of evaluating

the success of randomized algorithms, called scoring rules. Evaluation via scoring rules ends up being the “correct” way

to measure the success of a randomized algorithm, and has more elegant properties than simply the bias. It is also

highly intuitive: to evaluate the success of an algorithm, we require it to give a confidence prediction for whether the

output is 0 or 1, and then we score the prediction using a scoring rule which incentivizes honesty (that is, a scoring rule

that causes a Bayesian agent who wishes to maximize her expected score to output her true subjective probability).

Manuscript submitted to ACM

18 Shalev Ben-David and Eric Blais

3 FORECASTING ALGORITHMS

In this section we introduce the notion of forecasting algorithms, which output not just a {0, 1} guess at the function
value but also a confidence parameter 𝑞 ∈ [0, 1] for that prediction. These algorithms will be scored using a scoring rule,

which rewards them 1 point for a correct prediction made with perfect confidence, and 0 points for a confidence of 1/2.
As we will see, normal algorithms can be converted into forecasting algorithms and vice versa, and the expected score

of the forecasting version can often be related to the bias of the algorithm in its regular (discrete outputs) form.

3.1 Scoring rules

Definition 3.1 (Scoring rule). A scoring rule is a function 𝑠 : [0, 1] → [−∞, 1] such that 𝑠 (1) = 1, 𝑠 (1/2) = 0, and 𝑠 (·)
is increasing over [0, 1]. We say a scoring rule is proper if for each 𝑝 ∈ (0, 1), the expression 𝑝𝑠 (𝑞) + (1 − 𝑝)𝑠 (1 − 𝑞) is
uniquely maximized at 𝑞 = 𝑝 .

Generally, if a forecasting algorithm outputs 𝑞 ∈ [0, 1], we will interpret it as assigning confidence 𝑞 to the output

1 and confidence 1 − 𝑞 to the output 0; we give it score 𝑠 (𝑞) if the right answer was 1, and score 𝑠 (1 − 𝑞) if the right
answer was 0. A proper scoring rule is therefore a scoring rule that incentivizes the algorithm to output 𝑞 = 𝑝 in the

case where the right answer is sampled from Bernoulli(𝑝). In other words, a proper scoring rule is one that incentivizes

a Bayesian agent to output her true subjective probability for the outcome being 1.

Definition 3.2. We define the following scoring rules.

(1) hs(𝑞) B 1 −
√︃

1−𝑞
𝑞

(2) Brier(𝑞) B 1 − 4(1 − 𝑞)2

(3) bias(𝑞) B 1 − 2(1 − 𝑞)
(4) ls(𝑞) B 1 − log(1/𝑞).3

We note that Brier(·) and ls(·) are known as the Brier scoring rule and logarithmic scoring rule, respectively, and

are well-known in the literature. The Brier scoring rule is useful because it is a proper scoring rule which is bounded

(that is, 𝑠 (𝑞) ∈ [−3, 1] for all 𝑞 ∈ [0, 1], instead of 𝑠 (·) diverging to −∞ at 0). The logarithmic scoring rule has an

information-theoretic interpretation, with the algorithm essentially starting at score 1 and losing an amount of score

depending on its “surprisal” at the correct outcome.

The scoring rule bias(·) is not proper, but as we will see, it is closely related to the bias an algorithm will make.

Finally, the scoring rule hs(·) will be the most useful of the bunch for our purposes. Despite not having any intuitive

interpretation and not being bounded, it is an incredibly convenient scoring rule due to the fact that it can be amplified,

as we will see. hs(·) has been previously studied (for example in [Buja et al. 2005], where it is called the “boosting loss”

due to its relationship with boosting), but we believe its amplification property has not been previously known (we

prove this amplification property later on in Lemma 3.10; this ends up being a key ingredient of our minimax theorems).

Lemma 3.3. hs, Brier, and ls are proper scoring rules. bias is a scoring rule which is not proper.

This lemma can be proven using elementary calculus, and we do so in Appendix B.

3
We use log to denote the base-2 logarithm.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 19

3.2 Distance measures

Fascinatingly, the above scoring rules all correspond to well-known distance measures between probability distributions.

To describe the correspondence, we first start by defining the following distance measures.

Definition 3.4. For probability distributions 𝜈0 and 𝜈1 over a finite domain 𝑃 , define

Δ(𝜈0, 𝜈1) B
1

2

∑︁
𝑥∈𝑃
|𝜈0 [𝑥] − 𝜈1 [𝑥] | (Total variation)

h
2 (𝜈0, 𝜈1) B

1

2

∑︁
𝑥∈𝑃
(
√︁
𝜈0 [𝑥] −

√︁
𝜈1 [𝑥])2 (Hellinger)

S
2 (𝜈0, 𝜈1) B

1

2

∑︁
𝑥∈𝑃

(𝜈0 [𝑥] − 𝜈1 [𝑥])2
𝜈0 [𝑥] + 𝜈1 [𝑥]

(Symmetrized 𝜒2)

JS(𝜈0, 𝜈1) B
1

2

∑︁
𝑥∈𝑃

𝜈0 [𝑥] log
2𝜈0 [𝑥]

𝜈0 [𝑥] + 𝜈1 [𝑥]
+ 𝜈1 [𝑥] log

2𝜈1 [𝑥]
𝜈0 [𝑥] + 𝜈1 [𝑥]

(Jensen-Shannon).

The above measures give the distance between two probability distributions. We will sometimes want to have an

asymmetric distance that is weighted towards one of the two distributions; while these asymmetric distances look

strange at first, they show up naturally in the study of scoring rules. We extend the above distance measures as follows.

Definition 3.5. Given probability distributions 𝜈0 and 𝜈1 over a finite domain 𝑃 , as well as a weight 𝑤 ∈ [0, 1], set
𝜈 = (1 −𝑤)𝜈0 +𝑤𝜈1. Let 𝑅 be the random variable over 𝑥 ∈ 𝑃 defined by 𝑅(𝑥) B | (1 −𝑤)𝜈0 [𝑥] −𝑤𝜈1 [𝑥] |/𝜈 [𝑥] for all
𝑥 ∈ 𝑃 . Then define

Δ(𝜈0, 𝜈1,𝑤) B E
𝑥←𝜈
[𝑅]

h
2 (𝜈0, 𝜈1,𝑤) B E

𝑥←𝜈
[1 −

√︁
1 − 𝑅2]

S
2 (𝜈0, 𝜈1,𝑤) B E

𝑥←𝜈
[𝑅2]

JS(𝜈0, 𝜈1,𝑤) B E
𝑥←𝜈

[
1 − 𝐻

(
1 + 𝑅
2

)]
,

where 𝐻 (𝛼) B 𝛼 log 1/𝛼 + (1 − 𝛼) log 1/(1 − 𝛼) is the binary entropy function.

It’s not hard to see that when𝑤 = 1/2, the expressions in Definition 3.5 equal the ones in Definition 3.4. Perhaps

surprisingly, the distance measures h
2
, S

2
, and JS are all related to each other by a constant factor.

Lemma 3.6 (Relations between distance measures). When applied to fixed 𝜈0, 𝜈1, and𝑤 , the distance measures satisfy

S
2

2

≤ 1 −
√︁
1 − S2 ≤ h

2 ≤ JS ≤ S
2

as well as

Δ2 ≤ S
2 ≤ Δ.

We also have JS ≤ h
2/ln 2 and S2 ≤ (ln 4) JS.

While these relationships are certainly known in the literature, it is hard to chase down good citations (though see

[Markatou et al. 2017; Tøpsoe 2000] for parts of this result); in any case, we prove Lemma 3.6 in Appendix B.

Manuscript submitted to ACM

20 Shalev Ben-David and Eric Blais

3.3 The highest achievable expected score is a distance measure

Consider the following problem: suppose distributions 𝜈0 and 𝜈1 are known (for example, perhaps they are the

distributions of the transcript of a fixed randomized algorithm when run on a known 0-distribution and a known

1-distribution, respectively). Further, suppose a Bernoulli(𝑤) process generates a bit 𝑏 ∈ {0, 1}, and then a sample

𝑥 ← 𝜈𝑏 is provided. We assume the parameter𝑤 is known. What is the best algorithm for predicting 𝑏 given 𝑥 , assuming

you wish to maximize the expected score according to one of the scoring rules hs(·), Brier(·), ls(·), bias(·)? It turns out
that the best attainable expected score is exactly the distance between 𝜈0 and 𝜈1 according to the distance measures

h
2, S2, JS,Δ, respectively. To prove this, we introduce the following definitions.

Definition 3.7. For a scoring rule 𝑠 : [0, 1] → [−∞, 1], we define 𝑠1 (𝑝) B 𝑠 (𝑝) and 𝑠0 (𝑝) B 𝑠 (1 − 𝑝). This way, if a
forecasting algorithm outputs 𝑝 and the real outcome is 𝑏, the score of this prediction will be 𝑠𝑏 (𝑝).

Definition 3.8 (Expected score notation). Let 𝑆 be a finite set, and let 𝜙 : 𝑆 → [0, 1] be a function representing predictions.
Let 𝜈 be a distribution over 𝑆 , let 𝑃 (𝑥) be a Boolean-valued random variable for each 𝑥 ∈ 𝑆 representing the correct outcome,

and let 𝑠 : [0, 1] → [−∞, 1] be a scoring rule. The expected score of 𝜙 , denoted score𝑠 (𝜙, 𝜈, 𝑃), is defined as

score𝑠 (𝜙, 𝜈, 𝑃) B E𝑥←𝜈E𝑏←𝑃 (𝑥) [𝑠𝑏 (𝜙 (𝑥))] .

In these expectations, if a value of∞ or −∞ occurs with probability 0, we set 0 · ∞ B 0.

(We warn that in this section, the set 𝑆 does not generally correspond to a set of inputs, but rather to something

closer to transcripts or leaves of a decision tree; this notation is different from Section 2.)

We can also extend the score notation to the case where 𝜙 (𝑥) outputs a probability distribution over [0, 1] instead of

always outputting a deterministic prediction given the observation 𝑥 . We won’t worry about this case for now, but we

will discuss it at the end of the section.

Equipped with these definitions, we are now ready to prove the correspondence between scoring rules and distance

measures. This correspondence appears to be known in the literature (indeed, variants of it seem to have been

rediscovered many times); see [Reid and Williamson 2011] for an overview. However, the form we need here is

somewhat different from the usual form in the literature, which usually discusses divergences instead of distances. We

therefore include the proof for completeness.

Lemma 3.9. Let 𝜈0 and 𝜈1 be probability distributions over a finite set 𝑆 , and let 𝑤 ∈ [0, 1]. Let 𝑀𝑠 (𝜈0, 𝜈1,𝑤) be the
maximum possible score when predicting 𝑏 ← Bernoulli(𝑤) given 𝑥 ← 𝜈𝑏 , where 𝜈0, 𝜈1, and 𝑤 are known. That is,

𝑀𝑠 (𝜈0, 𝜈1,𝑤) is the maximum over choice of 𝜙 : 𝑆 → [0, 1] of the expression score𝑠 (𝜙, 𝜈, 𝑃), where 𝜈 = (1 −𝑤)𝜈0 +𝑤𝜈1
and 𝑃 (𝑥) is the posterior probability distribution of 𝑏 given prior Bernoulli(𝑤) and observation 𝑥 ← 𝜈𝑏 . Then

𝑀
bias
(𝜈0, 𝜈1,𝑤) = Δ(𝜈0, 𝜈1,𝑤)

𝑀
hs
(𝜈0, 𝜈1,𝑤) = h

2 (𝜈0, 𝜈1,𝑤)

𝑀Brier (𝜈0, 𝜈1,𝑤) = S
2 (𝜈0, 𝜈1,𝑤)

𝑀
ls
(𝜈0, 𝜈1,𝑤) = JS(𝜈0, 𝜈1,𝑤) .

Proof. Consider a fixed 𝑥 ∈ 𝑆 . The contribution of 𝑥 to the expected score of 𝜙 (with respect to scoring rule 𝑠) is

simply (1−𝑤)𝜈0 [𝑥]𝑠0 (𝜙 (𝑥)) +𝑤𝜈1 [𝑥]𝑠1 (𝜙 (𝑥)) = (1−𝑤)𝜈0 [𝑥]𝑠 (1−𝜙 (𝑥)) +𝑤𝜈1 [𝑥]𝑠 (𝜙 (𝑥)). The total expected score of
𝜙 is therefore the sum over 𝑥 ∈ 𝑆 of the above expression. The function 𝜙 which maximizes the expected score is simply

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 21

the one where 𝜙 (𝑥) = 𝑞, where 𝑞 maximizes the expression (1−𝑤)𝜈0 [𝑥]𝑠 (1−𝑞) +𝑤𝜈1 [𝑥]𝑠 (𝑞). Now, the expression we

wish to maximize has the form 𝜈 [𝑥] · ((1−𝑝)𝑠 (1−𝑞) +𝑝𝑠 (𝑞)), where 𝑝 = 𝑤𝜈1 [𝑥]/𝜈 [𝑥]. Hence, if 𝑠 is proper, the unique
maximum occurs at 𝑞 = 𝑝 = 𝑤𝜈1 [𝑥]/𝜈 [𝑥]. This means that for the prediction function 𝜙 maximizing the expected

score, the contribution of each 𝑥 to the expected score is (1 −𝑤)𝜈0 [𝑥]𝑠 ((1 −𝑤)𝜈0 [𝑥]/𝜈 [𝑥]) +𝑤𝜈1 [𝑥]𝑠 (𝑤𝜈1 [𝑥]/𝜈 [𝑥]),
assuming 𝑠 is proper.

For 𝑠 ∈ {hs, ls, Brier}, the scoring rule 𝑠 is indeed proper, meaning that we have a closed expression for the maximum

possible expected score. Setting 𝑅 [𝑥] B |𝑤𝜈1 [𝑥] − (1−𝑤)𝜈0 [𝑥] |/𝜈 [𝑥], it’s not hard to check that for hs, the contribution
of each 𝑥 is 𝜈 [𝑥] (1 −

√︁
1 − 𝑅 [𝑥]2), for ls, the contribution of each 𝑥 is 𝜈 [𝑥] (1 − 𝐻 ((1 + 𝑅 [𝑥])/2)), and for Brier, the

contribution of each 𝑥 is 𝜈 [𝑥]𝑅 [𝑥]2, as desired.
It remains to deal with 𝑠 = bias. The contribution of each 𝑥 is the maximum possible value of (1 −𝑤)𝜈0 [𝑥] bias(1 −

𝑞) +𝑤𝜈1 [𝑥] bias(𝑞) for 𝑞 ∈ [0, 1]. Since bias(𝑞) = 2𝑞 − 1, it’s not hard to see that the maximizing value of 𝑞 is 𝑞 = 0

when (1 −𝑤)𝜈0 [𝑥] > 𝑤𝜈1 [𝑥], 𝑞 = 1 when𝑤𝜈1 [𝑥] > (1 −𝑤)𝜈0 [𝑥], and when (1 −𝑤)𝜈0 [𝑥] = 𝑤𝜈1 [𝑥], the contribution
of 𝑥 to the score is 0 regardless of the value of 𝑞. The contribution of 𝑥 to the maximum score is therefore 𝜈 [𝑥]𝑅 [𝑥], as
desired. □

Wenote that in the statement of Lemma 3.9, we are implicitly assuming that the predictive algorithms are deterministic:

that given 𝑥 , one is only allowed to output a deterministic prediction 𝜙 (𝑥) ∈ [0, 1] instead of a random choice of

prediction. However, it is not hard to see that randomized algorithms won’t help in this setting, since we are maximizing

the expected score, which is a linear function of the probabilities inside the randomized choice. That is to say, if the

randomized algorithm chooses (on input 𝑥) to output 𝑎 with probability 𝑝 and 𝑏 with probability 1 − 𝑝 , then the final

score of this algorithm will be a linear function of 𝑝 , and hence the optimal choice of 𝑝 will be either 0 or 1. Hence

Lemma 3.9 also characterizes the best possible score of a randomized prediction algorithm with respect to those four

scoring rules.

3.4 Linear amplification of hs score

From here on out, we consider only the hs(·) scoring rule (and occasionally bias(·), which will correspond to the bias

of a randomized algorithm). We will sometimes omit the subscript in the expression score𝑠 (𝜙, 𝜈, 𝑃) when 𝑠 = hs.

We now proceed to show a few nice properties of the hs scoring rule. First among them is the amplification property.

We believe this property (which is crucial for our purposes) has not previously appeared in the literature.

Lemma 3.10 (Amplification of hs). Let 𝑆 be a finite set, and let 𝜙 : 𝑆 → [0, 1] represent a prediction function. Then for

each 𝑘 ∈ N, there is a function 𝜙 (𝑘) : 𝑆𝑘 → [0, 1] such that for any distribution 𝜈 over 𝑆 , we have

score
hs
(𝜙 (𝑘) , 𝜈⊗𝑘 , 0) ≥ 1 − (1 − score

hs
(𝜙, 𝜈, 0))𝑘

score
hs
(𝜙 (𝑘) , 𝜈⊗𝑘 , 1) ≥ 1 − (1 − score

hs
(𝜙, 𝜈, 1))𝑘 .

Furthermore, equality holds except when score
hs
(𝜙, 𝜈, 0) = score

hs
(𝜙, 𝜈, 1) = −∞. Here 0 and 1 are interpreted as the

constant functions 0(𝑥) = 0 and 1(𝑥) = 1.

Informally, this lemma is saying the following. Consider a randomized forecasting algorithm 𝑅, which takes input

𝑥 and outputs a confidence 𝑞 ∈ [0, 1] representing its belief that 𝑓 (𝑥) = 1. Evaluate this algorithm according to its

worst-case expected score with respect to the hs(·) scoring rule. That is to say, for each input 𝑥 ∈ 𝑓 −1 (1), consider the
expectation E[hs(𝑅(𝑥))] of the expected score 𝑅 gets when run on 𝑥 , and for each 𝑥 ∈ 𝑓 −1 (0), consider the analogous

Manuscript submitted to ACM

22 Shalev Ben-David and Eric Blais

expectation E[hs(1 − 𝑅(𝑥))]. Then take the minimum 𝜂 of all these expected scores, minimizing over any 𝑥 ∈ Dom(𝑓).
This is the worst-case expected score of 𝑅. The lemma then says that we can run 𝑅 on 𝑥 several times, say 𝑘 times

independently, and combine the confidence outputs 𝑞1, 𝑞2, . . . , 𝑞𝑘 in such a way that the new algorithm has worst-case

expected score equal to 1 − (1 − 𝜂)𝑘 .

Proof. We define 𝜙 (𝑘) (𝑥1 . . . 𝑥𝑘) as follows. First, if it holds that some pair (𝑥𝑖 , 𝑥 𝑗) in the input satisfies 𝜙 (𝑥𝑖) = 0

and 𝜙 (𝑥 𝑗) = 1, we define 𝜙 (𝑘) (𝑥1 . . . 𝑥𝑘) B 1/2. Otherwise, we set 𝜙 (𝑘) (𝑥1 . . . 𝑥𝑘) B
(
1 +∏𝑘

𝑖=1
1−𝜙 (𝑥𝑖)
𝜙 (𝑥𝑖)

)−1
, where

we interpret 1/0 = ∞ if it occurs (we need not interpret ∞ · 0 since that will only occur if 𝜙 (𝑥𝑖) = 0 and 𝜙 (𝑥 𝑗) = 1

for some 𝑖 and 𝑗). Note that if 𝜙 (𝑥) = 0 and 𝜙 (𝑥 ′) = 1 for 𝑥, 𝑥 ′ ∈ 𝑆 that have nonzero weight in 𝜈 , then we have

score
hs
(𝜙, 𝜈, 0) = score

hs
(𝜙, 𝜈, 1) = −∞, so the desired inequalities trivially hold. Otherwise, for 𝑏 ∈ {0, 1} we write

score
hs
(𝜙 (𝑘) , 𝜈⊗𝑘 , 𝑏) = E𝑥1 ...𝑥𝑘←𝜈⊗𝑘

1 −
√√(

𝜙 (𝑘) (𝑥1 . . . 𝑥𝑘)
1 − 𝜙 (𝑘) (𝑥1 . . . 𝑥𝑘)

) (−1)𝑏 
= 1 − E𝑥1 ...𝑥𝑘←𝜈⊗𝑘


√√√

𝑘∏
𝑖=1

(
𝜙 (𝑥𝑖)

1 − 𝜙 (𝑥𝑖)

) (−1)𝑏 
= 1 −

𝑘∏
𝑖=1

E𝑥𝑖←𝜈


√︄(

𝜙 (𝑥𝑖)
1 − 𝜙 (𝑥𝑖)

) (−1)𝑏 
= 1 − (E𝑥←𝜈 [1 − hs𝑏 (𝜙 (𝑥))])𝑘

= 1 − (1 − score
hs
(𝜙, 𝜈, 𝑏))𝑘 .

Note that equality holds except in the case where score
hs
(𝜙, 𝜈, 0) = score

hs
(𝜙, 𝜈, 1) = −∞. □

The following lemma will be convenient when using this amplification theorem. We prove it in Appendix B.

Lemma 3.11. If 𝑥 ∈ [0, 1] and 𝑘 ∈ [1,∞), we have
1

2

min{𝑘𝑥, 1} ≤ 1 − (1 − 𝑥)𝑘 ≤ min{𝑘𝑥, 1}.

3.5 Bias and hs score

Another nice property of hs is that it is at most bias.

Lemma 3.12. For all 𝑞 ∈ [0, 1], we have hs(𝑞) ≤ bias(𝑞).

Proof. Recall that hs(𝑞) = 1 −
√︁
(1 − 𝑞)/𝑞 and bias(𝑞) = 1 − 2(1 − 𝑞). The desired inequality clearly holds at 𝑞 = 0

and 𝑞 = 1. For 𝑞 ∈ (0, 1), it suffices to show that 4(1 − 𝑞)2 ≤ (1 − 𝑞)/𝑞, or equivalently 4𝑞(1 − 𝑞) ≤ 1⇔ 1 − 4𝑞 + 4𝑞2 ≥
0⇔ (1 − 2𝑞)2 ≥ 0, which also clearly holds. □

Finally, the last main property of hs that we exploit is that hs scores and biases are quadratically related. To explain

what we mean, start with the following definition of a general algorithm, where we take care not to put any restriction

on the structure of the algorithm but want it to take inputs and return outputs while incurring some cost.

Definition 3.13. Let 𝑆 be a finite set, and let Δ be the set of probability distributions over 𝑆 . A general algorithm, which

we denote by 𝑅, is a pair of functions. The first function is from Δ to [0,∞], and we denote it by cost(𝑅, ·), so that cost(𝑅, 𝜇)
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 23

returns a value in [0,∞] for 𝜇 ∈ Δ. The second function takes inputs from 𝑆 and returns a random variable supported on

{0, 1}, and we denote it by output(𝑅, ·), so that output(𝑅, 𝑥) is a random variable on {0, 1} for each 𝑥 ∈ 𝑆 .
The bias of a general algorithm 𝑅 on input 𝑥 ∈ 𝑆 with respect to function 𝑓 : 𝑆 → {0, 1} is bias𝑓 (𝑅, 𝑥) B 1 −

2 Pr[output(𝑅, 𝑥) ≠ 𝑓 (𝑥)].

We note that if output(𝑅, 𝑥) has distribution Bernoulli(𝑞), then bias𝑓 (𝑅, 𝑥) = bias𝑓 (𝑥) (𝑞), where the function

bias𝑓 (𝑥) (𝑞) is defined according to Definition 3.2 and Definition 3.7.

Just like we defined general algorithms, we also define forecasting algorithms, which output confidences in [0, 1]
instead of values in {0, 1}.

Definition 3.14. Let 𝑆 be a finite set and let Δ be the set of all probability distributions over 𝑆 . A forecasting algorithm,

which we also denote by 𝑅, is a pair of functions. The first function is cost(𝑅, ·) : Δ→∞, just like a general algorithm. The

second function takes inputs from 𝑆 and returns a random variable supported on [0, 1], and we denote it by pred(𝑅, ·), so
that pred(𝑅, 𝑥) is a random variable on [0, 1] for each 𝑥 ∈ 𝑆 .

The score of a forecasting algorithm 𝑅 on input 𝑥 ∈ 𝑆 with respect to function 𝑓 : 𝑆 → {0, 1} and scoring rule 𝑠 is

score𝑠,𝑓 (𝑅, 𝑥) B E[𝑠𝑓 (𝑥) (pred(𝑅, 𝑥))]. When the function 𝑓 is clear by the context, for notational simplicity we often omit

it and write score𝑠 (𝑅, 𝑥). Additionally, when 𝑠 = hs, we sometimes omit it and write simply score(𝑅, 𝑥).

The following lemma is key. It says that we can convert any algorithm which achieves bias 𝛾 into a forecasting

algorithmwhich achieves expected score at least𝛾2/2 under the hs scoring rule; further, this conversion onlymanipulates

the output of the algorithm, meaning it can be applied without changing the cost. That is, to turn 𝑅 into a forecasting

algorithm, we only need to run 𝑅, get an output 0 or 1, and then erase the output and write (1 − 𝛾)/2 or (1 + 𝛾)/2,
respectively.

Moreover, it is possible to convert backward as well! To turn a forecasting algorithm 𝑅 into a normal randomized

algorithm, run 𝑅, take the output 𝑞 ∈ [0, 1], erase it and write down a sample from Bernoulli(𝑞) instead. If the original
forecasting algorithm achieved expected score 𝜂, the new algorithm will achieve bias at least 𝜂. In particular, this lemma

tells us that the best expected score and the best bias that an algorithm can make (under any cost restriction) are always

quadratically related.

Lemma 3.15 (Conversion between regular and forecasting algorithms). A general algorithm 𝑅 achieving worst-case bias

𝛾 > 0 for a function 𝑓 can be converted into a forecasting algorithm 𝑅′ with worst-case score at least 1 −
√︁
1 − 𝛾2 ≥ 𝛾2/2

for 𝑓 . This conversion is pointwise: it depends only on changing a sample from the random variable output(𝑅, 𝑥) after
receiving it, as well as on the value of the worst-case bias 𝛾 .

Conversely, a forecasting algorithm 𝑅 with worst-case score 𝜂 can be converted into a general algorithm 𝑅′ with worst-case

bias at least 𝜂. This conversion is pointwise: it depends only on changing a sample from pred(𝑅, 𝑥) after receiving it (and
not even on the value of 𝜂).

Proof. Start with a general algorithm 𝑅 with worst-case bias 𝛾 > 0. On input 𝑥 , run 𝑅 to receive a sample 𝑏 ∈ {0, 1}
from output(𝑅, 𝑥). Then output pred(𝑅′, 𝑥) = (1 − 𝛾)/2 if 𝑏 = 0 and output pred(𝑅′, 𝑥) = (1 + 𝛾)/2 if 𝑏 = 1. It is clear

that this 𝑅′ was constructed in a pointwise fashion out of 𝑅, depending only on a sample from output(𝑅, 𝑥). Now, fix
𝑥 ∈ 𝑆 , and let 𝑝 ∈ [0, 1] be the probability that output(𝑅, 𝑥) gives the right answer. Since 𝑅 has worst-case bias 𝛾 , it has

Manuscript submitted to ACM

24 Shalev Ben-David and Eric Blais

bias at least 𝛾 on 𝑥 , so 𝑝 ≥ (1 + 𝛾)/2. The expected score of 𝑅′ on 𝑥 is then

score(𝑅′, 𝑥) = 𝑝 hs((1 + 𝛾)/2) + (1 − 𝑝) hs((1 − 𝛾)/2)

= 𝑝 − 𝑝
√︄

1 − 𝛾
1 + 𝛾 + (1 − 𝑝) − (1 − 𝑝)

√︄
1 + 𝛾
1 − 𝛾

= 1 −
√︄

1 + 𝛾
1 − 𝛾 + 𝑝

(√︄
1 + 𝛾
1 − 𝛾 −

√︄
1 − 𝛾
1 + 𝛾

)
≥ 1 −

√︄
1 + 𝛾
1 − 𝛾 +

1 + 𝛾
2

(√︄
1 + 𝛾
1 − 𝛾 −

√︄
1 − 𝛾
1 + 𝛾

)
= 1 −

(
1 − 1 + 𝛾

2

) √︄
1 + 𝛾
1 − 𝛾 −

1

2

√︃
1 − 𝛾2

= 1 −
√︃
1 − 𝛾2 .

For the other direction, let 𝑅 be a forecasting algorithm with worst-case score 𝜂 > 0. On input 𝑥 , run 𝑅 to receive a

sample 𝑞 ∈ [0, 1] from pred(𝑅, 𝑥). Then output 1 with probability 𝑞 and 0 with probability 1 − 𝑞, i.e. output(𝑅′, 𝑥) ∼
Bernoulli(𝑞). It is clear that this 𝑅′ is constructed in a pointwise fashion out of 𝑅 (without even a dependence on 𝜂).

Now, fix 𝑥 ∈ 𝑆 . We know that 𝜂 ≤ score(𝑅, 𝑥) = E[hs𝑓 (𝑥) (pred(𝑅, 𝑥))]. Now, we note that hs𝑓 (𝑥) (𝑝) ≤ bias𝑓 (𝑥) (𝑝) by
Lemma 3.12. Thus we get 𝜂 ≤ E[bias𝑓 (𝑥) (pred(𝑅, 𝑥))] = bias(𝑅′, 𝑥), as desired. □

To demonstrate the power of these lemmas, observe that they imply a well-known amplification theorem for

randomized algorithms, as we show in the lemma below. Note that this lemma does not refer to scoring rules or

forecasting algorithms at all; those only appear as proof techniques.

Lemma 3.16 (informal). A randomized algorithm with bias 𝛾 can be amplified to bias 1/2 by repeating it 2/𝛾2 times.

Proof. Start with an algorithm making bias 𝛾 . Using Lemma 3.15, get a forecasting algorithm with expected score at

least 1 −
√︁
1 − 𝛾2. Using Lemma 3.10, repeating the algorithm 𝑘 times increases the expected score on each input 𝑥 to

at least 1 − (1 − 𝛾2)𝑘/2. Using Lemma 3.15, we get an algorithm with worst-case bias at least 1 − (1 − 𝛾2)𝑘/2. Using
Lemma 3.11, this is at least min{𝑘𝛾2/4, 1/2}. Picking 𝑘 ≥ 2/𝛾2, we get an algorithm with worst-case bias at least 1/2
using only 𝑘 repetitions of the original algorithm, as desired. □

4 RANDOMIZED QUERY AND COMMUNICATION COMPLEXITY

We start by proving strong minimax theorems for randomized query complexity and randomized communication

complexity.

4.1 Query complexity

Throughout this section, we write R(𝑓) as shorthand for RDT(𝑓) to denote the minimum worst-case query complexity

of a randomized algorithm computing 𝑓 with error at most
1

3
on every input in Dom(𝑓). Our first step is to define

forecasting algorithms in the query complexity setting. We will need these forecasting algorithms as a tool, despite our

final statement not referring to them.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 25

Definition 4.1. A deterministic forecasting decision tree (on 𝑛 ∈ N bits, with finite alphabet Σ) is a rooted tree on 𝑛 bits

whose internal vertices are labeled by [𝑛], where each internal vertex has |Σ| children labeled by Σ, and where the leaves

are labeled by [0, 1].
A randomized forecasting decision tree (on 𝑛 ∈ N bits, with finite alphabet Σ) is a probability distribution over finitely

many deterministic forecasting decision trees.

We interpret a randomized forecasting decision tree as a forecasting algorithm in the intuitive way, where cost(𝑅, 𝑥)
is the expected height of 𝑅 on 𝑥 (the expected height of the leaf of 𝑥 in a deterministic forecasting tree sampled from

the distribution 𝑅), and where pred(𝑅, 𝑥) is the random variable which samples from the leaf label when a random

deterministic tree from 𝑅 is run on 𝑥 . Note that since we restrict to distributions with finite support, we do not need

to invoke measure theory or integrals in interpreting these probabilities and expectations, even though there are

uncountably many deterministic forecasting decision trees.

We extend cost(𝑅, ·) to the set Δ of probability distributions over 𝑆 by writing cost(𝑅, 𝜇) = E𝑥←𝜇 [cost(𝑅, 𝑥)], and
similarly for score(𝑅, 𝜇) = E𝑥←𝜇 [score(𝑅, 𝑥)]. We now show a minimax theorem for the ratio of cost to score

+
for

forecasting randomized algorithms. This minimax theorem will form the base of our final result: we will relate the

left-hand side to R(𝑓) and we will use the right hand side to establish some desirable properties of a hard distribution 𝜇.

Theorem 4.2. Let 𝑛 ∈ N, let Σ be a finite alphabet, let 𝑆 ⊆ Σ𝑛 , and let 𝑓 : 𝑆 → {0, 1}. Let R be the set of all randomized

forecasting decision trees on 𝑛 bits with alphabet Σ. Let Δ be the set of probability distributions over 𝑆 . Then

inf

𝑅∈R
max

𝑥∈𝑆
cost(𝑅, 𝑥)

score(𝑅, 𝑥)+ = max

𝜇∈Δ
inf

𝑅∈R
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ ,

and the maximums are attained.

Proof. We use Theorem 2.18. All we need to do is verify that the conditions of the theorem hold. Our first task will

be to deal with the strange set R; we wish to turn it into a convex subset of a real topological vector space. To do so,

we define the vector 𝑣𝑅 ∈ R2 |𝑆 | for each 𝑅 ∈ R by 𝑣𝑅 [𝑥, 1] = cost(𝑅, 𝑥) and 𝑣𝑅 [𝑥, 2] = score(𝑅, 𝑥), and consider the

set 𝑉 = { 𝑣𝑅 : 𝑅 ∈ R }. For a vector 𝑣 ∈ 𝑉 , we define cost(𝑣, 𝑥) = 𝑣 [𝑥, 1] and score(𝑣, 𝑥) = 𝑣 [𝑥, 2], and we extend these

definitions to cost(𝑣, 𝜇) and score(𝑣, 𝜇) by taking expectations over 𝜇. Then it is clear that optimizing some function

of cost(𝑅, 𝜇) and score(𝑅, 𝜇) over R is the same as optimizing the corresponding function of cost(𝑣, 𝜇) and score(𝑣, 𝜇)
over 𝑉 . Hence it suffices to show that

inf

𝑣∈𝑉
max

𝑥∈𝑆
cost(𝑣, 𝑥)

score(𝑣, 𝑥)+ = max

𝜇∈Δ
inf

𝑣∈𝑉
cost(𝑣, 𝜇)

score(𝑣, 𝜇)+ ,

with the maximums attained.

To do so, we first note that 𝑉 ⊆ R2 |𝑆 | is convex. This is because if 𝑣1, 𝑣2 ∈ 𝑉 and 𝜆 ∈ (0, 1), we know there

are algorithms 𝑅1, 𝑅2 ∈ R such that 𝑣1 = 𝑣𝑅1
and 𝑣2 = 𝑣𝑅2

, and then the algorithm 𝜆𝑅1 + (1 − 𝜆)𝑅2 (which mixes

the distributions 𝑅1 and 𝑅2 over deterministic forecasting decision trees) is a valid member of R. Then we have

𝑣𝜆𝑅1+(1−𝜆)𝑅2
[𝑥, 1] = cost(𝜆𝑅1 + (1 − 𝜆)𝑅2, 𝑥) = 𝜆 cost(𝑅1, 𝑥) + (1 − 𝜆) cost(𝑅2, 𝑥) = 𝜆𝑣𝑅1

[𝑥, 1] + (1 − 𝜆)𝑣𝑅2
[𝑥, 2], and

similarly 𝑣𝜆𝑅1+(1−𝜆)𝑅2
[𝑥, 2] = 𝜆𝑣𝑅1

[𝑥, 2] + (1 − 𝜆)𝑣𝑅2
[𝑥, 2], so 𝑣𝜆𝑅1+(1−𝜆)𝑅2

= 𝜆𝑣𝑅1
+ (1 − 𝜆)𝑣𝑅2

.

Next, we note that cost(𝑣, ·) and score(𝑣, ·) are linear functions of 𝜇; this is because they are defined as expectations

over 𝜇. Further, observe that cost(·, 𝜇) and score(·, 𝜇) are linear in 𝑣 . It is also clear that cost(𝑣, 𝜇) and score(𝑣, 𝜇) are
continuous in both 𝑣 and 𝜇.

Manuscript submitted to ACM

26 Shalev Ben-David and Eric Blais

It remains to check that cost and score are well-behaved. First, note that there is always an algorithm which queries

all the bits and outputs the right answer 𝑓 (𝑥) with perfect confidence. Such an algorithm 𝑅 has cost(𝑣𝑅, 𝜇) = 𝑛 and

score(𝑣𝑅, 𝜇) = 1 for all 𝜇, so finite costs and scores are attainable. Next, note that if 𝑅 is such that cost(𝑣𝑅, 𝜇) = 0

for any 𝜇, then 𝑅 must make no queries when run on 𝜇. This means 𝑅 makes no queries when run on any input, so

cost(𝑣𝑅, 𝜇′) = 0 for all 𝜇′ ∈ Δ. Finally, note that cost(·, 𝜇) is linear for each 𝜇, so if cost(𝑣, 𝜇) = 0 and cost(𝑣 ′, 𝜇) > 0, we

necessarily have cost(𝜆𝑣 + (1 − 𝜆)𝑣 ′, 𝜇) > 0 for 𝜆 ∈ (0, 1). Hence all the conditions of Theorem 2.18 are satisfied, and

the desired result follows. □

Our next task is to relate the left-hand side of the equation in the last theorem to R(𝑓).

Theorem 4.3. Using the notation of Theorem 4.2, we have

inf

𝑅∈R
max

𝑥∈𝑆
cost(𝑅, 𝑥)

score(𝑅, 𝑥)+ ≥
R(𝑓)
240

.

To prove this theorem, the idea is to take 𝑅 from the left-hand side, amplify the score of 𝑅 up to a constant (using

the fact that score amplifies linearly), and then convert the constant score to constant bias (and hence constant error),

getting an upper bound on R(𝑓). This is slightly tricky, because the amount we need to amplify by may depend on the

input 𝑥 ; for some 𝑥 , both cost(𝑅, 𝑥) and score(𝑅, 𝑥) may be small, while for other 𝑥 they are both large. Unfortunately,

we do not have access to score(𝑅, 𝑥) when we receive input 𝑥 . Instead, in order to amplify by approximately the correct

amount, we estimate cost(𝑅, 𝑥) (by repeatedly running 𝑅 on 𝑥 and observing the number of queries), and we use this

cost estimate to decide the amount of amplification needed.

Proof. Let 𝑌 ∗ be the optimal value of the left-hand side, and let 𝑅 be a randomized algorithm with the property that

max𝑥∈𝑆 cost(𝑅, 𝑥)/score(𝑅, 𝑥)+ = 𝑌 , where 𝑌 is arbitrarily close to 𝑌 ∗ (and 𝑌 ≥ 𝑌 ∗). Then in particular, score(𝑅, 𝑥) > 0

for all 𝑥 ∈ 𝑆 , and for each 𝑥 ∈ 𝑆 we have cost(𝑅, 𝑥)/score(𝑅, 𝑥) ≤ 𝑌 . Let 𝑅′ be a modification of 𝑅 where we cut off each

decision tree in the support of 𝑅 after 2𝑌 queries, and return 1/2 in case of a cutoff (ensuring we get a score of 0 for that

branch). Note that by Markov’s inequality, the probability of encountering a cutoff branch on input 𝑥 to 𝑅′ is at most

cost(𝑅, 𝑥)/2𝑌 ≤ 𝑌 score(𝑅, 𝑥)/2𝑌 = score(𝑅, 𝑥)/2. Since each non-cut-off leaf can contribute at most 1 to the score (as

the maximum of hs(·) is 1), and since the score at a cutoff is 0, the decrease in score when going from 𝑅 to 𝑅′ is at most

the probability of encountering a cutoff. It follows that score(𝑅′, 𝑥) ≥ score(𝑅, 𝑥) − score(𝑅, 𝑥)/2 = score(𝑅, 𝑥)/2 for
all 𝑥 ∈ 𝑆 .

Next, we describe a randomized forecasting algorithm 𝑅′′. The algorithm 𝑅′′ runs 𝑅′ on 𝑥 until the number of queries

made reaches 10𝑌 . Let 𝐿 be the number of runs of 𝑅′ on 𝑥 it takes to reach 10𝑌 queries. Then 𝑅′′ runs 𝑅′ on 𝑥 an

additional 𝐿 times, and uses those new runs to amplify the score, achieving score 1 − (1 − score(𝑅′, 𝑥))𝐿 . We wish to

prove this score is at least a constant and that the total number of queries is only 𝑂 (𝑌).
First, we bound the expectation of 𝐿, the random variable for the number of runs of 𝑅′ on 𝑥 it takes to reach 10𝑌

queries. Let 𝑋𝑖 be i.i.d. random variables each representing the number of queries in a single run of 𝑅′ on 𝑥 (so each 𝑋𝑖

is supported on {0, 1, . . . , 2𝑌 }). Consider the total number of queries made until the cutoff is reached; this is

∑𝐿
𝑖=1 𝑋𝑖 .

Let 𝐼𝑖 be the Boolean random variable which is 0 if 𝐿 < 𝑖 and 1 if 𝐿 ≥ 𝑖 . Then ∑𝐿
𝑖=1 𝑋𝑖 =

∑∞
𝑖=1 𝑋𝑖 𝐼𝑖 . Note that the value

of

∑𝐿
𝑖=1 𝑋𝑖 is always at most 10𝑌 + 2𝑌 , because after the threshold 10𝑌 is reached, less than one full run of 𝑅′ on 𝑥 will

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 27

happen (using at most 2𝑌 queries). Hence
4

12𝑌 > E

[
𝐿∑︁
𝑖=1

𝑋𝑖

]
= E

[∞∑︁
𝑖=1

𝑋𝑖 𝐼𝑖

]
=

∞∑︁
𝑖=1

E [𝑋𝑖 𝐼𝑖]

=

∞∑︁
𝑖=1

Pr[𝐼𝑖 = 0]E[𝑋𝑖 𝐼𝑖 |𝐼𝑖 = 0] + Pr[𝐼𝑖 = 1]E[𝑋𝑖 𝐼𝑖 |𝐼𝑖 = 1]

=

∞∑︁
𝑖=1

Pr[𝐿 ≥ 𝑖]E[𝑋𝑖]

= cost(𝑅′, 𝑥)E[𝐿] .

It follows that E[𝐿] < 12𝑌/cost(𝑅′, 𝑥). This means the total expected number of queries 𝑅′′ makes is at most 12𝑌 for

getting the estimate 𝐿, plus cost(𝑅′, 𝑥) · E[𝐿] < 12𝑌 for amplifying the score, for a total of fewer than 24𝑌 expected

queries.

To bound the expected score, we start by ensuring 𝐿 is not too small except with small probability. Note that for a

constant𝑇 , we have Pr[𝐿 ≤ 𝑇] = Pr[∑𝑇
𝑖=1 𝑋𝑖 ≥ 𝑏𝑌]. The sum

∑𝑇
𝑖=1 𝑋𝑖 has expected value𝑇 cost(𝑅′, 𝑥) and has variance

𝑇 times the variance of one 𝑋𝑖 . Since 𝑋𝑖 is non-negative and bounded above by 2𝑌 , its variance is bounded above

by Var[𝑋𝑖] ≤ E[𝑋 2

𝑖
] ≤ 2𝑌E[𝑋𝑖] = 2𝑌 cost(𝑅′, 𝑥). Hence, the variance of the sum is at most 2𝑇𝑌 cost(𝑅′, 𝑥). We use

Chebyshev’s inequality, writing

Pr[𝐿 ≤ 𝑇] = Pr

[
𝑇∑︁
𝑖=1

𝑋𝑖 ≥ 10𝑌

]
= Pr

[
𝑇∑︁
𝑖=1

𝑋𝑖 −𝑇 cost(𝑅′, 𝑥) ≥ 10𝑌 −𝑇 cost(𝑅′, 𝑥)
]

≤ 2𝑇𝑌 cost(𝑅′, 𝑥)
(10𝑌 −𝑇 cost(𝑅′, 𝑥))2

,

which holds assuming 𝑇 ≤ 10𝑌/cost(𝑅′, 𝑥). In particular, if 𝑇 = 2𝑌/cost(𝑅′, 𝑥), then Pr[𝐿 ≤ 𝑇] ≤ 1/16.
Now, note that conditioned on 𝐿 = ℓ , the expected score in the second round of 𝑅′′ is at least 1 − (1 − score(𝑅′, 𝑥))ℓ .

This is increasing in ℓ ; hence, conditioned on 𝐿 > 𝑇 , the expected score of 𝑅′′ on 𝑥 is greater than 1− (1− score(𝑅′, 𝑥))𝑇 .
Conditioned on 𝐿 ≤ 𝑇 , we still have the expected score be at least 0, since it is at least 0 for every fixed ℓ . Hence the final
expected score of 𝑅′′ on 𝑥 is greater than (1− (1− score(𝑅′, 𝑥))𝑇) (1−Pr[𝐿 ≤ 𝑇]) ≥ 1− (1− score(𝑅′, 𝑥))𝑇 −Pr[𝐿 ≤ 𝑇].
Picking 𝑇 = 2𝑌/cost(𝑅′, 𝑥), we get

score(𝑅′′, 𝑥) > 1 − (1 − score(𝑅′, 𝑥))2𝑌/cost(𝑅
′,𝑥) − 1/16

≥ 1

2

min

{
1, 2𝑌

score(𝑅′, 𝑥)
cost(𝑅′, 𝑥)

}
− 1/16

≥ 1

2

min

{
1,
score(𝑅, 𝑥)𝑌
cost(𝑅, 𝑥)

}
− 1/16

≥ 1

2

− 1

16

=
7

16

.

This algorithm 𝑅′′ makes fewer than 24𝑌 expected queries. We cut if off after 240𝑌 queries, outputting prediction

1/2 (getting score 0) in case of a cutoff; this gives an algorithm 𝑅′′′ whose worst-case number of queries is 240𝑌 , and

4
The equality E

[∑𝐿
𝑖=1 𝑋𝑖

]
= E[𝑋1]E[𝐿], which we rederive here, is known as Wald’s equation.

Manuscript submitted to ACM

28 Shalev Ben-David and Eric Blais

whose expected score on each 𝑥 ∈ 𝑆 is at least 7/16 − 1/10 ≥ 1/3. Using Lemma 3.15, we can view 𝑅′′′ as a randomized

algorithm computing 𝑓 (𝑥) with worst-case bias at least 1/3, and hence worst-case error at most 1/3. This means that

R(𝑓) ≤ 240𝑌 . Since we can pick 𝑌 arbitrarily close to 𝑌 ∗, we also get that R(𝑓) is at most the infimum of 240𝑌 over

feasible choices of 𝑌 , which is 240𝑌 ∗, and the desired result follows. □

Our next task is to show that the max-inf side of Theorem 4.2 gives us a distribution 𝜇 against which it is hard to tell

apart 0-inputs from 1-inputs, in terms of the achievable squared-Hellinger distance between the distributions of the

transcript on the 0- and 1-inputs. The following lemma will come in useful. We prove it in Appendix B.

Lemma 4.4 (Hellinger distance of disjoint mixtures). Let 𝜇 be a distribution over a finite support 𝐴, and for each 𝑎 ∈ 𝐴,
let 𝜈𝑎

0
and 𝜈𝑎

1
be two distributions over a finite support 𝑆𝑎 . Let 𝜈

𝜇

0
and 𝜈𝜇

1
denote the mixture distributions where 𝑎 ← 𝜇 is

sampled, and then a sample is produced from 𝜈𝑎
0
or 𝜈𝑎

1
, respectively. Assume the sets 𝑆𝑎 are disjoint for all 𝑎 ∈ 𝐴. Then

h
2 (𝜈𝜇

0
, 𝜈

𝜇

1
) = E𝑎←𝜇 [h2 (𝜈𝑎0 , 𝜈

𝑎
1
)] .

The transcript of a randomized query algorithm on an input includes the entire decision tree defined by the algorithm’s

internal randomness as well as the path in this tree defined by the input. We write tran(𝑅, 𝜇) to denote the distribution

on transcripts of 𝑅 on inputs drawn from the distribution 𝜇.

Theorem 4.5. Let 𝑛 ∈ N, let Σ be a finite alphabet, let 𝑆 ⊆ Σ𝑛 , and let 𝑓 : 𝑆 → {0, 1} be a non-constant function. Then
there exist distributions 𝜇0 on 𝑓 −1 (0) and 𝜇1 on 𝑓 −1 (1) such that for all randomized query algorithms 𝑅,

cost(𝑅, 𝜇)
h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

≥ R(𝑓)
240

.

Here 𝜇 = (𝜇0 + 𝜇1)/2, and we interpret 𝑟/0 = ∞ for 𝑟 ∈ [0,∞).

Proof. Using Theorem 4.2 and Theorem 4.3, we get a distribution 𝜇 on 𝑆 such that for all randomized forecasting

algorithms 𝑅, we have cost(𝑅, 𝜇)/score(𝑅, 𝜇)+ ≥ R(𝑓)/240. Note that it must be the case that an algorithm 𝑅 which

makes no queries must have score(𝑅, 𝜇) ≤ 0; this is because we have R(𝑓) ≥ 1 (since 𝑓 is non-constant), and if there

was an algorithm with cost 0 achieving positive score, we’d have cost(𝑅, 𝜇)/score(𝑅, 𝜇)+ = 0, giving a contradiction.

Therefore, it must be the case that 𝜇 places equal weight on 0 and 1 inputs, because otherwise a 0-cost algorithm

could indeed predict 𝑓 (𝑥) with positive bias (and hence positive score by Lemma 3.15) against 𝜇. We set 𝜇0 to be the

conditional distribution of 𝜇 on the 0-inputs of 𝑓 , and set 𝜇1 to be the conditional distribution of 𝜇 on the 1-inputs of 𝑓 .

Next, we simplify the expression

inf

𝑅

cost(𝑅, 𝜇)
h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

.

Note that both the numerator and the denominator do not depend on the leaf labels, only on the queries of the

randomized decision trees. We can therefore view the set of all randomized query algorithms 𝑅 as the convex hull of

the set of all deterministic decision trees with no leaf labels. Now, note that cost(𝑅, 𝜇) and h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

are both linear functions of (the probability vector of) 𝑅; for the latter, this is due to Lemma 4.4. Then by Lemma 2.12,

the ratio is quasiconcave in 𝑅, and by Lemma 2.10, the infimum of this ratio over randomized query algorithms 𝑅 is

equal to the minimum over deterministic query algorithms 𝐴. Therefore, it suffices to show that for each deterministic

query algorithm 𝐴 making a non-zero number of queries, we have cost(𝐴, 𝜇)/h2 (tran(𝐴, 𝜇0), tran(𝐴, 𝜇1)) ≥ R(𝑓)/240.
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 29

Fix such 𝐴. We assume its leaves are not labeled. By Lemma 3.9, we can label the leaves of 𝐴 such that score(𝐴, 𝜇) =
h
2 (tran(𝐴, 𝜇0), tran(𝐴, 𝜇1)). This labeling does not affect the cost. Then

cost(𝐴, 𝜇)
h
2 (tran(𝐴, 𝜇0), tran(𝐴, 𝜇1))

=
cost(𝐴, 𝜇)

score(𝐴, 𝜇)+ ≥
R(𝑓)
240

,

as desired. □

Finally, we strengthen the inequality to a lower bound for the minimum of cost(𝑅, 𝜇0) and cost(𝑅, 𝜇1) instead of for

their average cost(𝑅, 𝜇).

Theorem 4.6. Let 𝑛 ∈ N, let Σ be a finite alphabet, let 𝑆 ⊆ Σ𝑛 , and let 𝑓 : 𝑆 → {0, 1} be a non-constant function. Then
there exist distributions 𝜇0 on 𝑓 −1 (0) and 𝜇1 on 𝑓 −1 (1) such that for all randomized query algorithms 𝑅,

min{cost(𝑅, 𝜇0), cost(𝑅, 𝜇1)}
h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

≥ R(𝑓)
3000

,

where we interpret 𝑟/0 = ∞ for 𝑟 ∈ [0,∞).

Proof. We use 𝜇0 and 𝜇1 from Theorem 4.5. Note that

inf

𝑅

min{cost(𝑅, 𝜇0), cost(𝑅, 𝜇1)}
h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

= inf

𝑅,𝑏∈{0,1}
cost(𝑅, 𝜇𝑏)

h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

= min

𝑏∈{0,1}
inf

𝑅

cost(𝑅, 𝜇𝑏)
h
2 (tran(𝑅, 𝜇0), tran(𝑅, 𝜇1))

.

By the same argument as in the proof of Theorem 4.5, this last infimum over 𝑅 is equal to the infimum over deterministic

unlabeled decision trees 𝐷 with height at least 1.

Let 𝐷 be such an algorithm. By Theorem 4.5, it suffices to show that

min{cost(𝐷, 𝜇0), cost(𝐷, 𝜇1)}
h
2 (tran(𝐷, 𝜇0), tran(𝐷, 𝜇1))

≥ (1/𝑐)min

𝐷 ′

cost(𝐷′, 𝜇)
h
2 (tran(𝐷′, 𝜇0), tran(𝐷′, 𝜇1))

,

where 𝜇 = (𝜇0 + 𝜇1)/2. By Lemma 3.9, we can label the leaves of 𝐷 so that h
2 (tran(𝐷, 𝜇0), tran(𝐷, 𝜇1)) = score(𝐷, 𝜇),

and similarly for 𝐷′. The desired inequality is trivial when score(𝐷, 𝜇) = 0 (since the ratio is then ∞), so suppose

score(𝐷, 𝜇) > 0. We wish to show

min{cost(𝐷, 𝜇0), cost(𝐷, 𝜇1)}
score(𝐷, 𝜇) ≥ (1/𝑐)min

𝐷 ′

cost(𝐷′, 𝜇)
score(𝐷′, 𝜇) .

In other words, we wish to show that there exists a deterministic forecasting algorithm 𝐷′ such that the cost-to-score

ratio satisfies cost(𝐷′, 𝜇)/score(𝐷′, 𝜇) ≤ 𝑐 cost(𝐷, 𝜇𝑏)/score(𝐷, 𝜇), regardless of whether 𝑏 = 0 or 𝑏 = 1.

We construct 𝐷′ such that cost(𝐷′, 𝜇)/score(𝐷′, 𝜇) ≤ 𝑐 cost(𝐷, 𝜇𝑏)/score(𝐷, 𝜇). The idea is to start with 𝐷 , and then
cut off the branches that are much more likely under 𝜇

1−𝑏 than under 𝜇𝑏 . That is, for a vertex 𝑣 of 𝐷 , let 𝜇𝑏 [𝑣] denote
the probability that 𝑣 is reached when 𝐷 is run on an input from 𝜇𝑏 , and define 𝜇

1−𝑏 [𝑣] similarly. Recall that the leaves

of 𝐷 are labeled according to the strategy that achieves score(𝐷, 𝜇) = h
2 (tran(𝐷, 𝜇0), tran(𝐷, 𝜇1)), which, by Lemma 3.9,

is such that at a leaf 𝑣 , the algorithm 𝐷 outputs 𝜇1 [𝑣]/2𝜇 [𝑣].
Pick a constant 𝑎 ∈ (1/2, 1), and let 𝐷′ be the algorithm which cuts off 𝐷 the first time it enters a vertex for which

𝜇
1−𝑏 [𝑣]/2𝜇 [𝑣] ≥ 𝑎, and outputs 𝑎 (if 𝑏 = 0) or 1 − 𝑎 (if 𝑏 = 1) instead of continuing to run 𝐷 . Let 𝑉 be the set of all

vertices which cause such a cutoff; note that no vertex in 𝑉 is a descendant of another vertex in 𝑉 . For 𝑣 ∈ 𝑉 , let 𝜇𝑣 be
the distribution 𝜇 conditioned on reaching 𝑣 , and similarly define 𝜇𝑣

0
and 𝜇𝑣

1
. Let 𝜇∗ be the distribution 𝜇 conditioned on

Manuscript submitted to ACM

30 Shalev Ben-David and Eric Blais

reaching none of the vertices in 𝑉 , and similarly define 𝜇∗
0
and 𝜇∗

1
. Since we are dealing with a deterministic decision

tree, all the distributions 𝜇𝑣
0
and 𝜇𝑣

1
have disjoint supports for all the different 𝑣 ∈ 𝑉 , and they’re also disjoint from 𝜇∗

0

and 𝜇∗
1
; indeed, 𝜇 is a disjoint mixture of all different distributions. It follows that score(𝐷, 𝜇) is a mixture of terms

score(𝐷, 𝜇𝑣) and of score(𝐷, 𝜇∗). The score score(𝐷′, 𝜇) of the algorithm 𝐷′ is also such a mixture.

Now, note that score(𝐷, 𝜇𝑣) ≤ 1, and that score(𝐷′, 𝜇𝑣) = E𝑥←𝜇𝑣 [hs𝑓 (𝑥) (𝑎)] if 𝑏 = 0 and score(𝐷′, 𝜇𝑣) =

E𝑥←𝜇𝑣 [hs𝑓 (𝑥) (1 − 𝑎)] if 𝑏 = 1. This means

score(𝐷′, 𝜇𝑣) = 𝜇𝑏 [𝑣]
2𝜇 [𝑣] hs(1 − 𝑎) +

𝜇
1−𝑏 [𝑣]
2𝜇 [𝑣] hs(𝑎) = (1 − 𝑝) hs(1 − 𝑎) + 𝑝 hs(𝑎)

= 1 − (1 − 𝑝)
√︁
𝑎/(1 − 𝑎) − 𝑝

√︁
(1 − 𝑎)/𝑎,

where 𝑝 = 𝜇
1−𝑏 [𝑣]/2𝜇 [𝑣] ≥ 𝑎. Since 𝑎 > 1/2, this is increasing in 𝑝 , so we have score(𝐷′, 𝜇𝑣) ≥ 1 − 2

√︁
𝑎(1 − 𝑎),

and hence score(𝐷′, 𝜇𝑣) ≥
(
1 − 2

√︁
𝑎(1 − 𝑎)

)
score(𝐷, 𝜇𝑣). It also holds that score(𝐷′, 𝜇∗) = score(𝐷, 𝜇∗) ≥

(
1 −

2

√︁
𝑎(1 − 𝑎)

)
score(𝐷, 𝜇∗). Since score(𝐷, 𝜇) and score(𝐷′, 𝜇) are matching mixtures of score(𝐷, 𝜇𝑣) and score(𝐷′, 𝜇𝑣),

respectively, it follows that score(𝐷′, 𝜇) ≥
(
1 − 2

√︁
𝑎(1 − 𝑎)

)
score(𝐷, 𝜇).

We now analyze the cost of 𝐷′. Note that cost(𝐷′, 𝜇) = (1/2) cost(𝐷′, 𝜇𝑏) + (1/2) cost(𝐷′, 𝜇1−𝑏); we clearly have

cost(𝐷′, 𝜇𝑏) ≤ cost(𝐷, 𝜇𝑏), so it suffices to upper bound cost(𝐷′, 𝜇
1−𝑏). This is the expected height of a leaf 𝐷′

reaches when run on 𝜇
1−𝑏 , which is a mixture of cost(𝐷′, 𝜇∗

1−𝑏) and cost(𝐷′, 𝜇𝑣
1−𝑏). Now, note that a leaf 𝑢 reached by

cost(𝐷′, 𝜇∗
1−𝑏) must have 𝜇

1−𝑏 [𝑢]/2𝜇 [𝑢] < 𝑎, or equivalently 𝜇1−𝑏 [𝑢] < 𝑎
1−𝑎 · 𝜇𝑏 [𝑢]. It follows that

cost(𝐷′, 𝜇∗
1−𝑏) ≤

𝑎

1 − 𝑎 · cost(𝐷
′, 𝜇∗

𝑏
) = 𝑎

1 − 𝑎 · cost(𝐷, 𝜇
∗
𝑏
) .

Furthermore, for each 𝑣 ∈ 𝑉 the cost of 𝐷′ on any input drawn from 𝜇𝑣
𝑏
or from 𝜇𝑣

1−𝑏 is exactly the height of 𝑣 . So

cost(𝐷′, 𝜇𝑣
1−𝑏) = cost(𝐷′, 𝜇𝑣

𝑏
) ≤ cost(𝐷, 𝜇𝑣

𝑏
)

and since 𝑎 > 1

2
, this inequality implies that cost(𝐷′, 𝜇𝑣

1−𝑏) ≤
𝑎

1−𝑎 · cost(𝐷, 𝜇
𝑣
𝑏
). We conclude that cost(𝐷′, 𝜇

1−𝑏) ≤
𝑎

1−𝑎 cost(𝐷, 𝜇𝑏), and hence

cost(𝐷′, 𝜇) ≤
(
1

2

+ 𝑎

2(1 − 𝑎)

)
cost(𝐷, 𝜇𝑏) =

cost(𝐷, 𝜇𝑏)
2(1 − 𝑎) .

We therefore have

cost(𝐷′, 𝜇)
score(𝐷′, 𝜇) ≤

1

2(1 − 𝑎) (1 − 2
√︁
𝑎(1 − 𝑎))

cost(𝐷, 𝜇𝑏)
score(𝐷, 𝜇) .

Finally, optimizing 𝑎, we pick 𝑎 = (2 +
√
2)/4 to get

cost(𝐷′, 𝜇)
score(𝐷′, 𝜇) ≤ (6 + 4

√
2) cost(𝐷, 𝜇𝑏)
score(𝐷, 𝜇) ,

from which the desired result follows. □

Corollary 4.7. Let 𝑛 ∈ N, let Σ be a finite alphabet, let 𝑆 ⊆ Σ𝑛 , and let 𝑓 : 𝑆 → {0, 1} be a function. Then there exists a

distribution 𝜇 on 𝑆 such that for all 𝛾 ∈ [0, 1],

R

𝜇

¤𝛾 (𝑓) ≥
𝛾2 R(𝑓)
500

.

Here ¤𝛾 = (1 − 𝛾)/2 and R𝜇𝜖 (𝑓) denotes the average cost (against 𝜇) of a randomized algorithm achieving error at most 𝜖

(against 𝜇) for solving 𝑓 .

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 31

Proof. If 𝑓 is constant, then R(𝑓) = 0 and the desired bound trivially follows. Therefore, assume 𝑓 is not constant.

We use the distribution 𝜇 from Theorem 4.5. Let 𝑅 be a randomized algorithm which achieves bias 𝛾 against 𝜇. Then

using Lemma 3.15, we can convert 𝑅 into a forecasting algorithm 𝑅′ which achieves expected score 1 −
√︁
1 − 𝛾2 ≥ 𝛾2/2

against 𝜇, and has the same distribution over query trees (that is, only the leaves changed). Now, by the property of 𝜇,

we know that

cost(𝑅′, 𝜇)
score(𝑅′, 𝜇) ≥

R(𝑓)
240

,

where we used Lemma 3.9 to get a result for score instead of Hellinger distance in the denominator, and where we used

the fact that 𝑅 achieves non-zero bias against 𝜇 (despite 𝜇 being balanced between 0- and 1-inputs) to conclude that 𝑅

does not make 0 queries. Using score(𝑅′, 𝜇) ≥ 𝛾2/2 and cost(𝑅, 𝜇) = cost(𝑅′, 𝜇), we get 2 cost(𝑅, 𝜇)/𝛾2 ≥ R(𝑓)/240, or
cost(𝑅, 𝜇) ≥ 𝛾2 R(𝑓)/480, as desired. □

4.2 Communication complexity

We can now complete the proof of Theorem 1.8, restated below. Throughout this section, RCC(𝑓) denotes the randomized

communication complexity of the function 𝑓 in the public-randomness model.

Theorem 1.8. For any non-constant partial function 𝑓 : X × Y → {0, 1} over finite sets X and Y, there is a pair of
distributions 𝜇0 on 𝑓 −1 (0) and 𝜇1 on 𝑓 −1 (1) such that for any randomized communication protocol 𝑅, the squared Hellinger

distance between the distribution of its transcripts on 𝜇0 and 𝜇1 is bounded above by

h
2
(
tran(𝑅, 𝜇0), tran(𝑅, 𝜇1)

)
= 𝑂

(
min{cost(𝑅, 𝜇0), cost(𝑅, 𝜇1)}

RCC(𝑓)

)
.

Here cost(𝑅, 𝜇) denotes the expected amount of communication the protocol 𝑅 transmits when given inputs from 𝜇.

Proof. This theorem follows directly from Theorem 4.6 once we realize that a communication function can be

interpreted as a query function. That is, we take 𝑓 and convert it into a query function 𝑔 as follows. The input to 𝑔 will

contain one bit for each possible function of X (that Alice might send to Bob), and one bit for each possible function

of Y (that Bob might send to Alice), for a total input length of 𝑛 = 2
|X | + 2 |Y | . The inputs to 𝑔 will be the strings in

{0, 1}𝑛 which are generated by a pair (𝑥,𝑦) ∈ Dom(𝑓), that is, the strings 𝑧 ∈ {0, 1}𝑛 for which there exists a pair

(𝑥,𝑦) ∈ Dom(𝑓) such that 𝑧𝑘 is the result of applying the 𝑘-th possible function to 𝑥 (if 𝑘 ≤ 2
|X |

) or the (𝑘 − 2 |X |)-th
possible function to 𝑦 (if 𝑘 > 2

|X |
). Then 𝑔 is a Boolean function of domain of size |Dom(𝑓) |, with each string in its

domain corresponding to a string in Dom(𝑓).
We note that RDT(𝑔) = RCC(𝑓). This is clear from the definition of RCC(𝑓): the public-coin randomness essentially

means that Alice and Bob agree on a randomized decision tree in advance, including on who speaks when (as a function

of the transcript), which is equivalent to agreeing on a decision tree for 𝑔 in advance. The transcript of 𝑔 on an input

is precisely the transcript of 𝑓 on the corresponding input, with the catch that in query complexity we defined the

transcript to include the deterministic decision tree by the protocol; hence, the query version of a transcript of 𝑔 actually

corresponds to (𝑟,Π) for 𝑓 , where 𝑟 is the public randomness and Π is the usual communication complexity transcript.

The desired result then follows immediately from applying Theorem 4.6 to 𝑔. □

Corollary 4.8. For any finite sets X and Y and any partial function 𝑓 : X ×Y → {0, 1}, there exists a distribution 𝜇 on
Dom(𝑓) such that for all 𝛾 ∈ [0, 1],

RCC

𝜇

¤𝛾 (𝑓) = Ω(𝛾2 RCC(𝑓)) .
Manuscript submitted to ACM

32 Shalev Ben-David and Eric Blais

5 QUANTUM QUERY AND COMMUNICATION COMPLEXITY

In contrast to the classical case, it is well-known that quantum algorithms can be amplified linearly in 1/𝛾 , where 𝛾 is

the bias. Formally, we have the following theorem.

Theorem 5.1 (Amplitude estimation). Suppose we have access to a unitary 𝑈 (representing a quantum algorithm)

which maps |0⟩ to |𝜓 ⟩, as well as access to a projective measurement Π, and we wish to estimate 𝑝 B ∥Π |𝜓 ⟩∥2
2
(representing

the probability the quantum algorithm accepts). Fix 𝜖, 𝛿 ∈ (0, 1/2). Then using at most (100/𝜖) · ln(1/𝛿) controlled
applications of𝑈 or𝑈 † and at most that many applications of 𝐼 − 2Π, we can output 𝑝 ∈ [0, 1] such that |𝑝 − 𝑝 | ≤ 𝜖 with
probability at least 1 − 𝛿 .

This theorem follows from [Brassard et al. 2002], as well as from the arguably simpler techniques in [Aaronson and

Rall 2020]. (In fact, these authors show something slightly stronger: amplitude estimation can be done with overhead

𝑂 (√𝜖 + 𝑝 · (1/𝜖) · log 1/𝛿). We refer the interested reader to Appendix C to see how this follows from [Brassard et al.

2002].)

Given that quantum algorithms can be amplified linearly in the bias, it would seem that the desired minimax

theorem follows easily from Theorem 2.18: simply apply a minimax to cost(𝑄, 𝜇)/bias𝑓 (𝑄, 𝜇)+, where 𝑄 is a quantum

algorithm and 𝜇 is a distribution over the inputs. Then use the linear amplification result to argue that we have

min𝑄 max𝜇 cost(𝑄, 𝜇)/bias𝑓 (𝑄, 𝜇)+ = Θ(Q(𝑓)). Sounds simple! (This works better than for randomized algorithms,

because bias𝑓 (·, ·) is saddle while bias𝑓 (·, ·)2 is not.)
Unfortunately, there is an annoying hole in this argument: the function cost(𝑄, 𝜇) is not convex in 𝑄 . While it is

not immediately clear what a convex combination of two quantum algorithms 𝑄1 and 𝑄2 should be, most intuitive

definitions will have a convex combination use a number of unitaries that is equal to the maximum of the number used

in 𝑄1 and 𝑄2, rather than the average.

To get around this, we switch the computational model from quantum algorithms to probability distributions over

quantum algorithms. These probabilistic quantum algorithms have outputs and biases defined in the intuitive way, but

their cost is defined as the expected cost of the underlying quantum algorithms, rather than the maximum cost. This

ensures the function cost(·, ·) will be saddle, and Theorem 2.18 can be applied. The trick then becomes showing that

these probabilistic quantum algorithms can still be amplified linearly. This turns out to be true, up to logarithmic factors.

Once amplified, constant-error probabilistic quantum algorithms can be converted into ordinary quantum algorithms,

giving us a minimax theorem that can be applied to ordinary quantum algorithms as well.

5.1 Quantum query complexity

Our goal in this section will be to prove the following theorem.

Theorem 5.2. For any Boolean-valued function 𝑓 , there exists a distribution 𝜇 over Dom(𝑓) such that for any 𝛾 ∈ [0, 1],
we have Q𝜇

¤𝛾 (𝑓) ≥ 𝛾 · Ω̃(Q(𝑓)). Here Q
𝜇

¤𝛾 (𝑓) denotes the minimum number of queries required by a quantum algorithm

which achieves bias 𝛾 against 𝜇 for computing 𝑓 . The constants in the Ω̃ notation are universal.

In fact, we will prove a stronger (and tighter) version in terms of probabilistic quantum algorithms. These are simply

probability distributions over quantum algorithms of possibly different query costs; we define the cost of a probabilistic

quantum algorithm as the expected cost of a quantum algorithm sampled from the probability distribution.

Definition 5.3. A probabilistic quantum algorithm is a probability distribution 𝑃 over quantum algorithms. For an input

string 𝑥 , we let 𝑃 (𝑥) be the random variable that outputs a sample from 𝑄 (𝑥), where 𝑄 is a quantum algorithm sampled
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 33

from 𝑃 . The cost of 𝑃 , denoted |𝑃 |, is the expected cost of a quantum algorithm sampled from 𝑃 . The error of 𝑃 on input 𝑥 to

a Boolean function 𝑓 is defined as Pr𝑄∼𝑃 [𝑄 (𝑥) ≠ 𝑓 (𝑥)].

Definition 5.4. Let 𝑓 be a Boolean-valued function with Dom(𝑓) ⊆ Σ𝑛 . We define PQ ¤𝛾 (𝑓) to be the minimum cost |𝑃 | of
a probabilistic quantum algorithm 𝑃 which computes 𝑓 to worst-case bias 𝛾 .

Theorem 5.5. For any Boolean function 𝑓 and any 𝛾 ∈ (0, 1/3), we have PQ ¤𝛾 (𝑓) = Θ̃(𝛾 Q(𝑓)). More explicitly,

PQ ¤𝛾 (𝑓) = 𝑂 (𝛾 Q(𝑓))

PQ ¤𝛾 (𝑓) = Ω

(
𝛾 Q(𝑓)

log(1/𝛾) log log(1/𝛾)

)
.

Proof. For the upper bound, let 𝑄 be a quantum algorithm computing 𝑓 to error 1/3 using Q(𝑓) queries. Let 𝑄 ′ be
the probabilistic quantum algorithm which runs Q(𝑓) with probability 3𝛾 and otherwise uses no queries and guesses

the output at random (with probability 1/2 for outputting both 0 and 1). The probability of error of 𝑄 ′ is at most

(1/2) (1 − 3𝛾) + (1/3) (3𝛾) = (1/2) (1 − 𝛾), which means its bias is at least 𝛾 on every input. The expected number of

queries 𝑄 ′ uses is 3𝛾 Q(𝑓). Hence we have PQ ¤𝛾 (𝑓) ≤ 3𝛾 Q(𝑓).
For the lower bound, we start with a probabilistic quantum algorithm 𝑃 which achieves worst-case bias 𝛾 and has

cost |𝑝 | = PQ ¤𝛾 (𝑓), and make several modifications to it. First, we remove from the support of 𝑃 all quantum algorithms

which use more than 2|𝑃 |/𝛾 queries, and we replace them with a 0-query quantum algorithm that guesses the answer

at random (with 1/2 probability on outputs 0 and 1). This gives us a probabilistic quantum algorithm 𝑃1 which uses at

most 2|𝑃 |/𝛾 queries even in the worst case, and has |𝑃1 | ≤ |𝑃 | and the worst-case bias of 𝑃1 is at least 𝛾/2 (since by
Markov’s inequality, the probability mass over the removed quantum algorithms was at most 𝛾/2, and they could have

had bias at most 1 which turned into bias 0, decreasing the overall bias by at most 𝛾/2).
Next, we modify 𝑃1 to get a probabilistic algorithm 𝑃2 which always uses a number of queries which is a power of 2.

This can be done simply by increasing the number of queries each algorithm in the support of 𝑃1 makes (and ignoring

the extra queries). This way, we have |𝑃2 | ≤ 2|𝑃1 | ≤ 2|𝑃 |, the largest number of queries 𝑃2 can make is at most 4|𝑃 |/𝛾 ,
and the bias of 𝑃2 is at least 𝛾/2 on every input.

Further, we modify 𝑃2 to get a probabilistic quantum algorithm 𝑃3 which always uses at least 8|𝑃 | queries (but still
only uses a number of queries which is a power of 2). This can be done by again increasing the number of queries a

quantum algorithm in the support of 𝑃2 makes, when necessary. This adds at most an additive 16|𝑃 | queries (since
the smallest power of 2 which is at least 8|𝑃 | is smaller than 16|𝑃 |). Hence |𝑃3 | < |𝑃2 | + 16|𝑃 | ≤ 18|𝑃 |. Note that 𝑃3
achieves bias at least 𝛾/2 on every input, and that 𝑃3 always uses a number of queries which is a power of 2 in the

range [8|𝑃 |, 4|𝑃 |/𝛾).
Finally, we modify 𝑃3 to get 𝑃4 which collapses together all quantum algorithms in the support of 𝑃3 that use the

same number of queries. That is, instead of placing support on two different quantum algorithms which both use (say)

32 queries, 𝑃4 will place support on a single quantum algorithm which implements the mixture of both. This does not

affect the number of queries or the bias of the algorithm. Hence we have |𝑃4 | < 18|𝑃 |, and 𝑃4 achieves bias at least 𝛾/2
on each input. Further, 𝑃4 has support on fewer than log(1/𝛾) quantum algorithms.

Next we introduce some notation for talking about 𝑃4. Let 𝐿 = ⌊log(1/𝛾)⌋ and let 2
𝑘
be the smallest power of 2

which is at least 4|𝑃 |. Let the quantum algorithms in the support of 𝑃4 be 𝑄1, 𝑄2, . . . , 𝑄𝐿 , with 𝑄𝑖 using 2
𝑘+𝑖

queries

for each 𝑖 . Let 𝑝𝑖 be the probability 𝑃4 assigns to algorithm 𝑄𝑖 . Then 𝑝𝑖 ≥ 0 for all 𝑖 , and
∑𝐿
𝑖=1 𝑝𝑖 = 1. We also have∑𝐿

𝑖=1 𝑝𝑖2
𝑘+𝑖 = |𝑃4 | < 18|𝑃 |, which means

∑𝐿
𝑖=1 𝑝𝑖2

𝑖 < 5. On input 𝑥 , let 𝛼𝑖 (𝑥) be the probability that 𝑄𝑖 outputs 1 when

Manuscript submitted to ACM

34 Shalev Ben-David and Eric Blais

run on 𝑥 , and let 𝛽𝑖 (𝑥) B 1 − 2𝛼𝑖 (𝑥). This way, (−1) 𝑓 (𝑥)𝛽𝑖 (𝑥) is the bias of 𝑄𝑖 when run on 𝑥 . Then
∑𝐿
𝑖=1 𝑝𝑖𝛽𝑖 (𝑥)

is (−1) 𝑓 (𝑥) times the bias of 𝑃4 on 𝑥 , which means that it is negative if 𝑓 (𝑥) = 1, positive if 𝑓 (𝑥) = 0, and satisfies��∑𝐿
𝑖=1 𝑝𝑖𝛽𝑖 (𝑥)

�� ≥ 𝛾/2.
We now wish to amplify 𝑃4 from bias 𝛾/2 to constant bias. To do so, it suffices to estimate

∑𝐿
𝑖=1 𝑝𝑖𝛽𝑖 (𝑥) to additive

error less than𝛾/2, and output the sign of this estimate. Our query budget for this task will be roughly |𝑃 |/𝛾 . We know the

values 𝑝𝑖 , and seek to generate estimates
˜𝛽𝑖 (𝑥) for 𝛽𝑖 (𝑥). We will say an estimate

˜𝛽𝑖 (𝑥) is good if | ˜𝛽𝑖 (𝑥)−𝛽𝑖 (𝑥) | ≤ 2
𝑖𝛾/10.

This way, if all
˜𝛽𝑖 (𝑥) are good, our final estimate for the sum will satisfy����� 𝐿∑︁

𝑖=1

𝑝𝑖 ˜𝛽𝑖 (𝑥) −
𝐿∑︁
𝑖=1

𝑝𝑖𝛽𝑖 (𝑥)
����� =

����� 𝐿∑︁
𝑖=1

𝑝𝑖 (˜𝛽𝑖 (𝑥) − 𝛽𝑖 (𝑥))
����� ≤ 𝐿∑︁

𝑖=1

𝑝𝑖 | ˜𝛽𝑖 (𝑥) − 𝛽𝑖 (𝑥) | ≤
𝐿∑︁
𝑖=1

𝑝𝑖2
𝑖𝛾/10 < 𝛾/2,

where we used

∑
𝑖 𝑝𝑖2

𝑖 < 5.

To generate
˜𝛽𝑖 (𝑥), we use Theorem 5.1 on algorithm 𝑄𝑖 with 𝜖 = 2

𝑖𝛾/20 and 𝛿 = 1/3𝐿. Since the query cost of 𝑄𝑖 is

2
𝑘+𝑖

, this uses at most 2000 · (2𝑘/𝛾) · ln(3𝐿) queries. Since 2𝑘 < 8|𝑃 | and 𝐿 ≤ log(1/𝛾), this costs𝑂 (|𝑃 |/𝛾 · log log(1/𝛾)).
The query cost of generating all 𝐿 estimates this way is therefore 𝑂 (|𝑃 |/𝛾 · log(1/𝛾) log log(1/𝛾)). The probability
that any one estimate is not good is at most 1/3𝐿 by our choice of 𝛿 , so by the union bound, all are good except with

probability 1/3; hence we’ve given a quantum algorithm which achieves worst-case bounded error for computing 𝑓 ,

and whose query cost is 𝑂 (PQ ¤𝛾 (𝑓)/𝛾 · log(1/𝛾) log log(1/𝛾)), as desired. □

Using this theorem, we now proceed to prove a strong minimax theorem for PQ ¤𝛾 (𝑓), showing that a single hard
distribution 𝜇 works to lower bound this measure for all values of 𝛾 at once.

Theorem 5.6. Fix a finite alphabet Σ as well as 𝑛 ∈ N. Let 𝑓 be a Boolean-valued function with Dom(𝑓) ⊆ Σ𝑛 . Then

there exists a distribution 𝜇 over Dom(𝑓) such that for any 𝛾 ∈ [0, 1], we have

PQ
𝜇

¤𝛾 (𝑓) ≥ 𝛾 · Ω̃(Q(𝑓)),

where the constants in the Ω̃ notation are universal.

As usual, the notation PQ
𝜇

¤𝛾 (𝑓) denotes the expected cost of a probabilistic quantum algorithm which is required

to achieve bias at least 𝛾 against 𝜇 (rather than in the worst case); that is, the algorithm and the bias level 𝛾 are both

allowed to depend on the distribution 𝜇. Note that since PQ(𝑓) is always smaller than Q(𝑓) for any given bias level,

this implies Theorem 5.2.

Proof. Fix Σ, 𝑛, and 𝑓 . Let R be the set of all probabilistic quantum algorithms for computing 𝑓 . For each 𝑃 ∈ R
and each distribution 𝜇 over Dom(𝑓), define cost(𝑃, 𝜇) B |𝑃 | and define score(𝑃, 𝜇) to be the bias 𝑃 makes against

distribution 𝜇 for computing 𝑓 (this will be in the range [−1, 1]). We will use Theorem 2.18. It is clear that R is convex,

and that Dom(𝑓) is a nonempty finite set. Let Δ denote the set of all probability distributions over Dom(𝑓). Then
cost and score are continuous functions R × Δ → R, with cost(·, ·) always non-negative, and both functions are

linear in both variables. These functions are well-behaved, since finite cost and score can be achieved (some quantum

algorithm computes 𝑓 with positive bias), the cost is independent of the input, and mixing a zero-cost algorithm with a

nonzero-cost algorithm gives a nonzero-cost algorithm. Hence Theorem 2.18 gives us

inf

𝑃∈R
max

𝑥∈Dom(𝑓)
|𝑃 |

score(𝑃, 𝑥)+ = max

𝜇∈Δ
inf

𝑃∈R
|𝑃 |

score(𝑃, 𝜇)+ ,

where we use the convention 𝑟/0 = ∞ for all 𝑟 ∈ R.
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 35

We simplify the left-hand side. For a probabilistic quantum algorithm 𝑃 , use bias𝑓 (𝑃) to denote its worst-case bias,

that is, bias𝑓 (𝑃) B min𝑥∈Dom(𝑓) score(𝑃, 𝑥). Then the left-hand side is the infimum over 𝑃 of |𝑃 |/bias𝑓 (𝑃)+. Since a
probabilistic algorithm 𝑃 with bias𝑓 (𝑃) ≤ 0 will never be selected in this infimum, the left-hand side is equal to

inf

𝛾 ∈ (0,1]
inf

𝑃∈R𝛾

|𝑃 |
𝛾
,

where R𝛾 denotes the set of all probabilistic quantum algorithms which achieve worst-case bias at least 𝛾 . The inner

infimum is the definition of (1/𝛾) · PQ ¤𝛾 (𝑓), so the left-hand side equals inf𝛾 ∈ (0,1] PQ ¤𝛾 (𝑓)/𝛾 .
Note that this is at most 3Q(𝑓) by picking 𝛾 = 1/3 and using PQ(𝑓) ≤ Q(𝑓). We claim there is no reason to use any

𝛾 ∈ (0, 1/6Q(𝑓)) in the infimum. The reason is that if 𝑃 is a probabilistic quantum algorithm achieving worst-case bias

at least 𝛾 such that |𝑃 |/𝛾 < 3Q(𝑓), and if 𝛾 < 1/6Q(𝑓), it means that 𝑃 has nonzero support on zero-cost quantum

algorithms. Without loss of generality, we can assume 𝑃 = 𝑎𝑃0+𝑏𝑃1+ (1−𝑎−𝑏)𝑃 ′, where 𝑃0 is a zero-cost algorithm that

always outputs 0, 𝑃1 is a zero-cost algorithm that always outputs 1, and 𝑃 ′ is a probabilistic algorithm with no support

on zero-cost algorithms. Let 𝑐 = min{𝑎, 𝑏}, and write 𝑃 = 2𝑐𝑍 + (1− 2𝑐)𝑃 ′′, where 𝑍 is the 0-cost algorithm which is an

even mixture of 𝑃0 and 𝑃1. Then it is not hard to see that |𝑃 | = (1 − 2𝑐) |𝑃 ′′ | and score(𝑃, 𝜇) = (1 − 2𝑐) score(𝑃 ′′, 𝜇) for
all 𝜇. This means that 𝑃 ′′ has the same cost-to-score ratio as 𝑃 for all distributions 𝜇. Hence we can always use 𝑃 ′′ in

place of 𝑃 for the infimum. Further, supposing without loss of generality that 𝑏 ≥ 𝑎, we have 𝑃 ′′ = 𝛼𝑃1 + (1 − 𝛼)𝑃 ′ for
𝛼 = (𝑏 − 𝑎)/(1 − 2𝑎). Since 𝑓 is not constant, let 𝑥 be an input on which 𝑓 (𝑥) disagrees with 𝑃1 (𝑥) (that is, a 0-input).
Then note that if 𝛼 ≥ 1/2, the algorithm 𝑃 ′′ cannot output 0 on 𝑥 with probability above 1/2, so score(𝑃 ′′, 𝑥) ≤ 0 and

𝑃 ′′ will not be used in the infimum. On the other hand, if 𝛼 < 1/2, we have |𝑃 ′′ | = (1 − 𝛼) |𝑃 ′ | > (1/2) · 1 = 1/2, as 𝑃 ′

does not place weight on algorithms which make 0 queries. Now, unless 𝑃 ′′ achieves worst-case bias at least 1/(6Q(𝑓)),
its ratio of cost to score would be greater than 3Q(𝑓), which we already know is achievable.

This means we only need to use 𝛾 > 1/(6Q(𝑓)) in the infimum. Thus the left-hand side equals

inf

𝛾 ∈[1

6Q(𝑓) ,1]

PQ ¤𝛾 (𝑓)
𝛾

.

Using Theorem 5.5, this is at least

inf

𝛾 ∈[1

6Q(𝑓) ,1]

Q(𝑓)
𝐶 log(1/𝛾) log log(1/𝛾)

for some universal constant 𝐶 . The above is clearly optimized at 𝛾 = 1/(6Q(𝑓)), which means the left-hand side is at

least Ω
(

Q(𝑓)
logQ(𝑓) log logQ(𝑓)

)
.

Looking at the right hand side, we see that there exists a distribution 𝜇 such that every probabilistic quantum

algorithm 𝑃 satisfies |𝑃 |/score(𝑃, 𝜇)+ ≥ Ω̃(Q(𝑓)), from which the desired statement follows. □

5.2 Abstraction of the query complexity argument

We note that the argument we used to prove the existence of the hard distribution for quantum query complexity only

used a few properties of quantum algorithms. Since wewill want to apply the same argument to quantum communication,

polynomial degree, and logrank, it makes sense to step back and provide an abstraction of this argument to more

general models.

In general, we will consider Boolean-valued functions 𝑓 with a finite input set Dom(𝑓). We will have a set A of

algorithms that may attempt to compute 𝑓 . Formally, we will need A to be a subset of a real vector space. Each 𝐴 ∈ A
will have an associated cost, denoted |𝐴|, with | · | : A → [0,∞). We write A𝑇 to denote the set {𝐴 ∈ A : |𝐴| ≤ 𝑇 }.

Manuscript submitted to ACM

36 Shalev Ben-David and Eric Blais

For an algorithm 𝐴 ∈ A and an input 𝑥 ∈ Dom(𝑓), we let bias𝑓 (𝐴, 𝑥) denote the bias of algorithm 𝐴 on input 𝑥 . For

now, the only property we need of the bias is that it is a function bias𝑓 : A ×Dom(𝑓) → [−1, 1]. The worst-case bias of
an algorithm𝐴 will be denoted bias𝑓 (𝐴) B min𝑥∈Dom(𝑓) bias𝑓 (𝐴, 𝑥). If 𝜇 is a distribution over Dom(𝑓), we will further
write bias𝑓 (𝐴, 𝜇) B E𝑥∼𝜇 [bias𝑓 (𝐴, 𝑥)]. Similarly, if 𝑃 is a probability distribution overA with finite support, we denote

bias𝑓 (𝑃, 𝜇) B E𝐴∼𝑃E𝑥∼𝜇 [bias𝑓 (𝐴, 𝑥)] and bias𝑓 (𝑃) B min𝑥∈Dom(𝑓) bias𝑓 (𝑃, 𝑥). We also set |𝑃 | B E𝐴∼𝑃 |𝐴|. Finally,
we define𝑀 (𝑓) B inf𝐴∈A:bias𝑓 (𝐴)≥1/3 |𝐴|.

So far, this setting is extremely general, capturing many computational models. For the quantum-style strong minimax

to work, we will need the following properties to also hold for a given function 𝑓 .

(1) A𝑇 is convex for each 𝑇 ∈ [0,∞), and bias𝑓 (·, 𝑥) is linear over 𝐴 ∈ A𝑇 for each 𝑥 ∈ Dom(𝑓).
(2) There exists some 𝐴 ∈ A such that bias𝑓 (𝐴) ≥ 1/3. (Equivalently,𝑀 (𝑓) < ∞.)
(3) All 𝐴 ∈ A with |𝐴| < 1 have |𝐴| = 0, and A0 is the convex hull of exactly two algorithms, 𝑍0 and 𝑍1. For each

𝑥 ∈ Dom(𝑓), we also have bias𝑓 (𝑍0, 𝑥) = − bias𝑓 (𝑍1, 𝑥) = ±1, and if 𝑓 is not constant, bias𝑓 (𝑍0, 𝑥) attains both
values 1 and −1 for 𝑥 ∈ Dom(𝑓).

(4) Suppose 𝑃 is a probability distribution overA that has support {𝐴1, 𝐴2, . . . , 𝐴𝑘 }, with probability 𝑝𝑖 for 𝐴𝑖 , such

that (a) |𝐴𝑖 | ≤ 2
𝑖𝑇 for some 𝑇 ∈ [1/10,∞), (b) ∑𝑖 2

𝑖𝑝𝑖 ≤ 5, and (c) bias𝑓 (𝑃) ≥ 2
−𝑘−1

. Then there is some 𝐴 ∈ A
with bias𝑓 (𝐴) ≥ 1/3 and |𝐴| ≤ 2

𝑘𝑇 · poly(𝑘) (with the constants in the poly being universal).

We note that (1) essentially requires the computational model to be randomized (or, in communication complexity,

to have public randomness). (2) only says that each function can be computed by some finite-cost algorithm. (3) says

that algorithms with cost less than 1 cannot look at the input, and therefore have cost 0 and must either always output

0 or always output 1 (or some convex combination of the two).

The main important point is (4). This point amplifies a certain restricted type of low-bias probability distribution over

algorithms into a full-blown constant-bias algorithm, and the cost of amplification is nearly linear in one over the bias.

We now prove that these points together suffice to guarantee the existence of a strongly-hard distribution. To start, we

establish the following lemma, which says that if (4) holds – meaning we can amplify the restricted type of probabilistic

algorithms – then we can amplify all probabilistic algorithms.

Lemma 5.7. Suppose 𝑓 and A satisfy the above conditions. Let 𝑃 be any finite-support probability distribution over A
with bias𝑓 (𝑃) > 0. Then

𝑀 (𝑓) ≤ |𝑃 |
bias𝑓 (𝑃)

· polylog(1/bias𝑓 (𝑃)).

Proof. The proof of this will be directly analogous to the quantum query case. We convert 𝑃 into the restricted

form of (4), being careful to lose only a constant factor in the bias and in the cost. Let 𝛾 B bias𝑓 (𝑃) > 0. We first use

Markov’s inequality to argue that the total probability mass 𝑃 places on algorithms𝐴 of cost |𝐴| ≥ 2|𝑃 |/𝛾 is at most 𝛾/2,
and hence discarding all such algorithms from the support of 𝑃 decreases its bias by at most 𝛾/2 (while not increasing
its cost). Next, we group the remaining algorithms in the support of 𝑃 into log(1/𝛾) bins: one bin for algorithms of cost

0 to 2𝑇 (with 𝑇 equal to something like 4|𝑃 |), and one additional bin for algorithms of cost 2
𝑖𝑇 to 2

𝑖+1𝑇 for 𝑖 between 1

and log(1/𝛾). Within each bin, we use the convexity of A
2
𝑖𝑇 to replace the entire bin with a single algorithm (whose

cost is up to the upper boundary of that bin). For the first bin, this increases the cost |𝑃 | by up to an additive 𝑂 (𝑇),
while for the other bins, this increases the cost by up to a factor of 2. Altogether, we have only log(1/𝛾) algorithms

remaining in the support, and setting 𝑘 = log(1/𝛾) it is not hard to check that the conditions in (4) are satisfied. □

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 37

Theorem 5.8. Suppose 𝑓 and A satisfy the above conditions. Then there exists a distribution 𝜇 over Dom(𝑓) such that

for any finite-support probability distribution 𝑃 over A, we have

bias𝑓 (𝑃, 𝜇) ≤ 𝑂 (|𝑃 |/𝑀 (𝑓) · polylog𝑀 (𝑓)).

In particular, if𝑀𝜇

¤𝛾 (𝑓) denotes the infimum cost |𝐴| over algorithms 𝐴 ∈ A with bias𝑓 (𝐴, 𝜇) ≥ 𝛾 , then for all 𝛾 ∈ (0, 1/3)
we have

𝑀
𝜇

¤𝛾 (𝑓) ≥ 𝛾 · Ω̃(𝑀 (𝑓)) .

Proof. The proof will be exactly the same as in the quantum query setting. In the special case where 𝑓 is constant,

the result trivially follows as𝑀 (𝑓) = 0, so assume 𝑓 is not constant.

First, we let R be the set of all finite-support probability distributions over A and we let Δ be the set of probability

distributions over Dom(𝑓). Then we define cost : R × Δ → [0,∞) by cost(𝑃, 𝜇) B |𝑃 |, and score : R × Δ → [−1, 1]
by score(𝑃, 𝜇) B bias𝑓 (𝑃, 𝜇). Note that cost and score are both continuous and linear in each variable. They are also

well-behaved, because𝑀 (𝑓) < ∞ ensures finite cost and score can be achieved, cost does not depend on 𝜇, and cost is

linear in 𝑃 . Hence Theorem 2.18 gives

inf

𝑃∈R
max

𝑥∈Dom(𝑓)
|𝑃 |

bias𝑓 (𝑃, 𝑥)+
= max

𝜇∈Δ
inf

𝑃∈R
|𝑃 |

bias𝑓 (𝑃, 𝜇)+
.

We examine the left-hand side. It equals inf𝑃∈R
|𝑃 |

bias𝑓 (𝑃)+ . We note that this infimum is at most 3𝑀 (𝑓) by the

definition of𝑀 (𝑓). We now claim that there is no need to use any 𝑃 in the infimum if bias𝑓 (𝑃) < 1/(6𝑀 (𝑓)). To show

this, it suffices to show that there is no need to use any 𝑃 in the infimum if |𝑃 | < 1/2, because we know that 3𝑀 (𝑓) is
attainable using only algorithms in 𝐴 with cost at least 1.

Now, suppose that |𝑃 | < 1/2 and bias𝑓 (𝑃) > 0. We can write 𝑃 = 𝑎𝑍0 + 𝑏𝑍1 + (1 − 𝑎 − 𝑏)𝑃 ′ where 𝑃 ′ has support
only on 𝐴 ∈ A with |𝐴| ≥ 1. Define 𝑃 ′′ B ((𝑎 − 𝑐)𝑍0 + (𝑏 − 𝑐)𝑍1 + (1 − 𝑎 − 𝑏)𝑃 ′)/(1 − 2𝑐), where 𝑐 = min{𝑎, 𝑏}. Then
as we showed in the quantum query case, we have |𝑃 ′′ |/bias𝑓 (𝑃 ′′) = |𝑃 |/bias𝑓 (𝑃). Moreover, since 𝑓 is not constant,

there is some input 𝑥 ∈ Dom(𝑓) such that bias𝑓 (𝑍0, 𝑥) = −1, and some input 𝑦 ∈ Dom(𝑓) such that bias𝑓 (𝑍1, 𝑦) = −1.
Since bias𝑓 (𝑃 ′′) > bias𝑓 (𝑃) > 0, and since bias𝑓 (𝑃 ′) ≤ 1, one can show |𝑃 ′′ | > 1/2, as in the quantum query case.

Hence the left-hand side equals inf𝑃∈R′
|𝑃 |

bias𝑓 (𝑃) , where R
′
is the set of all 𝑃 ∈ R with bias𝑓 (𝑃) ≥ 1/(6𝑀 (𝑓)).

Using Lemma 5.7, we know that for each 𝑃 ∈ R′, we have𝑀 (𝑓) ≤ |𝑃 |/bias𝑓 (𝑃) · polylog(1/bias𝑓 (𝑃)) ≤ |𝑃 |/bias𝑓 (𝑃) ·
polylog𝑀 (𝑓). Hence the left-hand side is at least

𝑀 (𝑓)
polylog𝑀 (𝑓) . Finally, examining the right hand side, we see that there

is a distribution 𝜇 over Dom(𝑓) such that for all 𝑃 ∈ R, we have |𝑃 | ≥ bias𝑓 (𝑃) ·𝑀 (𝑓)/polylog𝑀 (𝑓), and the desired

result follows. □

5.3 Quantum communication complexity

To prove an analogous minimax theorem for quantum communication complexity, all we need is to show that quantum

communication complexity satisfies the four conditions from Section 5.2. It’s easy to see that as long as there is public

randomness (whether or not there is also shared entanglement), the first three conditions are satisfied. It remains to deal

with the fourth condition. Let 𝑃 be a probability distribution over protocols Π1,Π2, . . . ,Π𝑘 , which assigns probability 𝑝𝑖

to Π𝑖 and satisfies |Π𝑖 | ≤ 2
𝑖𝑇 ,

∑
𝑖 2

𝑖𝑝𝑖 ≤ 5, and 𝑃 achieves bias at least 2
−𝑘−1

for computing communication function 𝐹

on any input (𝑥,𝑦) ∈ Dom(𝐹). Our goal is to construct a communication protocol which uses𝑇 ·𝑂 (2𝑘) communication

to compute 𝐹 to bounded error.

Manuscript submitted to ACM

38 Shalev Ben-David and Eric Blais

As in the quantum query case, all we need to do is create a protocol Π in which Alice and Bob estimate the biases

Π𝑖 (𝑥,𝑦) of the protocols Π𝑖 when run on their inputs. Each estimate for protocol 𝑖 needs to be within 2
−(𝑘−𝑖)/10 of the

correct bias, and it must satisfy this property with probability at least 1 − 1/3𝑘 (see the query complexity section for a

formal analysis). To achieve this, it suffices for Alice and Bob to use amplitude estimation from Theorem 5.1 to generate

an estimate of the probability Π𝑖 (𝑥,𝑦) outputs 1. Hence the only remaining difficulty is running amplitude estimation

of a communication protocol in the communication complexity setting.

This turns out to be possible in both the shared-entanglement and the non-shared-entanglement settings (though

note that we’ve already assumed shared randomness, so we cannot handle the non-shared-randomness non-shared-

entanglement quantum communication complexity model). The idea is to have one of the players, say Alice, take charge.

We will assume that Alice is the one who outputs the final answer in Π𝑖 . Then from Alice’s point of view, Π𝑖 (𝑥,𝑦) can
be viewed as a unitary𝑈 and a measurement𝑀 such that Alice needs Bob’s help to apply 𝑈 , and after applying 𝑈 to a

shared state |0⟩𝐴 |0⟩𝐵 , Alice can apply the measurement𝑀 on her side alone to get the output Π𝑖 (𝑥,𝑦). Now, to apply

amplitude estimation, Alice only needs the ability to apply controlled 𝑈 , 𝑈 †, and (𝐼 − 2𝑀) operations. She can do the

latter alone. For controlled 𝑈 and 𝑈 † applications, she needs Bob’s help, but that’s fine: she will just send him a qubit

each time alerting him to whether they are about to apply 𝑈 or 𝑈 † to their shared state (Bob will return that qubit

afterwards to ensure coherence of Alice’s controlled applications of𝑈 and𝑈 †).

We conclude the following theorem.

Theorem 5.9. Let 𝐹 : X ×Y → {0, 1} be a (possibly partial) communication function. Then there exists a probability

distribution 𝜇 over Dom(𝐹) such that for all 𝛾 ∈ (0, 1/3), we have

QCC
𝜇

¤𝛾 (𝐹) ≥ 𝛾 · Ω̃(QCC(𝐹)).

Here QCC𝜇

¤𝛾 (𝐹) denotes the minimum amount of communication required by a quantum communication protocol which

achieves bias at least 𝛾 against 𝜇. This theorem works in both the shared entanglement setting and in the shared-randomness,

non-shared entanglement setting.

6 APPROXIMATE POLYNOMIAL DEGREE AND LOGRANK

As in the quantum case, polynomials can be amplified linearly in the bias. However, also as in the quantum case, the

degree of polynomials is not convex: the degree of a convex combination of 𝑝1 and 𝑝2 is the maximum degree of 𝑝1 and

𝑝2, not the average degree.

The same ideas that worked for quantum query and communication complexities will allow us to get a strong hard

distribution for approximate polynomial degree and approximate logrank. The main difference will be how we do the

estimation of success probabilities: instead of amplitude estimation, we will need a polynomial variant of this, which

turns out to be a little tricky.

6.1 Approximate degree

The approximate degree of a (possibly partial) Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is the minimum degree of an

𝑛-variate polynomial 𝑝 which satisfies |𝑝 (𝑥) − 𝑓 (𝑥) | ≤ 𝜖 for all 𝑥 ∈ Dom(𝑓), where 𝜖 is a parameter representing

the allowed error. When 𝑓 is a partial function, there are actually two different notions of polynomial degree: one

where 𝑝 is required to be bounded on the entire Boolean hypercube (that is, 𝑝 (𝑥) ∈ [0, 1] for all 𝑥 ∈ {0, 1}𝑛 , even when

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 39

𝑥 ∉ Dom(𝑓)), and one where 𝑝 is not restricted outside the domain of 𝑓 . Our results will apply to both versions of

polynomial degree, but for conciseness, we restrict our attention to the bounded version.

With polynomials, it is often convenient to switch from talking about functions 𝑓 : {0, 1}𝑛 → {0, 1} to talking about

functions 𝑓 : {+1,−1}𝑛 → {+1,−1}. Note that by doing a simple variable substitution, we can convert between {0, 1}
variables to {+1,−1} variables without changing the degree of the polynomial. That is, we can substitute 1− 2𝑥𝑖 in place

of the variable 𝑥𝑖 inside 𝑝 to make it take {0, 1} inputs instead of {+1,−1} inputs, and we can substitute (1 − 𝑥𝑖)/2 to go
the other way. We can similarly change the output of 𝑝 from being in the range [0, 1] to the range [−1, 1] and vice versa
(the error changes by a factor of 2 when switching between these bases). Another well-known observation is that to

approximate a Boolean function 𝑓 , we only need multilinear polynomials, and their degree only needs to be at most 𝑛.

To get our hard distribution, we will use Theorem 5.8. We need to check the four conditions, but using polynomials as

our “algorithms”. More explicitly, the setA will be the set of all real 𝑛-variate multilinear bounded polynomials, viewed

in the {+1,−1} basis (bounded means that 𝑝 (𝑥) ∈ [−1, 1] for all 𝑥 ∈ {+1,−1}𝑛). For a polynomial 𝑝 ∈ A, we define

bias𝑓 (𝑝, 𝑥) to be 𝑓 (𝑥)𝑝 (𝑥). Then (1) holds, as the set of polynomials of a given degree is convex and bias𝑓 (·, 𝑥) is linear
over that set. (2) holds because every Boolean function can be computed exactly by a polynomial of degree 𝑛. Next, (3)

holds because polynomials of degree less than 1 have degree 0, and since we’re dealing with bounded polynomials,

these are a convex combination of the two constant polynomials −1 and 1.

It remains to show (4). To this end, let 𝑃 be a probability distribution over 𝑘 polynomials 𝑞1, 𝑞2, . . . , 𝑞𝑘 , with deg(𝑞𝑖) ≤
2
𝑖𝑇 . Let 𝑝𝑖 be the probability 𝑃 assigns to 𝑞𝑖 , and suppose

∑𝑘
𝑖=1 2

𝑖𝑝𝑖 ≤ 5. Finally, suppose that bias𝑓 (𝑃) ≥ 2
−𝑘−1

.

Our goal is to find a polynomial 𝑞 of degree at most 2
𝑘𝑇 · poly(𝑘) that computes 𝑓 to constant error. To do so, we’ll

need a polynomial version of the amplitude estimation algorithm we did in the quantum case. That is, we’d like to

estimate the output that polynomial 𝑞𝑖 (𝑥) returns, and do arithmetic computations on it. Crucially, one of the arithmetic

computations we’d like to do is comparison, for example, to see if 𝑞𝑖 (𝑥) > 0. Such a comparison is not a polynomial

operation, so we cannot use the polynomial 𝑞𝑖 (𝑥) itself. Instead, we will create polynomials that compute the bits of the

binary expansion of 𝑞𝑖 (𝑥), to a certain precision. We will then do arithmetic operations using those bits, and we’ll be

able to implement those operations using polynomials.

To do so, we’ll need some approximation theory. The following theorem, known as Jackson’s theorem, will be useful.

It traces back to Jackson (1911) [Jackson 1911], but see also [Milovanovic et al. 1994] (page 750, Theorem 3.1.1) for some

discussion and a more thorough list of references.

Theorem 6.1 (Jackson’s theorem). Let 𝛼 : [−1, 1] → R be a continuous function, and let 𝑛 ∈ N. Then there is a real

polynomial 𝑝 of degree 𝑛 such that for all 𝑥 ∈ [−1, 1], we have

|𝑝 (𝑥) − 𝛼 (𝑥) | ≤ 6 · sup

|𝑦−𝑧 | ≤1/𝑛
|𝛼 (𝑦) − 𝛼 (𝑧) |.

In particular, if 𝛼 has Lipschitz constant 𝐾 , then for each 𝑛 ∈ N there is a polynomial 𝑝𝑛 of degree at most 𝑛

which approximates 𝛼 to within an additive 6𝐾/𝑛 at each point in [−1, 1]. Jackson’s theorem can be used to prove

the well-known result that polynomials can be amplified with a linear dependence in the bias. For completeness, we

reprove this here (see also e.g. [Goel et al. 2017]).

Corollary 6.2 (Polynomial amplification (small bias to constant bias)). For each 𝛾 ∈ (0, 1), there is a real polynomial 𝑝

of degree at most 13/𝛾 such that 𝑝 maps [−1, 1] to [−1, 1], 𝑝 maps [−1,−𝛾] to [−1,−1/3], and 𝑝 maps [𝛾, 1] to [1/3, 1].

Proof. Let 𝛼 : [−1, 1] → R be the function with 𝛼 (𝑥) = −2/3 for 𝑥 ∈ [−1,−𝛾], 𝛼 (𝑥) = 2/3 for 𝑥 ∈ [𝛾, 1], and
𝛼 (𝑥) = 2𝑥/3𝛾 for 𝑥 ∈ (−𝛾,𝛾). Then 𝛼 is continuous and has Lipschitz constant 2/3𝛾 . By Theorem 6.1, for every 𝑛 ∈ N,

Manuscript submitted to ACM

40 Shalev Ben-David and Eric Blais

there exists a polynomial 𝑝𝑛 of degree at most 𝑛 which approximates 𝛼 to additive error 4/𝛾𝑛. Picking 𝑛 = ⌈12/𝛾⌉ ≤ 13/𝛾 ,
we get a polynomial which approximates 𝛼 to error 1/3, which means it has the desired properties. □

We will also need an amplification polynomial that goes from constant bias to small error. We reprove the following

well-known lemma here for completeness (it also appears in [Buhrman et al. 2007], and another version appears in

[Sherstov 2013]).

Lemma 6.3 (Polynomial amplification (constant error to small error)). For each 𝜖 ∈ (0, 2/3), there is a real polynomial 𝑝

of degree at most 17 log(1/𝜖) such that 𝑝 maps [−1, 1] to [−1, 1], 𝑝 maps [−1,−1/3] to [−1,−(1−𝜖)], and 𝑝 maps [1/3, 1]
to [1 − 𝜖, 1].

Proof. We set

𝑞(𝑥) =
𝑘∑︁
𝑖=0

(
2𝑘 + 1
𝑖

) (
1 + 𝑥
2

)𝑖 (
1 − 𝑥
2

)
2𝑘+1−𝑖

,

and set 𝑝 (𝑥) = 1 − 2𝑞(𝑥). Note that for 𝑥 ∈ [−1, 1], the value 𝑞(𝑥) is exactly the probability that, when flipping a coin

2𝑘 + 1 times, less than half of the coin flips will come out heads, assuming the probability of heads is (1 + 𝑥)/2. Because
of this interpretation, we know that 𝑞 maps [−1, 1] to [0, 1] and is decreasing in 𝑥 , so 𝑝 maps [−1, 1] to [−1, 1] and is

increasing in 𝑥 . We also have 𝑞(𝑥) = 1 − 𝑞(−𝑥), which means that 𝑝 (−𝑥) = −𝑝 (𝑥), i.e. 𝑝 is odd. Given these properties,

the lemma will follow if we show that 𝑝 (1/3) ≥ 1 − 𝜖 , or equivalently, that 𝑞(1/3) ≤ 𝜖/2.
We have

𝑞(1/3) =
𝑘∑︁
𝑖=0

(
2𝑘 + 1
𝑖

) (
2

3

)𝑖 (
1

3

)
2𝑘+1−𝑖

= 3
−(2𝑘+1)

𝑘∑︁
𝑖=0

(
2𝑘 + 1
𝑖

)
2
𝑖 ≤ 3

−(2𝑘+1)
2
𝑘

𝑘∑︁
𝑖=0

(
2𝑘 + 1
𝑖

)
= 3
−(2𝑘+1)

2
𝑘
2
2𝑘 = (1/3) (8/9)𝑘 .

To get this to be smaller than 𝜖/2, it suffices to pick 𝑘 large enough so that (8/9)𝑘 ≤ 𝜖 , or equivalently, 𝑘 ≥
1

log(9/8) log(1/𝜖). Hence we can pick 𝑘 = ⌈ 1

log(9/8) log(1/𝜖)⌉ ≤
1

log(9/8) log(1/𝜖) + 1. The degree of 𝑝 will be 2𝑘 + 1 ≤
2

log(9/8) log(1/𝜖) + 3. Note that 𝜖 ≤ 2/3, so log(1/𝜖) ≥ log(3/2), and hence the degree of 𝑝 is bounded by

2

log(9/8) log(1/𝜖) + 3 ≤
(

2

log(9/8) +
3

log(3/2)

)
log(1/𝜖) ≤ 17 log(1/𝜖). □

Equipped with these approximation-theoretic tools, we will now tackle (4), showing that probability distributions

over polynomials (which achieve a small amount of worst-case bias 𝛾 for computing 𝑓) can be amplified to polynomials

which compute 𝑓 to constant error, using only a nearly-linear dependence on 1/𝛾 .

Lemma 6.4. As in (4), let 𝑃 be a probability distribution over 𝑘 bounded multilinear polynomials 𝑞1, 𝑞2, . . . , 𝑞𝑘 , which

assigns them probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑘 , respectively. Suppose that
∑𝑘
𝑖=1 2

𝑖𝑝𝑖 ≤ 5, that deg(𝑞𝑖) ≤ 2
𝑖𝑇 for some real number

𝑇 , and that 𝑓 (𝑥)∑𝑘
𝑖=1 𝑝𝑖𝑞𝑖 (𝑥) ≥ 2

−𝑘−1 for all 𝑥 ∈ Dom(𝑓). Then there is a bounded multilinear polynomial 𝑞 which

approximates 𝑓 with bias at least 1/3 and which satisfies deg(𝑞) ≤ 2
𝑘𝑇 · poly(𝑘).

Proof. Recall that in the quantum case, we estimated the bias of the 𝑖-th algorithm to within 2
−(𝑘−𝑖)/10, with

success probability at least 1 − 1/3𝑘 . We will do a polynomial version of this. What does estimating 𝑞𝑖 (𝑥) mean, for

polynomials? It means we will construct polynomials which approximately compute the bits in the binary expansion

of the number 𝑞𝑖 (𝑥). We will have one polynomial for the sign, and an additional 𝑘 − 𝑖 + 5 polynomials for the first

𝑘 − 𝑖 + 5 digits in the binary expansion of 𝑞𝑖 (𝑥).
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 41

In order to do so, we compose univariate polynomials with 𝑞𝑖 . This way, the task reduces to creating univariate

polynomials which output the bits in the binary expansion of their input (assuming they all receive the same input).

More explicitly, the correctness condition is as follows. We say the binary expansion of a real number 𝛽 ∈ [−1, 1] is
2
−ℓ
-robust to 𝑡 bits if the first 𝑡 bits of the binary expansion of 𝛽 + 𝜖 are the same as those of 𝛽 for all 𝜖 ∈ [−2−ℓ , 2−ℓ].

Then we require univariate polynomials 𝑑ℓ
0
, 𝑑ℓ

1
, . . . , 𝑑ℓ

𝑘
such that if 𝛽 ∈ [−1, 1] is 2−ℓ -robust to at least 𝑡 bits, then 𝑑ℓ𝑡 (𝛽)

is within 𝑂 (1/𝑘10) of the 𝑡-th bit in the binary expansion of 𝛽 . The polynomial 𝑑ℓ
0
needs to output the sign of 𝛽 if 𝛽

is 2
−ℓ
-robust to at least 0 bits (that is, if the sign of 𝛽 does not change upon adding or subtracting 2

−ℓ
). We will also

require all these polynomials to be bounded, i.e. they must map [−1, 1] to [−1, 1].
To implement these polynomials, we use Theorem 6.1. For simplicity, let’s represent the bits in the binary expansion

using +1 and −1 instead of 0 and 1 (converting back is easy). Consider the function 𝛼𝑖 which outputs the 𝑖-th bit of the

binary expansion of its input (or the sign if 𝑖 = 0). This 𝑖 is a step function: for 𝑖 = 0, 𝛼0 (𝛽) jumps from −1 to 1 at 𝛽 = 0;

for 𝑖 = 1, 𝛼1 (𝛽) similarly jumps from −1 to 1 and back at 𝛽 = −1/2, 0, 1/2. More generally, 𝛼𝑖 has 2
𝑖+1

different plateaus

of 1 or −1 on its domain [−1, 1]. Now, since we only care about getting the 𝑖-th bit correct if the 𝑖-th bit is robust to 𝛽

changing by 2
−ℓ
, consider the continuous functions 𝛼ℓ

𝑖
which make the jumps from −1 to 1 continuous by starting

from 2
−ℓ

before the jump point, ending 2
−ℓ

after the jump point, and drawing a continuous line in between (the slope

of the line will be ±2−ℓ). This is well-defined as long as ℓ is sufficiently larger than 𝑖 , say ℓ ≥ 𝑖 + 2.
Note that 𝛼ℓ

𝑖
has Lipschitz constant 2

−ℓ
. This means we can use Theorem 6.1 to estimate 𝛼ℓ

𝑖
by a polynomial of degree

𝑂 (2ℓ) which achieves constant additive error (say, 1/10). We can scale down these polynomials slightly to ensure they

remain bounded in [−1, 1]. We then plug them into a single variate bounded polynomial of degree 𝑂 (log𝑘) that we get
from Lemma 6.3, in order to amplify the error down to𝑂 (1/𝑘10). The result are polynomials 𝑑ℓ𝑡 (for 𝑡 ≤ ℓ − 2) that have
degree 𝑂 (2ℓ log𝑘) and, on input 𝛽 which is 2

−ℓ
-robust to bit at least 𝑡 , correctly output the 𝑡-th bit of 𝛽 except with

additive error 𝑂 (1/𝑘10).
Now, to get an estimate of 𝑞𝑖 (𝑥) to 𝑘 − 𝑖 + 5 bits, we set ℓ = 𝑘 − 𝑖 + 𝑂 (log𝑘) and compose 𝑑ℓ𝑡 (𝑞𝑖 (𝑥)) for 𝑡 =

0, 1, 2, . . . , 𝑘 − 𝑖 + 5. Actually, we scale down 𝑞𝑖 (𝑥) and add an extra variable 𝑦𝑖 representing a noise term for 𝑞𝑖 (𝑥);
the final estimating polynomials will be the 𝑛 + 1 variate polynomials 𝑟𝑖,𝑡 (𝑥,𝑦𝑖) B 𝑑ℓ𝑡 ((9/10)𝑞𝑖 (𝑥) + 𝑦𝑖). Note that the
degree of 𝑟𝑖,𝑡 is 𝑂 (2𝑘−𝑖+𝑂 (log𝑘) log𝑘 · deg(𝑞𝑖)) = 𝑂 (2𝑘𝑇 poly(𝑘)).

Next, consider the function which takes binary representations of numbers 𝜆1, 𝜆2, . . . , 𝜆𝑘 ∈ [−1, 1], with 𝜆𝑖 being
specified to 𝑘 − 𝑖 + 5 bits, and outputs the sign of

∑𝑘
𝑖=1 𝑝𝑖𝜆𝑖 , where 𝑝𝑖 are known non-negative constants which sum

to 1. This is a bounded Boolean function of 𝑂 (𝑘2) variables, so it can be computed exactly by a bounded multilinear

polynomial of degree 𝑂 (𝑘2). Call this polynomial 𝑠 .

We observe that 𝑠 naturally has a robustness-to-noise property: if instead of plugging in values in {+1,−1} to 𝑠 , we
plug in values that are in [−1, 1] and are 𝑂 (1/𝑘10) close to {+1,−1}, the output of 𝑠 will only change by 𝑂 (1/𝑘6). To
see this, let 𝑥 be a input to 𝑠 consisting of 𝑂 (𝑘2) entries in {+1,−1}, let 𝑥 ′ be a noisy version of 𝑥 which is entrywise

𝑂 (1/𝑘10) close to 𝑥 and which still has entries in [−1, 1], and let 𝑥 ′′ = 𝛼𝑥 ′ + (1 − 𝛼)𝑥 for the largest value of 𝛼 ≥ 0 for

which all the entries of 𝑥 ′′ are still in [−1, 1]. Then 𝛼 = Ω(𝑘10). Letting 𝜖 = 1/𝛼 , we have 𝑥 ′ = 𝜖𝑥 ′′ + (1 − 𝜖)𝑥 . Consider
the value of 𝑠 on the line between 𝑥 and 𝑥 ′′: 𝑠 (𝑧) B 𝑠 (𝑧𝑥 ′′ + (1−𝑧)𝑥) for 𝑧 ∈ [0, 1]. This is a single-variate polynomial in

𝑧 of degree at most 𝑂 (𝑘2); also, this polynomial takes values in [−1, 1] on the interval 𝑧 ∈ [0, 1]. Note that 𝑠 (0) = 𝑞(𝑥)
and 𝑠 (𝜖) = 𝑞(𝑥 ′). By the mean value theorem, there is a point 𝑧 ∈ [0, 𝜖] such that 𝑠′ (𝑧) = (𝑞(𝑥 ′) − 𝑞(𝑥))/𝜖 . However,
the maximum possible derivative of a polynomial of degree 𝑂 (𝑘2) which is bounded in a box (taking values in [−1, 1]
on [0, 1]) is 𝑂 (𝑘4) due to a well-known inequality of Markov. This means |𝑞(𝑥 ′) − 𝑞(𝑥) | ≤ 𝑂 (1/𝑘6), as desired.

Manuscript submitted to ACM

42 Shalev Ben-David and Eric Blais

Next, plug in the polynomials 𝑟𝑖,𝑡 into the inputs of 𝑠 , so that 𝑠 calculates the sign of the sum

∑𝑘
𝑖=1 𝑝𝑖

˜𝛽𝑖 , where each ˜𝛽𝑖

is the estimate of (9/10)𝑞𝑖 (𝑥) + 𝑦𝑖 that is computed by the polynomials 𝑑𝑘−𝑖+10𝑡 . Call this composed polynomial 𝑢 (𝑥,𝑦).
Observe that 𝑢 (𝑥,𝑦) is a polynomial in 𝑛 + 𝑘 variables (𝑛 variables from 𝑥 and 𝑘 variables 𝑦𝑖), and has degree

𝑂 (2𝑘𝑇 poly(𝑘)). This polynomial attempts to compute the sign of (9/10)∑𝑘
𝑖=1 𝑝𝑖𝑞𝑖 (𝑥) +

∑𝑘
𝑖=1 𝑝𝑖𝑦𝑖 . Moreover, if the 𝑦𝑖

are chosen so that each number (9/10)𝑞𝑖 (𝑥) +𝑦𝑖 is 2−ℓ -robust to 𝑘 − 𝑖 + 5 bits with ℓ = 𝑘 − 𝑖 +𝑂 (log𝑘), the polynomial

𝑢 (𝑥,𝑦) succeeds at this task (it outputs at least 1 −𝑂 (1/𝑘6) if the sign is positive and outputs at most −1 +𝑂 (1/𝑘6) if
the sign is negative). Let’s call 𝑦𝑖 good if this robustness condition holds.

Since we know that

∑𝑘
𝑖=1 𝑝𝑖𝑞𝑖 (𝑥) · 𝑓 (𝑥) ≥ 2

−𝑘−1
, this sign computed by 𝑢 (𝑥,𝑦) will equal 𝑓 (𝑥) (within additive

error 𝑂 (1/𝑘6)) so long as

���∑𝑘
𝑖=1 𝑝𝑖𝑦𝑖

��� ≤ 2
−𝑘−2

. Recall that

∑𝑘
𝑖=1 2

𝑖𝑝𝑖 ≤ 5. Hence to guarantee that

���∑𝑘
𝑖=1 𝑝𝑖𝑦𝑖

��� ≤ 2
−𝑘−2

,

it suffices to choose each 𝑦𝑖 such that |𝑦𝑖 | ≤ 2
−(𝑘−𝑖+5)

.

It remains to choose good 𝑦𝑖 with |𝑦𝑖 | ≤ 2
−(𝑘−𝑖+5)

. We do this by picking 𝑦𝑖 at random. That is, we have an allowed

range [−2−(𝑘−𝑖+5) , 2−(𝑘−𝑖+5)] for 𝑦𝑖 ; we fit poly(𝑘) evenly spaced points into this range, so that the gap between

the points is 2
−(𝑘−𝑖+𝑂 (log𝑘))

. Note that for all but a constant number of choices of 𝑦𝑖 among these poly(𝑘) options,
the resulting number 𝑞𝑖 (𝑥) + 𝑦𝑖 will be 2−(𝑘−𝑖+𝑂 (log𝑘)) -robust to 𝑘 − 𝑖 + 5 bits. Hence by randomly selecting 𝑦𝑖 , the

probability that 𝑞𝑖 (𝑥) +𝑦𝑖 is not good is at most𝑂 (1/poly(𝑘)). By the union bound, this choice means that all 𝑞𝑖 (𝑥) +𝑦𝑖
are good except with constant probability. Hence 𝑢 (𝑥,𝑦) computes 𝑓 (𝑥) to 𝑂 (1/𝑘6) error with high probability when 𝑦

is chosen at random according to the above procedure.

Finally, we let 𝑞(𝑥) be the average of the polynomials 𝑢 (𝑥,𝑦) for all possible choices of 𝑦 in the above procedure.

Since 𝑢 (𝑥,𝑦) outputs a number very close to 𝑓 (𝑥) when 𝑦 is good, and since it is always bounded in [−1, 1], and since 𝑦
is good with high probability, we conclude that 𝑞(𝑥) computes 𝑓 (𝑥) to bounded error. It is also bounded outside the

promise of 𝑓 . The degree of 𝑞(𝑥) was 𝑂 (2𝑘𝑇 poly(𝑘)). We note that 𝑞(𝑥) as we constructed it here can actually be

viewed as a polynomial 𝜌 in 𝑘 variables composed with the polynomials 𝑞1, 𝑞2, . . . , 𝑞𝑘 . □

The above amplification theorem allows us to conclude the following theorem.

Theorem 6.5. let 𝑓 : {+1,−1}𝑛 → {+1,−1} be a (possibly partial) Boolean function. Then there is a vector 𝜓 ∈
[−1, 1]Dom(𝑓) such that ∥𝜓 ∥1 = 1, ⟨𝜓, 𝑓 ⟩ = 1, and for any polynomial 𝑝 which is bounded (i.e. |𝑝 (𝑥) | ≤ 1 for 𝑥 ∈ {+1,−1}𝑛),
we have

⟨𝜓, 𝑝⟩ ≤ deg(𝑝)
Ω̃ (adeg(𝑓))

.

Here adeg(𝑓) denotes the minimum degree of a bounded polynomial 𝑝 which computes 𝑓 to bounded error. The constants

in the Ω̃ notation are universal.

Proof. This follows immediately by taking𝜓 to be defined by𝜓 (𝑥) = 𝑓 (𝑥)𝜇 [𝑥], where 𝜇 is the hard distribution we

get from Theorem 5.8. □

6.2 Approximate logrank and gamma 2 norm

Let 𝐹 : X ×Y → {+1,−1} be a (possibly partial) communication function. We identify 𝐹 with its communication matrix,

which is a matrix with rows indexed by X and columns indexed by Y, with the (𝑥,𝑦) entry being 𝐹 (𝑥,𝑦) ∈ {+1,−1} if
(𝑥,𝑦) ∈ Dom(𝐹) and being ∗ if (𝑥,𝑦) ∉ Dom(𝐹). This way, 𝐹 is a {+1,−1, ∗}-valued matrix. For such a matrix 𝐹 , we say

that a real-valued matrix 𝐴 approximates 𝐹 (to bias 1/3) if |𝐴[𝑥,𝑦] | ≤ 1 for all (𝑥,𝑦) ∈ X × Y and 𝐹 (𝑥,𝑦)𝐴[𝑥,𝑦] ≥ 1/3
for all (𝑥,𝑦) ∈ Dom(𝐹). The approximate logrank of 𝐹 is the minimum value of log rank(𝐴) over matrices 𝐴 which

approximate 𝐹 to bias 1/3. We note that the bias can be amplified, so the constant 1/3 is arbitrary.
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 43

Instead of tackling approximate logrank directly, we use approximate 𝛾2 norm, which is equal to it up to logarithmic

factors [Lee and Shraibman 2009]. This measure deserves some introduction. First, we note that the 𝛾2 norm is a

well-known norm of a matrix. One way to define it is to say that 𝛾2 (𝐴) is the minimum, over factorizations 𝐴 = 𝐵𝐶 of

𝐴 into a product of matrices 𝐵 and𝐶 , of the maximum 2-norm of a row of 𝐵 times the maximum 2-norm of a column of

𝐶 . The 𝛾2 norm has several useful properties known in the literature [Lee, Shraibman, and Špalek 2008; Sherstov 2012]:

(1) 𝛾2 is a norm, so 𝛾2 (𝐴) ≥ 0 (with equality if and only if𝐴 is the all-zeros matrix) and 𝛾2 (𝐴+𝜆𝐵) ≤ 𝛾2 (𝐴) + |𝜆 |𝛾2 (𝐵).
(2) 𝛾2 (𝐴 ⊗ 𝐵) = 𝛾2 (𝐴)𝛾2 (𝐵), where ⊗ denotes the tensor (Kronecker) product

(3) 𝛾2 (𝐴 ◦ 𝐵) ≤ 𝛾2 (𝐴)𝛾2 (𝐵), where ◦ denotes the Hadamard (entry-wise) product

(4) 𝛾2 (𝐽) = 1, where 𝐽 is the all-ones matrix

(5) ∥𝐴∥∞ ≤ 𝛾2 (𝐴) ≤ ∥𝐴∥∞
√︁
rank(𝐴).

In the above, 𝐴 and 𝐵 are matrices of the same dimensions, and 𝜆 is a scalar. 𝛾2 (𝐴) can be thought of as a smoother

version of rank.

The approximate 𝛾2 norm of 𝐹 , denoted 𝛾2 (𝐹), is defined as the minimum value of 𝛾2 (𝐴) over all matrices which

approximate 𝐹 to bias 1/3. It is not hard to see that this minimum is attained, as the set of such matrices is compact.

We will actually care about the logarithm of the approximate 𝛾2 norm, that is, about log𝛾2 (𝐹). We note that the

constant 1/3 in the definition of this measure is arbitrary, as approximations to 𝐹 can be amplified with only a constant

factor overhead in the log-approximate-𝛾2-norm (see, e.g., [Ben-David, Bouland, et al. 2018]). An annoying detail,

however, is that such amplification can in general lose not just a multiplicative constant but also an additive constant,

since 𝛾2 (𝐹) may in general be less than 1 (meaning the logarithm of it will be less than 0). To avoid such complications,

we will define our measure of interest as𝑀 (𝐹) B max{1, log𝛾2 (𝐹)} if 𝐹 is not constant and𝑀 (𝐹) = 0 if 𝐹 is constant,

and we will write𝑀 ¤𝛾 (𝐹) for the bias 𝛾 version of𝑀 (𝐹) instead of the default bias 1/3 version.
In order to get a minimax theorem analogous to Theorem 6.5, we will again use Theorem 5.8. Our set of algorithmsA

will be the set of bounded real matrices𝐴 (that is, real matrices𝐴 of the same dimensions as 𝐹 which satisfy |𝐴[𝑥,𝑦] | ≤ 1

for all (𝑥,𝑦) ∈ X × Y). The cost of a matrix 𝐴 will be cost(𝐴) B max{1, log𝛾2 (𝐴)} if 𝐴 is not a multiple of the all-ones

matrix 𝐽 , and otherwise cost(𝐴) = 0 if 𝐴 = 𝜆𝐽 . We define bias𝐹 (𝐴, (𝑥,𝑦)) = 𝐹 (𝑥,𝑦)𝐴[𝑥,𝑦] for (𝑥,𝑦) ∈ Dom(𝐹).
We show that A𝑇 is convex for each 𝑇 ∈ [0,∞). For 𝑇 < 1, the set A𝑇 is the set of all matrices of the form 𝜆𝐽 for

𝜆 ∈ [−1, 1], which is clearly convex. For𝑇 ≥ 1, suppose 𝐴, 𝐵 ∈ A𝑇 and let 𝜆 ∈ (0, 1). Then cost(𝜆𝐴 + (1− 𝜆)𝐵) is either
0, 1, or log𝛾2 (𝜆𝐴 + (1 − 𝜆)𝐵). In the former two cases, we clearly have 𝜆𝐴 + (1 − 𝜆)𝐵 ∈ A𝑇 , so consider the latter case.

We have log𝛾2 (𝜆𝐴 + (1 − 𝜆)𝐵) ≤ log(𝜆𝛾2 (𝐴) + (1 − 𝜆)𝛾2 (𝐵)) ≤ logmax{𝛾2 (𝐴), 𝛾2 (𝐵)} = max{log𝛾2 (𝐴), log𝛾2 (𝐵)} ≤
max{cost(𝐴), cost(𝐵)} ≤ 𝑇 . Hence A𝑇 is convex. It is also clear that bias𝐹 (·, (𝑥,𝑦)) is linear, so (1) is satisfied.

By taking𝐴 to equal 𝐹 inside Dom(𝐹) and to be 0 elsewhere, we get bias𝐹 (𝐴) = 1, so (2) is satisfied. By our definition

of cost(𝐴), we have cost(𝐴) ≥ 1 or cost(𝐴) = 0, with the latter happening only if 𝐴 is a convex combination of 𝐽 and

−𝐽 , so (3) is satisfied.

As usual, it remains to handle (4). We do so in the following lemma.

Lemma 6.6. Let 𝑃 a probability distribution over matrices 𝐴1, 𝐴2, . . . , 𝐴𝑘 with probability 𝑝𝑖 for 𝐴𝑖 . Suppose that∑𝑘
𝑖=1 2

𝑖𝑝𝑖 ≤ 5, and that for all 𝑖 , we have cost(𝐴𝑖) ≤ 2
𝑖𝑇 for some real number𝑇 ≥ 1/10. Suppose further that bias𝐹 (𝑃) ≥

2
−𝑘−1. Then there is some bounded matrix 𝐴 which approximates 𝐹 to bias 1/3 and satisfies cost(𝐴) ≤ 2

𝑘𝑇 · poly(𝑘) (with
the constants in the poly being universal).

Proof. Let 𝜌 be the polynomial from the proof of Theorem 6.5 with respect to the probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑘 . This is

a polynomial in 𝑘 variables with the property that if values 𝛽1, 𝛽2, . . . , 𝛽𝑘 ∈ [−1, 1] are plugged in and |∑𝑖 𝑝𝑖𝛽𝑖 | ≥ 2
−𝑘−1

,

Manuscript submitted to ACM

44 Shalev Ben-David and Eric Blais

then 𝜌 (𝛽1, 𝛽2, . . . , 𝛽𝑘) returns the sign of

∑
𝑖 𝑝𝑖𝛽𝑖 to bounded error. The polynomial 𝜌 further has the property that it is

bounded (i.e. it returns values in [−1, 1] when given inputs in [−1, 1]𝑘), and that if you plug in any polynomials 𝑞𝑖 in

place of 𝛽𝑖 , with deg(𝑞𝑖) ≤ 2
𝑖
, then the degree of the composed polynomial is at most 2

𝑘
poly(𝑘).

This latter property means that the weighted degree of 𝜌 with weights (21, 22, . . . , 2𝑘) is at most 𝑂 (2𝑘 poly(𝑘)). Here
the term weighted degree means that we count the degree of each monomial of 𝜌 differently depending on the variables

in that monomial: the 𝑖-th variable gets weight 2
𝑖
, so a monomial of the form 𝛽

𝑐1
1
𝛽
𝑐2
2
. . . 𝛽

𝑐𝑘
𝑘

will have weighted degree

2
𝑖𝑐1 + 22𝑐2 + · · · + 2𝑘𝑐𝑘 . We know that the weighted degree of 𝜌 , meaning the maximum weighted degree of one of its

monomials, is at most 𝑂 (2𝑘 poly(𝑘)).
We will now use this polynomial 𝜌 to construct a matrix 𝐴 which approximates 𝐹 and has 𝛾2 norm that is not too

large. The idea is to simply apply 𝜌 to the matrices 𝐴1, 𝐴2, . . . , 𝐴𝑘 , using the Hadamard product for multiplication and

the usual matrix addition and scalar multiplication. Since 𝛾2 is a norm, we know that 𝛾2 (𝜌 (𝐴1, 𝐴2, . . . , 𝐴𝑘)) is the sum,

over all monomials of 𝜌 , of the absolute value of the coefficient of that monomial multipled by the 𝛾2-norm of the

Hadamard product defined by that monomial. This is upper bounded by the sum of absolute coefficients of 𝜌 (which

we’ll denote 𝐶) multiplied by the 𝛾2 norm of the largest monomial.

The 𝛾2 norm of a single monomial 𝛽
𝑐1
1
. . . 𝛽

𝑐𝑘
𝑘

composed with matrices 𝐴1, . . . , 𝐴𝑘 is at most 𝛾2 (𝐴1)𝑐1 . . . 𝛾2 (𝐴𝑘)𝑐𝑘 ,
since the𝛾2 norm is sub-multiplicative under the Hadamard product. Hence log𝛾2 (𝜌 (𝐴1, . . . 𝐴𝑘)) is at most log𝐶 plus the

maximum value of 𝑐1 log𝛾2 (𝐴1) + · · · + 𝑐𝑘 log𝛾2 (𝐴𝑘) for some monomial (𝑐1, 𝑐2, . . . , 𝑐𝑘) of 𝜌 . Since log𝛾2 (𝐴) ≤ cost(𝐴)
for all bounded matrices 𝐴, and since cost(𝐴𝑖) ≤ 2

𝑖𝑇 , this maximum is at most the maximum of 𝑇 · (21𝑐1 + · · · + 2𝑘𝑐𝑘)
over monomials of 𝜌 , which is at most 𝑂 (2𝑘𝑇 poly(𝑘)).

We now upper bound𝐶 , the sum of absolute coefficients of 𝜌 . Recall that 𝜌 was constructed as an average of different

polynomials with different values of the constants 𝑦𝑖 . Let 𝜌
′
be the polynomial within that set we averaged over which

has the largest sum of absolute coefficients. Then to upper bound 𝐶 it suffices to upper bound the sum of absolute

coefficients of 𝜌′. To do so, we essentially want to replace all coefficients of 𝜌′ with their absolute values, and then plug

in all ones for the variables. We note that (9/10) + 𝑦𝑖 will be at most 1 for the values of 𝑦𝑖 used in 𝜌′, which means that

if we replace the terms (9/10)𝑞𝑖 + 𝑦𝑖 with simply 𝑞𝑖 , we would only increase the sum of absolute coefficients (here we

treat 𝑞𝑖 as variables).

Let the resulting polynomial be 𝜌′′. Then 𝜌′′ is simply the result of composing the polynomial 𝑠 with the polynomials

𝑟𝑖,𝑡 . Since 𝑠 is a bounded multilinear polynomial of degree 𝑂 (𝑘2), its sum of absolute coefficients is at most 2
𝑂 (𝑘2)

,

and it is not hard to see that the sum of absolute coefficients of 𝜌′′ will be at most 2
𝑂 (𝑘2)

times 𝐷𝑂 (𝑘2)
, where 𝐷

is the maximum sum of absolute coefficients over the polynomials 𝑑ℓ𝑡 with ℓ = 𝑘 − 𝑖 + 𝑂 (log𝑘). In other words,

log𝐶 ≤ 𝑂 (𝑘2) +𝑂 (𝑘2𝐷), where 𝐷 is the sum of absolute coefficients of some such polynomial 𝑑ℓ𝑡 .

The polynomial 𝑑ℓ𝑡 is a single variate bounded polynomial of degree at most𝑂 (2ℓ log𝑘), which, using ℓ ≤ 𝑘+𝑂 (log𝑘),
is at most 2

𝑘
poly(𝑘). A bounded univariate polynomial of this degree must have sum of absolute coefficients at most

4
2
𝑘
poly(𝑘)

by [Sherstov 2013] (Lemma 4.1). Hence log𝐷 ≤ 2
𝑘
poly(𝑘), so log𝐶 ≤ 2

𝑘
poly(𝑘).

We conclude that if𝐴 = 𝜌 (𝐴1, 𝐴2, . . . , 𝐴𝑘), then log𝛾2 (𝐴) ≤ 2
𝑘 (𝑇 +1) poly(𝑘), and hence cost(𝐴) ≤ 2

𝑘 (𝑇 +1) poly(𝑘).
This is at most𝑂 (2𝑘𝑇 poly(𝑘)) since we have𝑇 ≥ 1/10. Further, each entry𝐴[𝑥,𝑦] is equal to 𝜌 (𝐴1 [𝑥,𝑦], . . . , 𝐴𝑘 [𝑥,𝑦]),
which means that 𝐴 is bounded (since 𝜌 is bounded and the matrices 𝐴𝑖 are bounded), and for (𝑥,𝑦) ∈ Dom(𝐹), we
have 𝐹 (𝑥,𝑦)𝐴[𝑥,𝑦] ≥ 1/3 by the guarantees on 𝐴𝑖 and on 𝜌 . □

Using Theorem 5.8, we can now conclude the following theorem.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 45

Theorem 6.7. Let 𝐹 : X ×Y → {+1,−1} be a (possibly partial) communication function. Then there is a distribution 𝜇

over Dom(𝐹) such that for any bounded real matrix 𝐴 (meaning |𝐴[𝑥,𝑦] | ≤ 1 for all (𝑥,𝑦) ∈ X × Y), we have

E(𝑥,𝑦)∼𝜇 [𝐹 (𝑥,𝑦)𝐴[𝑥,𝑦]] ≤
log𝛾2 (𝐴)

Ω̃(log𝛾2 (𝐹))
.

Note that for bounded matrices, log𝛾2 (𝐴) ≤ log rank(𝐴). We also have, from [Lee and Shraibman 2009],

log r̃ank(𝐹) ≤ 6 log𝛾2 (𝐹) +𝑂 (log log |X × Y|) .

This means we can write a minimax theorem for logrank as well.

Theorem 6.8. Let 𝐹 : X×Y → {+1,−1} be a (possibly partial) communication function, and suppose that log r̃ank(𝐹) ≥
𝐶 log log |X × Y|, where 𝐶 is a universal constant. Then there is a distribution 𝜇 over Dom(𝐹) such that for any bounded

real matrix 𝐴 (meaning |𝐴[𝑥,𝑦] | ≤ 1 for all (𝑥,𝑦) ∈ X × Y), we have

E(𝑥,𝑦)∼𝜇 [𝐹 (𝑥,𝑦)𝐴[𝑥,𝑦]] ≤
log rank(𝐴)

Ω̃(log r̃ank(𝐹))
.

In other words, 𝜇 is such that if 𝐴 has low rank compared to 𝐹 , then 𝐴 cannot correlate well with 𝐹 under 𝜇, and

hence 𝐴 does not approximate 𝐹 very well against 𝜇.

7 CIRCUIT COMPLEXITY

A Boolean circuit 𝐶 is a collection of gates connected to each other and to bits of its input 𝑥 by wires, with a single

output wire representing the value of𝐶 (𝑥). We define the size of a circuit to be 1 plus the number of gates in the circuit,

and the depth of a circuit is the length of the longest path between an input bit and an output wire. (All of the results

below still hold if we define the size of a circuit to be the number of gates plus the number of input bits, but they do not

hold if we consider the size to be only the number of gates because there are circuits with 0 gates that compute some

functions—such as the Majority function—with non-zero bias.)

A randomized Boolean circuit is a probability distribution over Boolean circuits, and the size of a randomized Boolean

circuit is defined to be the expected size of a Boolean circuit drawn from that distribution. In Section 7.1, we examine

the randomized circuit complexity of partial Boolean functions when it is computed by circuits of unbounded fan-in and

unlimited depth. In Section 7.2, we show that the main result also holds in the NC
1
setting of logarithmic-depth circuits

whose gates each have fan-in at most 2. Finally, in Section 7.3 we establish the strengthening of the hardcore lemma.

7.1 General circuits

In this section, let R(𝑓) denote the minimum size of a randomized Boolean circuit of unbounded fan-in and unlimited

depth that computes the partial Boolean function 𝑓 with error at most
1

3
on every input 𝑥 ∈ Dom(𝑓). Similarly, let

R
𝜇

¤𝛾 (𝑓) denote the minimum size of randomized Boolean circuits that compute 𝑓 with error at most ¤𝛾 =
1−𝛾
2

when the

input is drawn from 𝜇. The main result of this section is the following relation between these two complexity measures.

Theorem 7.1. For every partial function 𝑓 : {0, 1}𝑛 → {0, 1}, there is a distribution 𝜇 on Dom(𝑓) such that for all

𝛾 ∈ (0, 1],
R
𝜇

¤𝛾 (𝑓) = Ω̃
(
𝛾2 R(𝑓)

)
.

The proof of Theorem 7.1 is established via the study of forecasting circuits.

Manuscript submitted to ACM

46 Shalev Ben-David and Eric Blais

Definition 7.2. A forecasting circuit is a randomized Boolean circuit with one modification: instead of having a single

output wire, the forecasting circuit has 𝑘 + 1 output wires that represent the binary encoding of a value in the range

{0, 1

2
𝑘 ,

2

2
𝑘 , . . . ,

2
𝑘−1
2
𝑘 , 1}.

The resolution of a forecasting circuit is 𝑘 when it has 𝑘 + 1 output wires. (Or, equivalently, when it outputs values

that are multiples of 2
−𝑘

.) The score of a forecasting circuit is computed in the same way as we did for forecasting

algorithms in previous sections. The size of a forecasting circuit is, as in the the case of randomized Boolean circuits, the

expected number of gates in a circuit drawn from the distribution. Forecasting circuits can be defined for each model of

randomized Boolean circuits. In this subsection, we consider forecasting circuits with unbounded fan-in and unlimited

depth.

We begin by showing that if there is a Boolean circuit that computes a function with non-negligible advantage over

random guessing, then there is also a forecasting algorithm with non-trivial score.

Proposition 7.3. For any partial function 𝑓 : {0, 1}𝑛 → {0, 1}, any distribution 𝜇 over Dom(𝑓), and any parameter

𝛾 ∈ (0, 1], if there is a randomized Boolean circuit 𝑅 of size 𝑠 that satisfies Pr𝐶∼𝑅,𝑥∼𝜇 [𝐶 (𝑥) ≠ 𝑓 (𝑥)] ≤ ¤𝛾 , then there is a

forecasting circuit 𝑅′ with resolution 𝑘 = ⌈log 4/𝛾⌉, size at most 𝑠 + 1, and hs score

score(𝑅′, 𝜇) = E
𝐶′∼𝑅′,𝑥∼𝜇

[score(𝐶′ (𝑥), 𝑓 (𝑥))] ≥ 𝛾2/8.

Proof. For each circuit𝐶 in the support of 𝑅, define𝐶′ to be the forecasting circuit of resolution 𝑘 and size size(𝐶) +1
which outputs the value

1 + (−1)𝐶 (𝑥)𝛾 ′
2

on each input 𝑥 ∈ Dom(𝑓), where 𝛾 ′ = 2𝑚
2
𝑘 for the largest integer𝑚 such that 𝛾 ′ ≤ 𝛾 . This definition of 𝛾 ′ and the

lower bound on 𝑘 guarantee that
𝛾
2
≤ 𝛾 − 2

2
𝑘 ≤ 𝛾 ′ ≤ 𝛾 . The circuit 𝐶′ can be constructed by adding a single extra

negation gate to the output wire of 𝐶 : the output of 𝐶 and its negation can then be combined with constant value wires

to generate the two required output values of the forecasting circuit. (Namely, if the two output values (1 ± 𝛾 ′)/2 of 𝐶′

are denoted by 𝑧 (0) and 𝑧 (1) , then the 𝑖th output bit of 𝐶′ is a hard-coded constant value 0 or 1 when 𝑧 (0) = 𝑧 (1) and

otherwise it is either 𝐶 (𝑥) or ¬𝐶 (𝑥) when 𝑧 (0) ≠ 𝑧 (1) .)
The forecasting circuit 𝑅′ is defined to be the distribution on circuits obtained by drawing 𝐶 ∼ 𝑅 and outputting the

modified circuit 𝐶′ as described above. Following the same argument as in Lemma 3.15, the score of this forecasting

circuit satisfies

score(𝑅′, 𝜇) ≥ 𝛾 ′2/2 ≥ 𝛾/8. □

We next show that the minimax theorem applies to forecasting circuits.

Lemma 7.4. Fix any 𝑘 ≥ 1 and let R𝑘 denote the set of all forecasting circuits with resolution 𝑘 . Then for any partial

function 𝑓 : {0, 1}𝑛 → {0, 1},

inf

𝑅∈R𝑘
max

𝑥∈Dom(𝑓)
size(𝑅)

score(𝑅, 𝑥)+ = max

𝜇
inf

𝑅∈R𝑘

size(𝑅)
score(𝑅, 𝜇)+

where the maximum on the right-hand side is taken over all distributions 𝜇 on Dom(𝑓).

Proof. The lemma follows from Theorem 2.18, and the argument showing that the conditions of that theorem are

satisfied follows closely the analogous argument of Theorem 4.2.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 47

We first want to show that R𝑘 can be viewed as a convex subset of a real topological space 𝑉 . We can do so

with the same construction as in Theorem 4.2, though here we can also use a slightly simpler construction: fix

𝑉 = R | Dom(𝑓) |+1, and for each forecasting circuit 𝑅 ∈ R𝑘 define 𝑣𝑅 (𝑥) = score(𝑅, 𝑥) for each 𝑥 ∈ Dom(𝑓) and
define the (|Dom(𝑓) | + 1)th coordinate of 𝑣𝑅 to be cost(𝑅, 𝑥). That the resulting set is convex follows directly from

the fact that a vector 𝑣 ′ = 𝜆𝑣𝑅1
+ (1 − 𝜆)𝑣𝑅2

for any 𝑅1, 𝑅2 ∈ R𝑘 corresponds to the vector of the forecasting circuit

𝑅′ = 𝜆𝑅1 + (1 − 𝜆)𝑅2.
The linearity of cost and score measures in both 𝑅 and 𝜇 follows from their definition.

Since every function 𝑓 can be computed exactly by a finite-sized circuit, so there is a finite-cost and non-zero

score forecasting circuit for any distribution 𝜇 on Dom(𝑓). The cost of circuits does not depend on the input. And the

definition of cost immediately implies that the mixture of a zero-cost and a nonzero-cost randomized circuit gives a

nonzero-cost randomized circuit. Therefore, the notions of cost and score are well-behaved according to Definition 2.17

and satisfy the corresponding condition of Theorem 2.18. □

Finally, we show that the score of forecasting circuits can be amplified efficiently.

Lemma 7.5. For every partial function 𝑓 : {0, 1}𝑛 → {0, 1}, when 𝑘 = 𝑂
(
⌈log R(𝑓)⌉𝑐

)
for some constant 𝑐 ≥ 1, then

inf

𝑅∈R𝑘
max

𝑥∈Dom(𝑓)
size(𝑅)

score(𝑅, 𝑥)+ = Ω̃
(
R(𝑓)

)
.

The proof of the lemma uses three propositions. The first collects known bounds on the circuit complexity of basic

arithmetic operations.

Proposition 7.6 ([Alt 1988; Beame et al. 1986]). For any two numbers 𝑎, 𝑏 represented to accuracy 2
−𝑘 in binary, the

values

𝑎𝑏,
𝑎

1 − 𝑎 , ln(𝑎), 𝑒𝑎 , and
1

1 + 𝑎
can all be computed to additive accuracy 2

−𝑘 by circuits of size polynomial in 𝑘 and depth 𝑂 (log𝑘).

We also need to bound the circuit complexity of iterated multiplication up to fixed accuracy.

Proposition 7.7. When 𝑎1, . . . , 𝑎𝑚 and 𝑏1, . . . , 𝑏𝑚 are 𝑘-bit integers, then there is a circuit of size 𝑂 (𝑚 log𝑚 +𝑚𝑘 + 𝑘𝑐)
for some constant 𝑐 ≥ 1 and depth 𝑂 (log𝑘 + log𝑚) that computes the ratio

𝑎1 · · ·𝑎𝑚
𝑏1 · · ·𝑏𝑚

up to multiplicative accuracy 1 ± 2−𝑘 .

Proof. This result can be obtained by computing ln
𝑎1 · · ·𝑎𝑚
𝑏1 · · ·𝑏𝑚 =

∑𝑚
𝑖=1 ln𝑎𝑖 − ln𝑏𝑖 to additive accuracy 2

−𝑘
. The

computation of each of the values ln𝑎𝑖 and ln𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑚 up to additive accuracy
2
−𝑘
2𝑚 can be done with a circuit of

size polynomial in 𝑛 := 𝑘 + log𝑚 + 1 and depth𝑂 (log𝑛). The sum of the 2𝑚 terms can be done with a circuit for iterated

addition of size𝑂 (𝑚𝑛) = 𝑂 (𝑚 log𝑚 +𝑚𝑘) and depth𝑂 (log𝑚 + log𝑛) = 𝑂 (log𝑚 + log𝑘) to compute the natural log of

the ratio up to additive error 2
−𝑘

[Ofman 1962]. (See also [Pippenger 1987; Wegener 1987] and the references therein.)

Finally, a circuit of size polynomial in 𝑘 and depth logarithmic in 𝑘 can be used to compute the exponential of the final

ratio. □

The third and final proposition that we need to complete the proof of the lemma shows that when there is a forecasting

circuit with score 𝛾 , there is also a Boolean circuit with error at most ¤𝛾 .
Manuscript submitted to ACM

48 Shalev Ben-David and Eric Blais

Proposition 7.8. For any partial function 𝑓 : {0, 1}𝑛 → {0, 1}, if there is a size 𝑠 ≥ 1 and a parameter 𝛾 for which there is

a forecasting circuit 𝑅 with 𝑘 output wires, size 𝑠 , depth 𝑑 and score(𝑅, 𝑥) ≥ 𝛾 for each 𝑥 ∈ Dom(𝑓), then there is also a

randomized Boolean circuit 𝑅′ of size 𝑠 +𝑂 (𝑘) and depth 𝑑 +𝑂 (1) that satisfies Pr𝐶∼R [𝐶 (𝑥) = 𝑓 (𝑥)] ≥ 1+𝛾
2

for every

𝑥 ∈ Dom(𝑓).

Proof. Given a forecasting circuit 𝐶 that outputs the value 𝑝 on input 𝑥 , we want to design a randomized Boolean

circuit 𝑅𝐶 that outputs the value 1 with probability 𝑝 and 0 with probability 1 − 𝑝 on input 𝑥 .

We can do this by adding 𝑘 random inputs 𝑟1, . . . , 𝑟𝑘 that are used to generate a uniformly random value 𝑟 ∈
{ 1

2
𝑘 ,

2

2
𝑘 , . . . , 1}. Then if the value 𝑝 in the output of the circuit is 0, we output zero; otherwise we use a comparator

circuit to return 1 if and only if 𝑟 ≤ 𝑝 . This value has the desired bias 𝑝 , and using standard constructions (see,

e.g. [Vollmer 1999; Wegener 1987]) we can implement the comparator circuit with 𝑂 (𝑘) gates in a circuit of constant

depth (in the unbounded fan-in model; or 𝑂 (log𝑛) depth in the bounded fan-in model).

The final randomized Boolean circuit 𝑅′ is defined by drawing a forecasting circuit 𝐶 from 𝑅 and outputting 𝑅𝐶 . The

bound on the error of 𝑅′ is then obtained as in the argument of Lemma 3.15. □

We can combine the last three propositions to complete the proof of Lemma 7.5.

Proof of Lemma 7.5. Let 𝑅 be a forecasting circuit which comes arbitrarily close to the infimum on the left-hand

side. Consider the forecasting circuit 𝑅′ obtained by drawing𝑚 forecasting circuits𝐶1, . . . ,𝐶𝑚 independently at random

from 𝑅 and combining their output values using the formula

𝐶′ (𝑥) =
(
1 +

∏
𝑖≤𝑚

1 −𝐶𝑖 (𝑥)
𝐶𝑖 (𝑥)

)−1
.

Fixing𝑚 = max𝑥 1/score(𝑅, 𝑥)+, we obtain a randomized circuit 𝑅′ with score(𝑅′, 𝑥)+ = Ω(1) for each 𝑥 ∈ 𝑆 and size

size(𝑅′) = size(𝑅) ·𝑚 +𝑂 (𝑚 log𝑚 +𝑚𝑘 + 𝑘𝑐)

for some universal constant 𝑐 ≥ 1. Since𝑚 = 𝑂

(
R(𝑓)
size(𝑅)

)
, the size of 𝑅′ is bounded by size(𝑅′) = 𝑂

(
size(𝑅)

)
. Finally, by

Proposition 7.8 and the standard success amplification technique, we can obtain a randomized circuit 𝑅′′ that computes

𝑓 with error at most
1

3
and has size size(𝑅′′) = size(𝑅′) +𝑂 (𝑘) = 𝑂

(
size(𝑅)

)
. □

The above results enable us to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. When 𝑓 is a constant function, the theorem is trivially true, so in the rest of the proof

let 𝑓 be non-constant. Fix the resolution 𝑘 = ⌈log 1/R(𝑓)⌉. Set 𝜇 to be a distribution on Dom(𝑓) that maximizes the

right-hand side of Lemma 7.4 for this choice of 𝑘 .

For any 𝛾 < 4/R(𝑓), the conclusion of Theorem 7.1 trivially holds since the definition of circuit size guarantees that

R
𝜇

¤𝛾 (𝑓) ≥ 1 ≥ 1/R(𝑓) = Ω
(
𝛾2 R(𝑓)

)
.

For any 𝛾 ≥ 4/R(𝑓), let 𝑅 be a circuit of size 𝑠 = R
𝜇

¤𝛾 (𝑓) that has error at most ¤𝛾 on 𝜇. By Proposition 7.3, there

exists a forecasting circuit 𝑅′ with resolution 𝑘 = ⌈log 4/R(𝑓)⌉, size at most 𝑠 + 1 ≤ 2𝑠 , and score at least 𝛾2/8 on 𝜇. By
Lemma 7.4, this means that

2 R
𝜇

¤𝛾 (𝑓)
𝛾2/8

≥ inf

𝑅∈R𝑘
max

𝑥∈Dom(𝑓)
size(𝑅)

score(𝑅, 𝑥)+

and Lemma 7.5 guarantees that the right-hand side of this inequality is bounded below by Ω̃
(
R(𝑓)

)
. □

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 49

7.2 Circuits with bounded depth

Define RNC1(𝑓) to be the minimum size of a randomized Boolean circuit of fan-in two and logarithmic depth that

computes the partial Boolean function 𝑓 with error at most
1

3
on every input 𝑥 ∈ Dom(𝑓). Similarly, let RNC1

𝜇

¤𝛾 (𝑓)
denote the minimum size of a randomized Boolean circuit with the same fan-in and depth restrictions that computes 𝑓

with error at most ¤𝛾 =
1−𝛾
2

when the input is drawn from 𝜇.

The constructions of Proposition 7.3, Lemma 7.5, and Proposition 7.8 can all be achieved with circuits of fan-in 2 that

add only logarithmic depth overhead to the base circuits, so the analogue of Theorem 7.1 also holds for the class of

circuits of fan-in two and logarithmic depth.

Theorem 7.9. Fix 𝑛 ∈ N. For every partial function 𝑓 : {0, 1}𝑛 → {0, 1}, there is a distribution 𝜇 on Dom(𝑓) such that

for all 𝛾 ∈ (0, 1],
RNC1

𝜇

¤𝛾 (𝑓) = Ω̃
(
𝛾2 RNC1(𝑓)

)
.

In fact, we can say even more about the efficiency of the transformations in each constructions: all three of them

can be accomplished with constant-depth and polynomial-size overhead when the circuits have threshold gates. For

Proposition 7.3, this is because only a single additional gate is required. For Lemma 7.5, this is because the functions in

Proposition 7.6 can all be computed to the required accuracy with threshold circuits of polynomial size and constant

depth [Reif and Tate 1992] and the iterated addition problem can be solved by a threshold circuit of constant depth

and size 𝑂 (𝑚 log𝑚(𝑘 + log𝑚)) [Chandra et al. 1984]. And for Proposition 7.8, this is because comparison can also be

completed with polynomial-size and constant-depth circuits. Therefore, letting RTC0𝜖 (𝑓) denote the minimum size of

a randomized constant-depth threshold circuit with unbounded fan-in that computes 𝑓 with error probability at most
1

3

on every input and RNC1
𝜇

¤𝛾 (𝑓) denote the minimum size of the same type of circuit that computes 𝑓 (𝑥) correctly with

probability
1+𝛾
2

when 𝑥 is drawn from 𝜇, we obtain the following result.

Theorem 7.10. Fix 𝑛 ∈ N. For every partial function 𝑓 : {0, 1}𝑛 → {0, 1}, there is a distribution 𝜇 on Dom(𝑓) such that

for all 𝛾 ∈ (0, 1],
RTC0

𝜇

¤𝛾 (𝑓) = Ω̃
(
𝛾2 RTC0(𝑓)

)
.

7.3 Hardcore lemma

In order to complete the proof of the hardcore lemma as stated in Theorem 1.9, we need the following variant of the

ratio minimax theorem that applies to the setting where we consider a compact convex set of distributions, not just the

set of all distributions over the function’s domain.

Theorem 7.11. Let 𝑉 be a real topological vector space, and let R ⊆ 𝑉 be convex. Let 𝑆 be a nonempty finite set, and let

Δ be a compact and convex set of probability distributions over 𝑆 , viewed as a subset of R |𝑆 | . Let cost : R × Δ→ [0,∞] be
semicontinuous and saddle, and let score : R × Δ → [−∞,∞) be such that its negation, − score, is semicontinuous and

saddle. Suppose cost and score are well-behaved. Then using the convention 𝑟/0 = ∞ for all 𝑟 ∈ [0,∞], we have

inf

𝑅∈R
max

𝜇∈Δ
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ = max

𝜇∈Δ
inf

𝑅∈R
cost(𝑅, 𝜇)

score(𝑅, 𝜇)+ .

Proof. The proof is identical to the one for (the first part of) Theorem 2.18, since that argument only uses the fact

that the set of all distributions over 𝑆 is convex and compact. □

Manuscript submitted to ACM

50 Shalev Ben-David and Eric Blais

Recall that a distribution 𝜇 over {0, 1}𝑛 has density 𝛿 if and only if it satisfies max𝑥 𝜇 (𝑥) ≤ 1/𝛿2𝑛 . From Theorem 7.11,

we obtain the following variant of Lemma 7.4 for distributions with density 𝛿 .

Lemma 7.12. Fix any 𝑘 ≥ 1 and let R𝑘 denote the set of all forecasting circuits with resolution 𝑘 . Then for every 𝛿 > 0

and function 𝑓 : {0, 1}𝑛 → {0, 1}, if we let Δ𝛿 denote the set of distributions over {0, 1}𝑛 with density 𝛿 , we have

inf

𝑅∈R𝑘
max

𝜇∈Δ𝛿

size(𝑅)
score(𝑅, 𝜇)+ = max

𝜇∈Δ𝛿

inf

𝑅∈R𝑘

size(𝑅)
score(𝑅, 𝜇)+ .

We are now ready to complete the proof of Theorem 1.9, restated below.

Theorem 1.9. There exists a universal constant 𝑐 > 0 such that for any 𝛿 > 0 and function 𝑓 : {0, 1}𝑛 → {0, 1}, if every
circuit𝐶 of size at most 𝑠 satisfies Pr[𝐶 (𝑥) = 𝑓 (𝑥)] ≤ 1− 𝛿 when the probability is taken over the uniform distribution of 𝑥

in {0, 1}𝑛 , then there is a distribution 𝜇 with density 𝛿 such that for every 𝜖 > 0, any circuit𝐶′ of size at most 𝑐𝑠𝜖2/log(1/𝛿)
has success probability bounded by

Pr[𝐶′ (𝑥) = 𝑓 (𝑥)] ≤ 1 + 𝜖
2

.

Proof. Fix 𝑠′ = 𝑐𝑠/log 1

𝛿
for some constant 𝑐 to be fixed later and fix 𝑘 = ⌈log 4√

𝑠′
⌉. By Lemma 7.12, there are two

cases to consider.

Case 1: max𝜇∈Δ𝛿
inf𝑅∈R𝑘

size(𝑅)
score(𝑅,𝜇)+ ≥ 𝑠

′
.

Fix a distribution 𝜇 with density 𝛿 for which the maximum is attained. Then every forecasting circuit 𝑅 with resolution

𝑘 has score

score(𝑅, 𝜇) ≤ size(𝑅)
𝑠′

.

When 𝜖 < 1/
√
𝑠′, there can be no randomized circuit of size 𝜖2𝑠′/64 < 1 and so the distribution 𝜇 trivially satisfies the

condition of the theorem. And for any 𝜖 ≥ 1/
√
𝑠′, by Proposition 7.3, every randomized circuit 𝑅′ with size(𝑅′) < 𝜖2𝑠′/64

has success probability

Pr

𝐶∼𝑅,𝑥∼𝜇
[𝐶 (𝑥) = 𝑓 (𝑥)] ≤

1 + 8
√︁
size(𝑅′)/𝑠′
2

≤ 1 + 𝜖
2

,

so the distribution 𝜇 satisfies the condition of the theorem for all values of 𝜖 in Case 1.

Case 2: inf𝑅∈R𝑘 max𝜇∈Δ𝛿

size(𝑅)
score(𝑅,𝜇)+ < 𝑠′.

Fix a forecasting circuit 𝑅 that satisfies

size(𝑅)
score(𝑅, 𝜇)+ < 𝑠′

for each distribution 𝜇 over {0, 1}𝑛 with density 𝛿 . Set 𝛼 = size(𝑅)/𝑠′ and define 𝑇 ⊆ {0, 1}𝑛 to be the set of inputs 𝑥

for which score(𝑅, 𝑥) < 𝛼
2
. Then

|𝑇 | ≤ 𝛿 (1 − 𝛼
2
)2𝑛

since otherwise the score of 𝑅 on the distribution 𝜇′ that is uniform over any set𝑇 ′ ⊇ 𝑇 of size |𝑇 ′ | = 𝛿2𝑛 (and thus has

density 𝛿) would be bounded above by score(𝑅, 𝜇′) < (1 − 𝛼
2
) · 𝛼

2
+ 𝛼

2
< 𝛼 , contradicting the definition of 𝑅.

By Lemma 7.5, there is a randomized circuit 𝑅′ of size𝑂 (𝑠′) that errs with probability at most
1

3
on each 𝑥 ∈ {0, 1}𝑛 \𝑇 .

By standard success amplification it also means that there is a circuit 𝐶′′ of size 𝑠′′ = 𝑂 (𝑠′ log 1

𝛿
) with error less than 𝛿 .

Choosing the value 𝑐 in the definition of 𝑠′ appropriately, we then get that this circuit has size at most 𝑠 , contradicting

the premise of the theorem and therefore showing that Case 2 cannot occur. □

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 51

ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding

reference numbers RGPIN-2015-03907, RGPIN-2022-03329, RGPIN-2019-04804, and DGECR-2019-00027, and of the

Institute for Quantum Computing (IQC) at the University of Waterloo.

We thank Justin Thaler for discussions and references related to approximate polynomial degree and its amplification.

We also thank Andrew Drucker, Mika Göös, and Li-Yang Tan for correspondence about their ongoing work [Bassilakis

et al. 2020]. We thank the anonymous reviewers for many helpful comments.

A PROOFS RELATED TO THE MINIMAX THEOREM

Lemma 2.8 (An upper semicontinuous function on a compact set attains its max). Let 𝑋 be a nonempty compact

topological space, and let 𝜙 : 𝑋 → R be a function. Then if 𝜙 is upper semicontinuous, it attains its maximum, meaning

there is some 𝑥 ∈ 𝑋 such that for all 𝑥 ′ ∈ 𝑋 , 𝜙 (𝑥 ′) ≤ 𝜙 (𝑥). Similarly, if 𝜙 is lower semicontinuous, it attains its minimum.

Proof. The lower semicontinuous case follows from the upper semicontinuous case simply by negating 𝜙 , so we

focus on the upper semicontinuous case. Let 𝑧 = sup𝑥∈𝑋 𝜙 (𝑥), where 𝑧 ∈ R. Let 𝑥0 be any element of 𝑋 . If 𝜙 (𝑥0) = 𝑧,
we are done, so assume 𝜙 (𝑥0) < 𝑧; in particular, 𝑧 > −∞. We define a sequence 𝑥1, 𝑥2, . . . as follows. If 𝑧 < ∞, define
𝑥𝑖 to be any element of 𝑋 such that 𝜙 (𝑥𝑖) > 𝑧 − 1/𝑖 . If 𝑧 = ∞, define 𝑥𝑖 to be any element of 𝑋 such that 𝜙 (𝑥𝑖) > 𝑖 .

Moreover, for each 𝑖 ∈ N, let𝑈𝑖 = { 𝑥 ∈ 𝑋 : 𝜙 (𝑥) < 𝜙 (𝑥𝑖)}. Note that any 𝑥 ∈ 𝑋 for which 𝜙 (𝑥) < 𝑧 must be in𝑈𝑖 for

some 𝑖 ∈ N; hence if the supremum 𝑧 is not attained, the sets𝑈𝑖 form a cover for 𝑋 (meaning

⋃
𝑖∈N𝑈𝑖 = 𝑋).

The key claim is that the 𝑈𝑖 sets are all open if 𝜙 is upper semicontinuous. This is is because if 𝑥 ∈ 𝑈𝑖 , then
𝜙 (𝑥) < 𝜙 (𝑥𝑖), and by the definition of upper semicontinuity, there is a neighborhood 𝑈 of 𝑥 on which 𝜙 (·) is still
less than 𝜙 (𝑥𝑖); thus there is a neighborhood𝑈 of 𝑥 contained in𝑈𝑖 , so that𝑈𝑖 is open. In this case, if the supremum

𝑧 is not attained, the collection {𝑈𝑖 }𝑖∈N is an open cover of 𝑋 , and by the definition of compactness, it has a finite

subcover. Let 𝑖 be the largest index of some 𝑈𝑖 in this subcover. Then it follows that 𝜙 (𝑥) < 𝜙 (𝑥𝑖) for all 𝑥 ∈ 𝑋 , which
is a contradiction. Hence the supremum 𝑧 must be attained as a maximum, as desired. □

Lemma 2.9 (A pointwise infimum of upper semicontinuous functions is upper semicontinuous). Let 𝑋 be a topological

space, let 𝐼 be a set, and let {𝜙𝑖 }𝑖∈𝐼 be a collection of functions 𝜙𝑖 : 𝑋 → R. Then if each 𝜙𝑖 is upper semicontinuous, the

function 𝜙 (𝑥) = inf𝑖∈𝐼 𝜙𝑖 (𝑥) is also upper semicontinuous. Similarly, if each 𝜙𝑖 is lower semicontinuous, the pointwise

supremum is lower semicontinuous.

Proof. Note that the case where 𝜙𝑖 are all lower semicontinuous follows from the case where they are all upper

semicontinuous simply by negating the functions, since negation flips upper and lower semicontinuity and flips

infimums and supremums. We focus on the case where 𝜙𝑖 are all upper semicontinuous.

Fix 𝑥 ∈ 𝑋 . If 𝜙 (𝑥) = ∞, 𝜙 is upper semicontinuous at 𝑥 by definition. If 𝜙 (𝑥) < ∞, fix any 𝑦 > 𝜙 (𝑥). By the

definition of 𝜙 (𝑥) as an infimum, there is some 𝑖 ∈ 𝐼 such that 𝜙𝑖 (𝑥) < 𝑦. By the upper semicontinuity of 𝜙𝑖 (·),
there is a neighborhood 𝑈 of 𝑥 such that for all 𝑥 ′ ∈ 𝑈 , we have 𝜙𝑖 (𝑥 ′) < 𝑦. Then for all 𝑥 ′ ∈ 𝑈 , we clearly have

𝜙 (𝑥 ′) = inf𝑖∈𝐼 𝜙𝑖 (𝑥 ′) < 𝑦. Thus 𝜙 is upper semicontinuous at 𝑥 , as desired. □

Lemma A.1. Let 𝑉 be a real vector space, and let 𝑋 ⊆ 𝑉 . The convex hull of 𝑋 is the set of all 𝑣 ∈ 𝑉 which can be written

as a convex combination of vectors in 𝑥 ; that is, 𝑣 for which there exist 𝑘 ∈ N, 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ 𝑋 , and 𝜆1, 𝜆2, . . . , 𝜆𝑘 ∈ [0, 1]
with 𝜆1 + 𝜆2 + · · · + 𝜆𝑘 = 1 such that 𝑣 = 𝜆1𝑥1 + 𝜆2𝑥2 + · · · + 𝜆𝑘𝑥𝑘 .

Manuscript submitted to ACM

52 Shalev Ben-David and Eric Blais

Proof. This is a well-known characterization of the convex hull, which can be shown as follows: let 𝑌 be the set of

all finite convex combinations of points in 𝑋 ; that is, 𝑌 contains all points in 𝑉 of the form 𝜆1𝑥1 + 𝜆2𝑥2 + · · · + 𝜆𝑘𝑥𝑘 ,
where 𝑘 ∈ N, 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ 𝑋 , and 𝜆1, 𝜆2, . . . , 𝜆𝑘 ∈ [0, 1] with 𝜆1 + 𝜆2 + · · · + 𝜆𝑘 = 1. Then 𝑌 is clearly convex, since

for all 𝑦1, 𝑦2 ∈ 𝑌 and 𝜆 ∈ (0, 1), we know that 𝑦1 and 𝑦2 are finite convex combinations of points in 𝑥 , meaning that

𝜆𝑦1 + (1 − 𝜆)𝑦2 is also a finite convex combination of points in 𝑋 . Furthermore, if 𝑍 is any other convex set containing

𝑋 , then it’s easy to show by induction that 𝑍 contains all convex combinations of 𝑘 points in 𝑋 for each 𝑘 ∈ N; hence 𝑍
must be a superset of 𝑌 . It follows that Conv(𝑋), the intersection of all convex sets containing 𝑋 , must exactly equal

𝑌 . □

Lemma 2.10 (Quasiconvex functions on convex hulls). Let𝑉 be a real vector space, let 𝑋 ⊆ 𝑉 , and let 𝜙 : Conv(𝑋) → R
be a function. If 𝜙 is quasiconvex, then

sup

𝑥∈Conv(𝑋)
𝜙 (𝑥) = sup

𝑥∈𝑋
𝜙 (𝑥) .

Similarly, if 𝜙 is quasiconcave, then

inf

𝑥∈Conv(𝑋)
𝜙 (𝑥) = inf

𝑥∈𝑋
𝜙 (𝑥) .

Proof. The quasiconcave case follows from the quasiconvex case by negating 𝜙 ; hence it suffices to prove the

quasiconvex case. It is clear that sup𝑥∈Conv(𝑋) 𝜙 (𝑥) is at least sup𝑥∈𝑋 𝜙 (𝑥), so we only need to show the latter is at

least the former. To this end, let 𝑦∗ B sup𝑥∈Conv(𝑋) 𝜙 (𝑥), and let 𝑥 ∈ Conv(𝑋) be such that 𝜙 (𝑥) is arbitrarily close to

𝑦∗. We must show that sup𝑥∈𝑋 𝜙 (𝑥) ≥ 𝜙 (𝑥), or equivalently, that there is some 𝑥 ∈ 𝑋 with 𝜙 (𝑥) ≥ 𝜙 (𝑥).
Using Lemma A.1, we can now write 𝑥 ∈ Conv(𝑋) as 𝑥 = 𝜆1𝑥1 + 𝜆2𝑥2 + · · · + 𝜆𝑘𝑥𝑘 , with 𝑘 ∈ N, 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ 𝑋 ,

and 𝜆1, 𝜆2, . . . , 𝜆𝑘 ∈ [0, 1] with 𝜆1 + 𝜆2 + · · · + 𝜆𝑘 = 1. Furthermore, assume that 𝜆𝑖 > 0 for each 𝑖 ∈ [𝑘] (we can remove

𝜆𝑖𝑥𝑖 = 0 from the linear combination otherwise). Now, note that by quasiconvexity, we have 𝜙 (𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤
max{𝜙 (𝑥1), 𝜙 (𝑥2)}. It is not hard to show by induction that 𝜙 (𝜆1𝑥1 +𝜆2𝑥2 + · · · +𝜆𝑘𝑥𝑘) ≤ max{𝜙 (𝑥1), 𝜙 (𝑥2), . . . , 𝜙 (𝑥𝑘)}.
Hence there is some 𝑥 ∈ 𝑋 such that 𝜙 (𝑥) ≥ 𝜙 (𝑥), as desired. □

Lemma 2.15. Let 𝑉 be a real topological vector space, and let 𝑋 ⊆ 𝑉 be convex. For a function𝜓 : 𝑋 → R, let𝜓+ denote
the function𝜓+ (𝑥) = max{𝜓 (𝑥), 0}. Then this operation on𝜓 preserves convexity, quasiconvexity, quasiconcavity, upper

semicontinuity, and lower semicontinuity, but not concavity.

We actually prove a stronger statement, where the maximum is taken with an arbitrary constant.

Lemma A.2. Let 𝑉 be a real topological vector space, and let 𝑋 ⊆ 𝑉 be convex. Let𝜓 : 𝑋 → R be a function, let 𝑐 ∈ R be

a constant, and let𝜓 ′ : 𝑋 → R be the function𝜓 ′ (𝑥) = max{𝜓 (𝑥), 𝑐}. Then if𝜓 is convex,𝜓 ′ is convex; if𝜓 is quasiconvex,

𝜓 ′ is quasiconvex; if𝜓 is quasiconcave,𝜓 ′ is quasiconcave; if𝜓 is upper semicontinuous,𝜓 ′ is upper semicontinuous; and if

𝜓 is lower semicontinuous,𝜓 ′ is lower semicontinuous.

Proof. Let 𝑥,𝑦 ∈ 𝑋 , and let 𝜆 ∈ (0, 1). Then

𝜓 ′ (𝜆𝑥 + (1 − 𝜆)𝑦) = max{𝜓 (𝜆𝑥 + (1 − 𝜆)𝑦), 𝑐}.

If this maximum equals 𝑐 , it is certainly at most 𝜆max{𝜓 (𝑥), 𝑐} + (1−𝜆)max{𝜓 (𝑦), 𝑐}, since these two latter maximums

are each at least 𝑐 . Hence the inequalities for convexity and quasiconvexity always hold when the original maximum

equals 𝑐 . Alternatively, if max{𝜓 (𝜆𝑥 + (1 − 𝜆)𝑦), 𝑐} = 𝜓 (𝜆𝑥 + (1 − 𝜆)𝑦), then using 𝜓 (𝑥) ≤ 𝜓 ′ (𝑥) and 𝜓 (𝑦) ≤ 𝜓 ′ (𝑦),
we see that convexity of𝜓 gives the inequality for convexity of𝜓 ′, and quasiconvexity of𝜓 gives the inequality for

quasiconvexity of𝜓 ′.
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 53

Next, suppose 𝜓 is quasiconcave. Without loss of generality, say that 𝜓 (𝑥) ≤ 𝜓 (𝑦). Then 𝜓 ′ (𝜆𝑥 + (1 − 𝜆)𝑦) =
max{𝜓 (𝜆𝑥 + (1 − 𝜆)𝑦), 𝑐} ≥ max{𝜓 (𝑥), 𝑐} = 𝜓 ′ (𝑥) ≥ min{𝜓 ′ (𝑥),𝜓 ′ (𝑦)}, and𝜓 ′ is quasiconcave.

Preservation of lower semicontinuity follows from Lemma 2.9, where we note that 𝑐 is continuous as a function from

𝑋 to R. It remains to show upper semicontinuity is preserved. Suppose𝜓 is upper semicontinuous, and let 𝑥 ∈ 𝑋 . If
𝜓 ′ (𝑥) = ∞, upper semicontinuity at 𝑥 vacuously holds. Otherwise, fix some 𝑦 > 𝜓 ′ (𝑥). Then 𝜓 (𝑥) ≤ 𝜓 ′ (𝑥) < 𝑦 and

upper semicontinuity gives us a neighborhood𝑈 of 𝑥 on which𝜓 (·) is less than 𝑦. And since𝜓 ′ (𝑥) ≥ 𝑐 , we have 𝑦 > 𝑐

so𝜓 ′ (·) = max{𝑐,𝜓 (·)} < 𝑦 on𝑈 . Hence𝜓 ′ is upper semicontinuous. □

Theorem A.3 (Sion’s minimax [Sion 1958]). Let𝑉1 and𝑉2 be real topological vector spaces, and let𝑋 ⊆ 𝑉1 and 𝑌 ⊆ 𝑉2
be convex. Let 𝛼 : 𝑋 × 𝑌 → R be semicontinuous and quasisaddle. If either 𝑋 or 𝑌 is compact, then

inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦) = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦) .

Theorem 2.11 (Sion’s minimax for extended reals). Let 𝑉1 and 𝑉2 be real topological vector spaces, and let 𝑋 ⊆ 𝑉1
and 𝑌 ⊆ 𝑉2 be convex. Let 𝛼 : 𝑋 × 𝑌 → R be semicontinuous and quasisaddle. If either 𝑋 or 𝑌 is compact, then

inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦) = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦) .

Proof. First, note that the inf-sup is always at least the sup-inf. This is because these expressions can be thought

of as two players, one choosing 𝑥 and trying to minimize 𝛼 (𝑥,𝑦), and the other choosing 𝑦 and trying to maximize

𝑦; in the inf-sup, the sup player chooses 𝑦 after already knowing 𝑥 , and therefore has more information and is better

positioned to maximize 𝛼 (𝑥,𝑦) than in the sup-inf, where the inf player goes second.

Now, let

𝑎 B sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦), 𝑏 B inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦) .

We have 𝑎, 𝑏 ∈ R, and 𝑎 ≤ 𝑏. We wish to show 𝑎 = 𝑏. Suppose by contradiction that 𝑎 < 𝑏. Then we can pick 𝑎′, 𝑏′ ∈ R
such that 𝑎 < 𝑎′ < 𝑏′ < 𝑏. We then define 𝛼 ′ : 𝑋 ×𝑌 → R by 𝛼 ′ (𝑥,𝑦) B 𝑎′ if 𝛼 (𝑥,𝑦) ≤ 𝑎′, 𝛼 ′ (𝑥,𝑦) B 𝑏′ if 𝛼 ′ (𝑥,𝑦) ≥ 𝑏′,
and 𝛼 ′ (𝑥,𝑦) B 𝛼 (𝑥,𝑦) if 𝛼 (𝑥,𝑦) ∈ [𝑎′, 𝑏′].

Note that 𝛼 ′ (𝑥,𝑦) = max{𝑎′,min{𝑏′, 𝛼 (𝑥,𝑦)}}. By Lemma A.2, we know that taking a maximum with a constant

preserves quasiconvexity, quasiconcavity, and upper and lower semicontinuities. By negating the function, it also

follows that taking a minimum with a constant preserves these properties. From this it follows that 𝛼 ′ is quasisaddle

and semicontinuous, since 𝛼 has these properties.

Now, since 𝑎 = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 (𝑥,𝑦) and since 𝑎′ > 𝑎, we know that for all 𝑦 ∈ 𝑌 , there exists some 𝑥 ∈ 𝑋 for which

𝛼 (𝑥,𝑦) < 𝑎′. This means that for all 𝑦 ∈ 𝑌 , there exists 𝑥 ∈ 𝑋 for which 𝛼 ′ (𝑥,𝑦) = 𝑎′. Hence sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 ′ (𝑥,𝑦) = 𝑎′.

Similarly, since 𝑏 = inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 (𝑥,𝑦) and since 𝑏′ < 𝑏, we know that for all 𝑥 ∈ 𝑋 , there exists some 𝑦 ∈ 𝑌 for which

𝛼 (𝑥,𝑦) > 𝑏′. This means that for all 𝑥 ∈ 𝑋 , there exists 𝑦 ∈ 𝑌 for which 𝛼 ′ (𝑥,𝑦) = 𝑏′. Hence inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 ′ (𝑥,𝑦) = 𝑏′. By

Theorem A.3, we then have

𝑏′ = inf

𝑥∈𝑋
sup

𝑦∈𝑌
𝛼 ′ (𝑥,𝑦) = sup

𝑦∈𝑌
inf

𝑥∈𝑋
𝛼 ′ (𝑥,𝑦) = 𝑎′ .

But this is a contradiction, since we picked 𝑎′ < 𝑏′. We conclude that we must have had 𝑎 = 𝑏 to begin with, as

desired. □

Manuscript submitted to ACM

54 Shalev Ben-David and Eric Blais

B DISTANCE MEASURES

Lemma 3.3. hs, Brier, and ls are proper scoring rules. bias is a scoring rule which is not proper.

Proof. It is clear that all of the functions from Definition 3.2 are smooth on (0, 1) and increasing on [0, 1], where we
interpret hs(0) = ls(0) = −∞. It is also clear that all these functions evaluate to 1 at 1 and to 0 at 1/2. It remains to

show that Brier, ls, and hs are proper. To do so, we need to show that 𝑝𝑠 (𝑞) + (1 − 𝑝)𝑠 (1 − 𝑞) is uniquely optimized at

𝑞 = 𝑝 when 𝑠 is one of these functions and 𝑝 ∈ (0, 1). Fix such 𝑝 ∈ (0, 1), and observe that the critical points of the

expression we wish to maximize are the points 𝑞 such that 𝑝𝑠′ (𝑞) = (1 − 𝑝)𝑠′ (1 − 𝑞).
For ls(𝑞) = 1 − log(1/𝑞) = 1 + (log 𝑒) ln𝑞, the critical points 𝑞 satisfy (log 𝑒)𝑝/𝑞 = (log 𝑒) (1 − 𝑝)/(1 − 𝑞), or

𝑝/(1 − 𝑝) = 𝑞/(1 − 𝑞). Noting that the function 𝑥/(1 − 𝑥) is increasing on (0, 1), and hence injective on (0, 1),
we conclude that the only critical point is 𝑞 = 𝑝 . Moreover, at the boundaries 𝑞 = 0 and 𝑞 = 1, we clearly have

𝑝 ls(𝑞) + (1− 𝑝) ls(1−𝑞) = −∞, whereas in the interior the expression is finite. Hence the unique maximum must occur

at 𝑞 = 𝑝 .

For hs(𝑞) = 1 −
√︁
(1 − 𝑞)/𝑞 = 1 −

√︁
1/𝑞 − 1, we have hs

′ (𝑞) = 1/2
√︁
𝑞3 (1 − 𝑞), so the critical points 𝑞 satisfy

𝑝/2
√︁
𝑞3 (1 − 𝑞) = (1 − 𝑝)/2

√︁
(1 − 𝑞)3𝑞, or 𝑝/𝑞 = (1 − 𝑝)/(1 − 𝑞), which once again only occurs at 𝑞 = 𝑝 . At the

boundaries, we once again have 𝑝 hs(𝑞) + (1 − 𝑝) hs(1 − 𝑞) = −∞ for 𝑞 = 0 or 𝑞 = 1, so the unique maximum occurs at

𝑞 = 𝑝 .

Finally, for Brier(𝑞) = 1 − 4(1 − 𝑞)2 = −4𝑞2 + 8𝑞 − 3, we have Brier′ (𝑞) = 8(1 − 𝑞), so the critical points 𝑞 satisfy

8𝑝 (1 − 𝑞) = 8(1 − 𝑝)𝑞, which again implies 𝑞 = 𝑝 . This time, the boundary points are finite, but we can use the second

order condition: the second derivative of 𝑝 Brier(𝑞) + (1 − 𝑝) Brier(1 − 𝑞) is 𝑝 Brier′′ (𝑞) + (1 − 𝑝) Brier′′ (1 − 𝑞). Noting
that Brier

′′ (𝑞) = −8, this is −8𝑝 − 8(1− 𝑝) = −8 < 0. Hence the critical point is a maximum, and since it is unique (with

the boundaries 0 and 1 not being critical even if we extend the domain of the function), we conclude it is the unique

maximum. □

Lemma B.1. For any 𝑥 ∈ [0, 1], we have

𝑥2

2

≤ 1 −
√︁
1 − 𝑥2 ≤ 1 − 𝐻

(
1 + 𝑥
2

)
≤ 𝑥2 ≤ 𝑥 .

Additionally, 𝑥2 and 1 −
√
1 − 𝑥 are convex functions on [0, 1].

Proof. The inequality 𝑥2 ≤ 𝑥 is clearly true for 𝑥 ∈ [0, 1]. Set 𝑓 (𝑥) = 1 −
√
1 − 𝑥2 and 𝑔(𝑥) = 1 −𝐻 (1+𝑥

2
). We want

to show that 𝑥2/2 ≤ 𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ 𝑥2 for all 𝑥 ∈ [0, 1]. We prove each of these inequalities in order.

The function 𝑓 satisfies 𝑓 (0) = 0 = (0)2/2 and has derivative 𝑓 ′ (𝑥) = 𝑥/
√
1 − 𝑥2 which is greater than 𝑥 = (𝑥2/2)′

when 0 < 𝑥 < 1, so 𝑓 grows faster than 𝑥2/2 over that interval. Therefore, 𝑥2/2 ≤ 𝑓 (𝑥) for all 𝑥 ∈ [0, 1].
The functions 𝑓 and 𝑔 satisfy 𝑓 (0) = 𝑔(0) = 0 and 𝑓 ′ (0) = 𝑔′ (0) = 0 and their second derivatives are 𝑓 ′′ (𝑥) =

(1 − 𝑥2)−3/2 and 𝑔′′ (𝑥) =
(
ln 2 · (1 − 𝑥2)

)−1
. So 𝑓 ′′ (𝑥) > 𝑔′′ (𝑥) if and only if

√
1 − 𝑥2 < ln 2, which holds if and only

if |𝑥 | > 1 − ln2 2 ≈ 0.72. Therefore, 𝑓 and 𝑔 have only one intersection point in R>0 and 𝑓 (𝑥) < 𝑔(𝑥) for all 𝑥 between

0 and that intersection point. Since 𝑓 (1) = 1 = 𝑔(1), this means that 𝑓 (𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [0, 1].
The function 𝑥2 also has value and first derivative equal to 0 at 𝑥 = 0. And 𝑔′′ (𝑥) > (𝑥2)′′ if and only if

(
ln 2 · (1 −

𝑥2)
)−1

> 2, which holds if and only if |𝑥 | >
√︁
1 − 1/ln 4 ≈ 0.53. So 𝑔 and 𝑥2 have only one intersection point in R>0

and 𝑔(𝑥) < 𝑥2 for all points 𝑥 between 0 and this intersection point. Since 𝑔(1) = 1 = (1)2, we then have 𝑔(𝑥) ≤ 𝑥2 for
all 𝑥 ∈ [0, 1].
Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 55

Finally, the convexity of 𝑥2 and 1 −
√
1 − 𝑥 on [0, 1] follows immediately from the fact that their second derivatives

are both positive on (0, 1). □

Lemma 3.6 (Relations between distance measures). When applied to fixed 𝜈0, 𝜈1, and𝑤 , the distance measures satisfy

S
2

2

≤ 1 −
√︁
1 − S2 ≤ h

2 ≤ JS ≤ S
2

as well as

Δ2 ≤ S
2 ≤ Δ.

We also have JS ≤ h
2/ln 2 and S2 ≤ (ln 4) JS.

Proof. We use Lemma B.1. The inequality
𝑆2

2
≤ 1 −

√
1 − 𝑆2 and the chain h

2 ≤ JS ≤ S
2 ≤ Δ follow from the

inequalities there, while the inequalities Δ2 ≤ S
2
and 1 −

√
1 − S2 ≤ h

2
follow from Jensen’s inequality combined with

the convexity of 𝑥2 and 1 −
√
1 − 𝑥 .

Finally, to show inequality JS ≤ h
2/ln 2 we only need to compute the limit of 𝛼 (𝑥)/(1 −

√
1 − 𝑥2) as 𝑥 → 0, since

this ratio is decreasing with 𝑥 (where 𝛼 (𝑥) is defined as in the proof of Lemma B.1). To do that it suffices to use

𝛼 (𝑥) = 𝑥2 +𝑂 (𝑥4) and 1−
√
1 − 𝑥2 = 𝑥2/2+𝑂 (𝑥4), so the limit is 2. Hence the limit of (1−𝐻 ((1+𝑥)/2))/(1−

√
1 − 𝑥2)

as 𝑥 → 0 is 1/ln 2, meaning this ratio is always at most 1/ln 2. Similarly, to show the inequality S
2 ≤ (ln 4) JS, we

only need to compute the limit of 𝛼 (𝑥)/𝑥2 as 𝑥 → 0. Again using 𝛼 (𝑥) = 𝑥2 + 𝑂 (𝑥4), the limit is 1, so the ratio

(1 − 𝐻 ((1 + 𝑥)/2))/𝑥2 is always at least 1/ln 4. □

Lemma 3.11. If 𝑥 ∈ [0, 1] and 𝑘 ∈ [1,∞), we have
1

2

min{𝑘𝑥, 1} ≤ 1 − (1 − 𝑥)𝑘 ≤ min{𝑘𝑥, 1}.

Proof. Set 𝑓 (𝑥) B 1− (1− 𝑥)𝑘 . Clearly, when 𝑥 ∈ [0, 1], we have 𝑓 (𝑥) ∈ [0, 1], so 𝑓 : [0, 1] → [0, 1]. Note 𝑓 (0) = 0,

𝑓 (1) = 1, and that 𝑓 (𝑥) is increasing on [0, 1]. If 𝑘 = 1, we have 𝑓 (𝑥) = 𝑥 , and the inequalities trivially hold; therefore,

assume 𝑘 > 1. Then 𝑓 ′ (𝑥) = 𝑘 (1 − 𝑥)𝑘−1 and 𝑓 ′′ (𝑥) = −𝑘 (𝑘 − 1) (1 − 𝑥)𝑘−2, meaning that 𝑓 (𝑥) is concave on [0, 1];
we also have 𝑓 ′ (0) = 𝑘 and 𝑓 ′′ (0) = −𝑘 (𝑘 − 1). From this we conclude that 𝑓 (𝑥) ≤ 𝑘𝑥 , proving the upper bound (as

𝑓 (𝑥) ≤ 1 is clear).

For the lower bound, note that 𝑓 ′′′ (𝑥) = 𝑘 (𝑘 − 1) (𝑘 − 2) (1 − 𝑥)𝑘−3, which is non-negative on [0, 1]. This means that

𝑓 ′′ (𝑥) ≥ −𝑘 (𝑘−1) on [0, 1], that 𝑓 ′ (𝑥) ≥ 𝑘−𝑘 (𝑘−1)𝑥 on [0, 1], and that 𝑓 (𝑥) ≥ 𝑘𝑥−(𝑘 (𝑘−1)/2)𝑥2 = 𝑘𝑥 (1−(𝑘−1)𝑥/2)
on [0, 1]. If (𝑘 − 1)𝑥 ≤ 1, we get 𝑓 (𝑥) ≥ 𝑘𝑥/2. If (𝑘 − 1)𝑥 ≥ 1, we have 𝑓 (𝑥) ≥ 1−𝑒−𝑘𝑥 ≥ 1− 1/𝑒 ≥ 1/2. This completes

the proof. □

Lemma 4.4 (Hellinger distance of disjoint mixtures). Let 𝜇 be a distribution over a finite support 𝐴, and for each 𝑎 ∈ 𝐴,
let 𝜈𝑎

0
and 𝜈𝑎

1
be two distributions over a finite support 𝑆𝑎 . Let 𝜈

𝜇

0
and 𝜈𝜇

1
denote the mixture distributions where 𝑎 ← 𝜇 is

sampled, and then a sample is produced from 𝜈𝑎
0
or 𝜈𝑎

1
, respectively. Assume the sets 𝑆𝑎 are disjoint for all 𝑎 ∈ 𝐴. Then

h
2 (𝜈𝜇

0
, 𝜈

𝜇

1
) = E𝑎←𝜇 [h2 (𝜈𝑎0 , 𝜈

𝑎
1
)] .

Manuscript submitted to ACM

56 Shalev Ben-David and Eric Blais

Proof. Note that the squared-Hellinger distance is one minus the fidelity, that is, h
2 (𝜇1, 𝜇2) = 1 − 𝐹 (𝜇1, 𝜇2), where

𝐹 (𝜇1, 𝜇2) =
∑
𝑥

√︁
𝜇1 [𝑥]𝜇2 [𝑥]. (This is easy to check from the definition of h

2
.) Now write

h
2 (𝜈𝜇

0
, 𝜈

𝜇

1
) = 1 −

∑︁
𝑥∈⋃𝑎 𝑆𝑎

√︃
𝜈
𝜇

0
[𝑥]𝜈𝜇

1
[𝑥]

= 1 −
∑︁
𝑎∈𝐴

∑︁
𝑥∈𝑆𝑎

√︃
𝜇 [𝑎]𝜈𝑎

0
[𝑥]𝜇 [𝑎]𝜈𝑎

1
[𝑥]

= 1 − E𝑎←𝜇


∑︁
𝑥∈𝑆𝑎

√︃
𝜈𝑎
0
[𝑥]𝜈𝑎

1
[𝑥]


= E𝑎←𝜇

1 −
∑︁
𝑥∈𝑆𝑎

√︃
𝜈𝑎
0
[𝑥]𝜈𝑎

1
[𝑥]


= E𝑎←𝜇

[
h
2 (𝜈𝑎

0
, 𝜈𝑎

1
)
]
. □

C QUANTUM AMPLITUDE ESTIMATION

We show the following strengthening of Theorem 5.1, which follows from [Brassard et al. 2002].

Theorem C.1 (Amplitude estimation). Suppose we have access to a unitary𝑈 (representing a quantum algorithm)

which maps |0⟩ to |𝜓 ⟩, as well as access to a projective measurement Π, and we wish to estimate 𝑝 B ∥Π |𝜓 ⟩∥2
2
(representing

the probability the quantum algorithm accepts). Fix 𝜖, 𝛿 ∈ (0, 1/2). Then using at most (100/𝜖) · ln(1/𝛿) controlled
applications of𝑈 or𝑈 † and at most that many applications of 𝐼 − 2Π, we can output 𝑝 ∈ [0, 1] such that |𝑝 − 𝑝 | ≤ 𝜖 with
probability at least 1 − 𝛿 .

Further, this can be tightened to a bound that depends on 𝑝 , as follows. For any positive real number 𝑇 , there is an

algorithm which depends on 𝜖 , 𝛿 , and 𝑇 (but not on 𝑝) which uses at most 𝑇 applications of the unitaries (as above) and

outputs 𝑝 ∈ [0, 1] with the following guarantee: if 𝑇 is at least ⌊(100/𝜖)
√︁
max{𝑝, 𝜖} · ln(1/𝛿)⌋, then |𝑝 − 𝑝 | ≤ 𝜖 with

probability at least 1 − 𝛿 .

Proof. [Brassard et al. 2002] showed that an algorithm which makes 𝑀 controlled calls to the unitary 𝑈 (𝐼 −
2 |0⟩ ⟨0|)𝑈 −1 (𝐼 − 2Π) and one additional call to𝑈 can output 𝑝 such that

|𝑝 − 𝑝 | ≤
2𝜋

√︁
𝑝 (1 − 𝑝)
𝑀

+ 𝜋
2

𝑀2

with probability at least 8/𝜋2 ≥ 4/5. If we pick 𝑀 such that 𝑀 ≥ 8/
√
𝜖 and 𝑀 ≥ 8

√
𝑝/𝜖 , then this is at most

(𝜋/4 + 𝜋2/64)𝜖 ≤ 𝜖 . Note that𝑀 must be an integer, and that the number of applications of𝑈 or𝑈 −1 is 2𝑀 + 1. Hence
to get this success probability, it suffices to have 𝑇 ≥ 3 + (16/𝜖)

√︁
max{𝑝, 𝜖}, or 𝑇 ≥ (19/𝜖)

√︁
max{𝑝, 𝜖}.

To generalize to other success probabilities, we amplify this algorithm by repeating 2𝑘 + 1 times and returning the

median estimate. The probability that this is still wrong is the probability that at least 𝑘 + 1 out of 2𝑘 + 1 of the estimates

were wrong, which is

𝑘+1∑︁
𝑖=1

(
2𝑘 + 1
𝑘 + 1 − 𝑖

)
𝑞𝑘+𝑖 (1 − 𝑞)𝑘+1−𝑖 ≤ 𝑞𝑘+1 (1 − 𝑞)𝑘

𝑘+1∑︁
𝑖=1

(
2𝑘 + 1
𝑘 + 1 − 𝑖

)
= 𝑞𝑘+1 (1 − 𝑞)𝑘22𝑘 = 𝑞(1 − (1 − 2𝑞)2)𝑘 ≤ 𝑞𝑒−𝑘 (1−2𝑞)

2

.

Manuscript submitted to ACM

A New Minimax Theorem for Randomized Algorithms 57

Hence to get this below 𝛿 , we just need 𝑘 ≥ (1/(1 − 2𝑞)2) ln(1/𝑞𝛿), or 𝑘 ≥ 2.6 ln(1/𝛿) − 4. Since 𝑘 must be an integer,

but we can always choose it so that 2𝑘 + 1 is at most 5.2 ln(1/𝛿). Multiplying this by the bound from before, we get that

it suffices for 𝑇 to be at most (100/𝜖)
√︁
max{𝑝, 𝜖} · ln(1/𝛿), as desired. □

Manuscript submitted to ACM

58 Shalev Ben-David and Eric Blais

REFERENCES
Scott Aaronson and Patrick Rall. Jan. 2020. “Quantum Approximate Counting, Simplified.” In: Proceedings of the 3rd Symposium on Simplicity in Algorithms

(SOSA). Society for Industrial and Applied Mathematics, (Jan. 2020), 24–32. arXiv: 1908.10846 [quant-ph]. doi: 10.1137/1.9781611976014.5.
Helmut Alt. Apr. 1988. “Comparing the combinational complexities of arithmetic functions.” Journal of the ACM, 35, 2, (Apr. 1988), 447–460. doi:

10.1145/42282.214084.
Boaz Barak, Moritz Hardt, and Satyen Kale. Jan. 2009. “The Uniform Hardcore Lemma via Approximate Bregman Projections.” In: Proceedings of the 20th

Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, (Jan. 2009). doi: 10.1137/1.97816119730
68.129.

Andrew Bassilakis, Andrew Drucker, Mika Göös, Lunjia Hu, Weiyun Ma, and Li-Yang Tan. 2020. “The Power of Many Samples in Query Complexity.” In:

Proceedings of the 47th International Colloquium on Automata, Languages, and Programming (ICALP). arXiv: 2002.10654 [cs.CC]. doi: 10.4230
/LIPIcs.ICALP.2020.9.

Paul W. Beame, Stephen A. Cook, and H. James Hoover. Nov. 1986. “Log Depth Circuits for Division and Related Problems.” SIAM Journal on Computing,
15, 4, (Nov. 1986), 994–1003. Previous version in FOCS 1984. doi: 10.1137/0215070.

Shalev Ben-David and Eric Blais. 2020. “A tight composition theorem for the randomized query complexity of partial functions.” In: Proceedings of the 61st
Annual IEEE Symposium on Foundations of Computer Science (FOCS). arXiv: 2002.10809 [cs.CC].

Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Oct. 2018. “Classical Lower Bounds from Quantum Upper Bounds.” In: Proceedings of
the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, (Oct. 2018). arXiv: 1807.06256 [quant-ph]. doi: 10.1109/fo
cs.2018.00040.

Eric Blais and Joshua Brody. 2019. “Optimal Separation and Strong Direct Sum for Randomized Query Complexity.” en. In: Proceedings of the 34th
Conference on Computational Complexity (CCC). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany. arXiv:

1908.01020 [cs.CC]. doi: 10.4230/LIPICS.CCC.2019.29.
Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. 2002. “Quantum amplitude amplification and estimation.” In: Proceedings of an AMS

Special Session on Quantum Computation and Information (CONM) (Contemporary Mathematics). Vol. 305. AMS, 53–74. arXiv: quant-ph/0005055
[quant-ph]. doi: 10.1090/conm/305/05215.

Mark Braverman. Jan. 2015. “Interactive Information Complexity.” SIAM Journal on Computing, 44, 6, (Jan. 2015), 1698–1739. Previous version in STOC

2012. doi: 10.1137/130938517.
Mark Braverman, Ankit Garg, Young Kun Ko, Jieming Mao, and Dave Touchette. Jan. 2018. “Near-Optimal Bounds on the Bounded-Round Quantum

Communication Complexity of Disjointness.” SIAM Journal on Computing, 47, 6, (Jan. 2018), 2277–2314. Previous version in FOCS 2015. arXiv:

1505.03110 [cs.CC]. doi: 10.1137/16m1061400.
Harry Buhrman, Ilan Newman, Hein Rohrig, and Ronald de Wolf. 2007. “Robust Polynomials and Quantum Algorithms.” English. Theory of Computing

Systems, 40, 4, 379–395. Previous version in STACS 2005. arXiv: quant-ph/0309220 [quant-ph]. doi: 10.1007/s00224-006-1313-z.
Andreas Buja, Werner Stuetzle, and Yi Shen. Jan. 2005. Loss functions for binary class probability estimation and classification: Structure and applications.

Preprint, (Jan. 2005). pdfs.semanticscholar.org/d670/6b6e626c15680688b0774419662f2341caee.pdf.
Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. May 1984. “Constant Depth Reducibility.” SIAM Journal on Computing, 13, 2, (May 1984), 423–439.

doi: 10.1137/0213028.
Tilmann Gneiting and Adrian E Raftery. Mar. 2007. “Strictly Proper Scoring Rules, Prediction, and Estimation.” Journal of the American Statistical

Association, 102, 477, (Mar. 2007), 359–378. doi: 10.1198/016214506000001437.
Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. 2017. “Reliably Learning the ReLU in Polynomial Time.” In: Proceedings of the 30th Annual

Conference on Learning Theory (COLT) (Proceedings of Machine Learning Research). Ed. by Satyen Kale and Ohad Shamir. Vol. 65. PMLR, 1004–1042.

arXiv: 1611.10258 [cs.LG].

R. Impagliazzo. 1995. “Hard-core distributions for somewhat hard problems.” In: Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE Comput. Soc. Press. doi: 10.1109/sfcs.1995.492584.

Dunham Jackson. 1911. “Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und

trigonometrische Summen gegebener Ordnung.” Ph.D. Dissertation. University of Göttingen. gdz.sub.uni-goettingen.de/id/PPN3023064
8X.

Adam R. Klivans and Rocco A. Servedio. 2003. “Boosting and Hard-Core Set Construction.” Machine Learning, 51, 3, 217–238. Previous version in FOCS

1999. doi: 10.1023/a:1022949332276.
Troy Lee and Adi Shraibman. July 2009. “An Approximation Algorithm for Approximation Rank.” In: Proceedings of the 24th Conference on Computational

Complexity (CCC). IEEE, (July 2009). arXiv: 0809.2093 [cs.CC]. doi: 10.1109/ccc.2009.25.
Troy Lee, Adi Shraibman, and Robert Špalek. June 2008. “ADirect Product Theorem for Discrepancy.” In: Proceedings of the 23rd Conference on Computational

Complexity (CCC). IEEE, (June 2008). doi: 10.1109/ccc.2008.25.
Marianthi Markatou, Yang Chen, Georgios Afendras, and Bruce G. Lindsay. 2017. “Statistical Distances and Their Role in Robustness.” New Advances in

Statistics and Data Science, 3–26. arXiv: 1612.07408 [math.ST]. doi: 10.1007/978-3-319-69416-0_1.
G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias. June 1994. Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, (June

1994). isbn: 978-981-02-0499-0. doi: 10.1142/1284.

Manuscript submitted to ACM

https://arxiv.org/abs/1908.10846
https://doi.org/10.1137/1.9781611976014.5
https://doi.org/10.1145/42282.214084
https://doi.org/10.1137/1.9781611973068.129
https://doi.org/10.1137/1.9781611973068.129
https://arxiv.org/abs/2002.10654
https://doi.org/10.4230/LIPIcs.ICALP.2020.9
https://doi.org/10.4230/LIPIcs.ICALP.2020.9
https://doi.org/10.1137/0215070
https://arxiv.org/abs/2002.10809
https://arxiv.org/abs/1807.06256
https://doi.org/10.1109/focs.2018.00040
https://doi.org/10.1109/focs.2018.00040
https://arxiv.org/abs/1908.01020
https://doi.org/10.4230/LIPICS.CCC.2019.29
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0005055
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1137/130938517
https://arxiv.org/abs/1505.03110
https://doi.org/10.1137/16m1061400
https://arxiv.org/abs/quant-ph/0309220
https://doi.org/10.1007/s00224-006-1313-z
pdfs.semanticscholar.org/d670/6b6e626c15680688b0774419662f2341caee.pdf
https://doi.org/10.1137/0213028
https://doi.org/10.1198/016214506000001437
https://arxiv.org/abs/1611.10258
https://doi.org/10.1109/sfcs.1995.492584
gdz.sub.uni-goettingen.de/id/PPN30230648X
gdz.sub.uni-goettingen.de/id/PPN30230648X
https://doi.org/10.1023/a:1022949332276
https://arxiv.org/abs/0809.2093
https://doi.org/10.1109/ccc.2009.25
https://doi.org/10.1109/ccc.2008.25
https://arxiv.org/abs/1612.07408
https://doi.org/10.1007/978-3-319-69416-0_1
https://doi.org/10.1142/1284

A New Minimax Theorem for Randomized Algorithms 59

Yuri P. Ofman. 1962. “On the algorithmic complexity of discrete functions.” Doklady Akademii Nauk, 145, 1, 48–51.
Nicholas Pippenger. Mar. 1987. “The complexity of computations by networks.” IBM Journal of Research and Development, 31, 2, (Mar. 1987), 235–243. doi:

10.1147/rd.312.0235.
Mark D. Reid and Robert C. Williamson. 2011. “Information, Divergence and Risk for Binary Experiments.” Journal of Machine Learning Research, 12, 22,

731–817. http://jmlr.org/papers/v12/reid11a.html arXiv: 0901.0356 [stat.ML].

John H. Reif and Stephen R. Tate. Oct. 1992. “On Threshold Circuits and Polynomial Computation.” SIAM Journal on Computing, 21, 5, (Oct. 1992), 896–908.
doi: 10.1137/0221053.

Ronen Shaltiel. June 2003. “Towards proving strong direct product theorems.” Computational Complexity, 12, 1-2, (June 2003), 1–22. Previous version in

CCC 2001. ECCC: 2001/009. doi: 10.1007/s00037-003-0175-x.
Alexander A. Sherstov. 2013. “Making Polynomials Robust to Noise.” Theory of Computing. Previous version in STOC 2012. ECCC: 2012/037. doi:

10.4086/toc.2013.v009a018.
Alexander A. Sherstov. Jan. 2012. “Strong Direct Product Theorems for Quantum Communication and Query Complexity.” SIAM Journal on Computing,

41, 5, (Jan. 2012), 1122–1165. Previous version in STOC 2011. arXiv: 1011.4935 [cs.CC]. doi: 10.1137/110842661.
Maurice Sion. 1958. “On general minimax theorems.” Pacific Journal of Mathematics, 8, 1, 171–176. doi: 10.2140/pjm.1958.8.171.
Flemming Tøpsoe. July 2000. “Some inequalities for information divergence and related measures of discrimination.” IEEE Transactions on Information

Theory, 46, 4, (July 2000), 1602–1609. doi: 10.1109/18.850703.
Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. July 2009. “Regularity, Boosting, and Efficiently Simulating Every High-Entropy Distribution.” In:

Proceedings of the 24th Conference on Computational Complexity (CCC). IEEE, (July 2009). ECCC: 2008/103. doi: 10.1109/ccc.2009.41.
Nikolai K. Vereshchagin. 1998. “Randomized Boolean decision trees: Several remarks.” Theoretical Computer Science, 207, 2, 329–342. doi: 10.1016/S030

4-3975(98)00071-1.
Heribert Vollmer. 1999. Introduction to Circuit Complexity: A Uniform Approach. Springer Berlin Heidelberg. isbn: 978-3-642-08398-3. doi: 10.1007/978
-3-662-03927-4.

Ingo Wegener. 1987. The Complexity of Boolean Functions. Wiley. isbn: 3-519-02107-2. eccc.weizmann.ac.il/static/books/The_Complexity
_of_Boolean_Functions/.

Andrew Yao. 1977. “Probabilistic computations: toward a unified measure of complexity.” Proceedings of the 18th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 222–227. doi: 10.1109/SFCS.1977.24.

Manuscript submitted to ACM

https://doi.org/10.1147/rd.312.0235
http://jmlr.org/papers/v12/reid11a.html
https://arxiv.org/abs/0901.0356
https://doi.org/10.1137/0221053
2001/009
https://doi.org/10.1007/s00037-003-0175-x
2012/037
https://doi.org/10.4086/toc.2013.v009a018
https://arxiv.org/abs/1011.4935
https://doi.org/10.1137/110842661
https://doi.org/10.2140/pjm.1958.8.171
https://doi.org/10.1109/18.850703
2008/103
https://doi.org/10.1109/ccc.2009.41
https://doi.org/10.1016/S0304-3975(98)00071-1
https://doi.org/10.1016/S0304-3975(98)00071-1
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
eccc.weizmann.ac.il/static/books/The_Complexity_of_Boolean_Functions/
eccc.weizmann.ac.il/static/books/The_Complexity_of_Boolean_Functions/
https://doi.org/10.1109/SFCS.1977.24

