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Abstract

We consider the problem of learning distributions in the presence of irrelevant features. This
problem is formalized by introducing a new notion of k-junta distributions. Informally,
a distribution D over the domain Xn is a k-junta distribution with respect to another
distribution U over the same domain if there is a set J ⊆ [n] of size |J | ≤ k that captures
the difference between D and U .

We show that it is possible to learn k-junta distributions with respect to the uniform
distribution over the Boolean hypercube {0, 1}n in time poly(nk, 1/ε). This result is ob-
tained via a new Fourier-based learning algorithm inspired by the Low-Degree Algorithm
of Linial, Mansour, and Nisan (1993).

We also consider the problem of testing whether an unknown distribution is a k-junta
distribution with respect to the uniform distribution. We give a nearly-optimal algorithm
for this task. Both the analysis of the algorithm and the lower bound showing its optimality
are obtained by establishing connections between the problem of testing junta distributions
and testing uniformity of weighted collections of distributions.
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1. Introduction

A central challenge in machine learning is learning target concepts in the presence of ir-
relevant features. Due to its importance and ubiquity, this challenge has inspired much
research in the statistics and machine learning communities over the last decades (see, e.g.,
Guyon and Elisseeff (2003), Liu and Motoda (2012), and Chandrashekar and Sahin (2014)).
This challenge also lends itself to an elegant formalization using the notion of juntas. The
function f : X n → Y is a k-junta for k ≤ n if there is a set J = {j1, . . . , jk} ⊆ [n] such
that for every x ∈ X n, the value f(x) is determined by the k values xj1 , . . . , xjk . When
this is the case, the relevant features of f are contained in J and the variables outside of
J are irrelevant. As Blum (1994) and Blum and Langley (1997) originally proposed, learn-
ing with irrelevant features in the PAC model corresponds to the problem of designing a
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polynomial-time algorithm for learning k-junta functions from samples
(
x, f(x)

)
where x is

drawn from some fixed distribution over X n.
In this work, we consider the problem of learning with irrelevant features in a different

setting: where the target concept is a distribution over a high-dimensional domain X n
and the learning algorithm observes samples x ∈ X n drawn from the target distribution.
The problem of learning distributions has a long and rich history—see Diakonikolas (2016)
for a great introduction to the topic—yet we are not aware of any result that directly
addresses the problem of learning distributions in the presence of irrelevant features in its
full generality.

To formalize this problem, we must first specify the notion of distributions that only
have a few relevant features. We do so with a definition that is analogous to that of junta
functions. For this definition, we need to first introduce some notation: given a distribution
D over a high-dimensional domain X n, a set J ⊆ [n], and a vector x in the support of D,
let DJ←x be the conditional distribution of a random variable drawn from D conditioned
on the event that Xj = xj for every j ∈ J .

Definition 1 (Junta distributions) Fix any distribution U over X n.1 A distribution D
over X n with support supp(D) ⊆ supp(U) is a k-junta distribution with respect to U if
there is a set J ⊆ [n] of |J | ≤ k coordinates such that for every x in the support of D, the
distributions DJ←x and UJ←x are identical.

The definition is perhaps best illustrated with an example. Let U be the uniform dis-
tribution on {0, 1}n and let D be the uniform distribution on the set of strings x ∈ {0, 1}n
that satisfy x1 ⊕ · · · ⊕ xk = 1. The distribution D is a k-junta with respect to U , but it is
far from being a (k − 1)-junta with respect to U .

We consider the problem of learning the class of distributions that are k-juntas with
respect to the uniform distribution over the Boolean hypercube {0, 1}n. As we will see
shortly, even this idealized setting captures much of the rich structure of the problem of
learning junta distributions. Furthermore, this setting also reveals some important connec-
tions to the analysis of Boolean functions. We also consider the complementary problem of
testing if a distribution is a k-junta distribution with respect to the uniform distribution
over {0, 1}n. We describe our results in more details below.

1.1. Learning junta distributions

We consider the problem of learning distributions in the model introduced by Kearns et al.
(1994). A class of distributions is a set of distributions, and the total variation distance
between two distributions D and D′ with probability density functions p, p′ : X n → [0, 1]
is dTV(D,D′) =

∑
x∈Xn |p(x) − p′(x)|/2. An ε-learner for a class C of distributions is an

algorithm that draws i.i.d. samples from an unknown distribution D in the class C and
outputs a hypothesis distribution D̃ that satisfies dTV(D, D̃) ≤ ε with probability at least
2
3 .

The easiest way to establish an upper bound on the time complexity of the problem
of learning k-junta distributions is via the cover method (Devroye and Lugosi (2001);

1. The notation U is chosen to reflect that U is the universal, or underlying distribution.
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Daskalakis et al. (2014); Diakonikolas (2016)), which can be used to show that there is
an ε-learner for k-juntas with respect to the uniform distribution over {0, 1}n with time

complexity Õ(
(
n
k

)
2k2k/ε).2 For completeness, we include the details of this construction in

Appendix A. Note, however, that the running time of this algorithm is doubly-exponential
in k and also exponential in 1/ε.

Our first main result shows that we can learn k-junta distributions with respect to the
uniform distribution much more efficiently: it is possible to learn this class of distributions
with a time complexity that is only singly-exponential in k and polynomial in 1/ε.

Theorem 2 Fix ε > 0 and 1 ≤ k ≤ n. There is an ε-learner for k-junta distributions with
respect to the uniform distribution over {0, 1}n with sample complexity O(22kk log n/ε4) and
running time Õ(min(nk, 2n) · 22k · k/ε4).

The starting point for the proof of Theorem 2 is the observation that a distribution with
probability mass function (pmf) p : {0, 1}n → [0, 1] is a k-junta with respect to the uniform
distribution if and only if p is a k-junta function. This characterization naturally suggests
the use of the Low-Degree Algorithm (LDA) of Linial et al. (1993) as a promising approach
for learning p. Indeed, LDA can be implemented even in the distribution learning setting:
by drawing samples from the distribution, we can estimate the Fourier coefficients p̂(S) of
the function p for every set of size |S| ≤ k (and, thus, of all the non-zero Fourier coefficients
of p).

The Low-Degree Algorithm generates a hypothesis function p′ whose Fourier coefficients
are determined by the estimates of the corresponding coefficients of p. This approach,
however, cannot be used in the context of learning distributions for two reasons. The first is
that the accuracy guarantee of LDA is in terms of a bound on the L2 norm

∑
(p′(x)−p(x))2.

To obtain a valid distribution learning algorithm, however, we must bound the L1 norm∑
|p′(x)− p(x)| between the hypothesis and target distributions’ pmfs, which is a stronger

requirement (see Kalai et al. (2008)). The second is that in any case, for even the L2

guarantee to be sufficiently strong, the estimates to the Fourier coefficients p̂(S) need a
level of accuracy that can only be achieved with a prohibitively large number of samples.

To bypass both of these issues, we use the estimated Fourier coefficients in a completely
different way. We compute a score for each candidate junta J ⊆ [n] of size |J | = k cor-
responding to the estimated total Fourier mass of the subsets of J . If our estimates were
exact, the candidate with the largest score would be the correct junta; the bulk of our anal-
ysis lies in showing that this characterization is robust, in that for every junta candidate J ′

whose score is close to that of the actual junta, p is close to a junta on J ′.
Our upper bounds on the sample complexity of the problem of learning k-juntas have

a logarithmic dependence on n and an exponential complexity in k. We show that both of
these dependencies are necessary. We also show that any significant improvement on the
running time of our algorithm would also yield a corresponding improvement in the time
complexity of the problem of learning k-junta Boolean functions.

Theorem 3 Fix ε > 0 and n > k ≥ 1. Any algorithm that learns k-junta distributions with
respect to the uniform distribution over {0, 1}n has sample complexity Ω(2k/ε2 +k log(n)/ε).

2. Here and throughout the paper, the Õ(·) notation is used to hide polylogarithmic factors in the argument.
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Furthermore, if there is an algorithm for this task with running time t, the time complexity
of the problem of learning k-junta Boolean functions in the PAC model is bounded above by
O(2kt).

In particular, a learning algorithm for k-junta distributions with respect to the uniform
distribution with running time poly(n, 2k, 1/ε) would provide a solution to the celebrated
learning juntas problem (see Blum (1994), Blum and Langley (1997), and Mossel et al.
(2004)). In fact, even the more modest improvement of our algorithm’s running time to
O(nck) for any constant c < ω/4 < 0.6, where ω is the the matrix multiplication exponent,
would yield an improvement on the best current upper bound of Valiant (2012) on the time
complexity for learning k-junta functions.

1.2. Testing junta distributions

We next turn our attention to the problem of testing whether an unknown distribution
is a k-junta distribution with respect to the uniform distribution in the property testing
framework introduced by Batu et al. (2000). A property of distributions is simply a class (or
a set) of distributions. A distribution D is ε-far from having property P when dTV(D, P ) :=
minD′∈P dTV(D,D′) ≥ ε; otherwise, D is ε-close to P . An ε-tester for property P is a
randomized algorithm with bounded error that distinguishes between distributions with
property P from those that are ε-far from having the same property. We show that it is
possible to test k-juntas with respect to the uniform distribution over {0, 1}n with a number
of samples that is sublinear in the size N = 2n of the domain of the distribution.

Theorem 4 Fix ε > 0 and n > k ≥ 1. There is an ε-tester for k-juntas with respect to the
uniform distribution over {0, 1}n with sample complexity O(2n/2k log n/ε2) = Õ(

√
N/ε2).

The proof of Theorem 4 is obtained by reducing the problem of testing juntas to the
problem of testing uniformity of weighted collections of distributions, a framework originally
introduced by Levi et al. (2013). A (weighted) collection of distributions is defined to be
a set of m distributions D1,D2, . . . ,Dm on a common domain X of size N and a set of
m weights w1, . . . , wm ∈ [0, 1] such that

∑m
i=1wi = 1. We denote such a collection by

{Di|wi}mi=1. When we draw a sample from {Di|wi}mi=1, we obtain a pair (Di, j) such that
Di is picked with probability wi and then j is a sample drawn from Di.

An ε-tester of collections of distributions for a property P is a randomized algorithm
with bounded error that distinguishes collections {Di|wi}mi=1 where each Di has property P
from those that satisfy

∑m
i=1wi · dTV(Di, P ) ≥ ε. The key technical result in the proof of

Theorem 4 is that we can test the uniformity of collections of m distributions on a domain
of size N with roughly

√
mN samples. In our reduction, the original junta-testing problem

corresponds to the problem of testing the uniformity of a collection of m = 2k distributions
on a domain of size N = 2n−k, yielding the sample complexity bound in Theorem 4.

When k � n, the sample complexity of the junta testing algorithm is much larger than
(i.e., doubly-exponential in) the sample complexity of the learning algorithm. We show that
this gap is unavoidable and, in fact, that the bound in Theorem 4 is nearly optimal.

Theorem 5 Fix 0 ≤ k < n and 0 < ε < 1. Every ε-tester for k-juntas with respect to the
uniform distribution on {0, 1}n has sample complexity Ω(2n/2/ε2) = Ω(

√
N/ε2).
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The lower bound again uses the connection to the problem of testing collections of dis-
tributions. In this case, this is done by constructing a distribution over k-junta distributions
and distributions that are far from k-juntas such that any algorithm that distinguishes be-
tween the two with sample complexity o(2n/2/ε2) would also be able to test collections of
distributions for uniformity with a number of samples that violates a lower bound of Levi
et al. (2013).

1.3. Future directions

The current work initiates the study of learning and testing distributions in the presence
of irrelevant features. There are a several directions in which further study of this topic
will likely yield valuable results. The most immediate next step is to extend our results
on learning and testing k-junta distributions with respect to a wider class of underlying
distributions U and over non-Boolean domains. Similar extensions have been achieved in
the functional setting with appropriate generalizations of the Fourier analysis tools used
in the Boolean domain, and it remains an open problem to determine whether similar
generalizations can be used to extend the analysis of our current algorithms (or natural
extensions of them) to other settings or whether entirely new testing and learning approaches
are required.

Another particularly intriguing question is whether our time and sample complexity
lower bounds can be bypassed by considering stronger sampling models or additional struc-
tural restrictions on the distributions themselves. For example, recent results have shown
that distribution property testing problems can have dramatically smaller sample complex-
ity in the conditional sampling model introduced by Canonne et al. (2015) and Chakraborty
et al. (2013). Is this also the case for the problem of testing junta distributions?

1.4. Organization

We present the algorithm for learning junta distributions and complete the proof of Theo-
rem 2 in Section 2. The algorithm for testing junta distributions and the proof of Theorem 4
are presented in Section 3. Finally, we complete the proofs of Theorems 3 and 5 establishing
the sample and time complexity lower bounds for learning and testing junta distributions
in Section 4.

2. Learning junta distributions

In this section, we complete the proof of Theorem 2 by introducing and analyzing an
algorithm for ε-learning k-junta distributions with respect to the uniform distribution over
{0, 1}n.

For an input x ∈ {0, 1}n and a set J ⊆ [n] of coordinates, we write x(J) ∈ {0, 1}|J | to
denote the restriction of x to the coordinates in J . (For example, 101000({1,3}) = 11.) A
distribution P with pmf p : {0, 1}n → [0, 1] is a k-junta distribution with respect to the
uniform distribution over {0, 1}n iff there is a set J∗ ⊆ [n] of size |J∗| = k and a set of 2k

parameters {ay}y∈{0,1}k such that for every x ∈ {0, 1}n, p(x) = ax(J∗)/2
n−k. Our learning

algorithm describes its hypothesis by specifying the corresponding set J∗ and parameters
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Algorithm 1 An ε-learner for junta distributions

1: x1, x2, . . . , xs ← draw s = O(min(k log n, n) · 22k/ε4) samples from P.
2: for all subsets J ⊆ [n] of size |J | = k do
3: Initialize f̃(J)← 0
4: for all S ⊆ J where S 6= ∅ do
5: t← |{i ∈ [s] : χS(xi) = 1}|.
6: f̃(J)← f̃(J) +

(
2t
s − 1

)2
7: end for
8: end for
9: Output J† = argmaxJ f̃(J) (breaking ties arbitrarily).

10: for all y ∈ {0, 1}k do

11: ãy ← 1
s · |{i ∈ [s] : x

(J)
i = y}|

12: Output ãy.
13: end for

ay of its hypothesis distribution. (The algorithm is a proper learning algorithm, in that it
always outputs a distribution that is a k-junta with respect to the uniform distribution.)

We turn to Fourier analysis over the Boolean hypercube to solve the learning problem.
The Fourier basis function corresponding to a set S ⊆ [n] is the function χS : {0, 1}n →
{−1, 1} defined by χS(x) = (−1)

∑
i∈S xi = (−1)⊕i∈Sxi when S is not empty and χ∅(x) = 1.

The pmf p : {0, 1}n → [0, 1] of a distribution P can be expressed in terms of the Fourier basis
functions as p(x) =

∑
S⊆[n] p̂(S) · χS(x) where the Fourier coefficient of p corresponding to

S is p̂(S) = 1
2n
∑

x∈{0,1}n p(x) · χS(x) = E[p(x) · χS(x)]. Here and throughout this section,
we write E[f(x)] to refer to the expected value of f(x) when x is picked uniformly at
random and Ex∼P [f(x)] to refer to the expected value of f(x) when x is drawn from P. In
the following, we will also abuse notation slightly and use the same symbol P to denote a
distribution and its pmf P : {0, 1}n → [0, 1]. For a complete introduction to Fourier analysis
over the Boolean hypercube, we highly recommend the book of O’Donnell (2014).

The proof of Theorem 2 is obtained via the following result.

Theorem 6 Algorithm 1 is an ε-learner for k-junta distributions with respect to the uni-
form distribution over {0, 1}n with sample complexity s = O(min(k log n, n) · 22k/ε4) and
running time O(nk ·23k ·k ·min(k log n, n)/ε4). With minor changes in implementation, the
running time can be improved to O(min(2n, nk) ·min(k log n, n) · 22k/ε4).

Proof To prove the theorem, we show that the algorithm outputs a distribution P̃J† that
is ε-close to the target distribution P with large constant probability. To do this, we define
an intermediate distribution PJ† and show that P and P̃J are both close to PJ† . More
precisely, for any set J ⊆ [n] of size k, we let PJ be the distribution with the pmf defined
by

PJ(x) := Pr
y∼P

[
y(J) = x(J)

]
/2n−k. (1)

This construction guarantees that PJ is a junta distribution on the set J . In particular,
letting J∗ be a set containing the relevant features of the target distribution P, we observe
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that PJ∗ is identical to P. We complete the analysis of correctness of Algorithm 1 by
showing that with large constant probability, dTV(P,PJ†) ≤ ε

2 and dTV(PJ† , P̃J†) ≤ ε
2 and

applying the triangle inequality.
The first task, showing that dTV(P,PJ†) ≤ ε

2 , is the more demanding one. We say
that a set J is invalid if PJ is ε

2 -far from P. We want to show that the probability that
Algorithm 1 outputs an invalid set J† is small. In order to do so, we define two functions
f and h on the subsets of [n] of size k by setting

h(J) = 22n · E[(PJ(x)− 1/2n)2] (2)

and
f(J) = 22n ·

∑
S⊆J,S 6=∅

P̂(S)2. (3)

We bound the total variation distance between P and PJ† in three steps.

• Step 1. We show that for every set J , h(J∗)− h(J) is at least 4 · dTV(P,PJ)2.

• Step 2. We show that f(J) is always equal to h(J). Therefore, f(J∗) − f(J) ≥ ε2

for any invalid set J .

• Step 3. We show that with large constant probability, for every set J of size k,
|f̃(J)− f(J)| < ε2/2.

The three steps are completed by establishing the following three lemmas.

Lemma 7 (Step 1) Let P be a k-junta distribution on the set J∗ and PJ be a k-junta
distributions defined in Equation 1. Then,

E[(P(x)− 1/2n)2]− E[(PJ(x)− 1/2n)2] ≥ 4 · dTV(P,PJ)2/22n. (4)

The starting point for the proof of this lemma is the observation that for every set J ,
the distribution PJ is a junta distribution over the set J ∩J∗. Two other critical ingredients
in the proof of the lemma are the identity

PJ(x) =

(
Pr
y∼P

[
y(J∩J∗) = x(J∩J∗)

])
/2n−k+|J\J∗| (5)

and the additional observation that E[PJ(x)(P(x)− PJ(x))] = 0.

Lemma 8 (Step 2) With f and h as defined in Equation (3) and Equation (2), for any
J ⊂ [n] of size k we have f(J) = h(J).

The proof of this lemma is established with Parseval’s theorem and a characterization
of the structure of the nonzero Fourier coefficients of the pmfs of PJ and P.

Lemma 9 (Step 3) Let P be a junta distribution on the set J∗ of size k. Suppose we
draw s = 72 ·22k · ln(12 min(nk, 2n))/ε4 samples from P. For any set J of size k, we estimate
f(J), as defined in (3), by

f̃(J) =
∑

S⊆J,S 6=∅

(
2 · [# samples x with χS(x) = 1]

s
− 1

)2

.

With probability 5/6 all of the J ’s we have |f(J)− f̃(J)| < ε2.
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Algorithm 2 An ε-tester for junta distributions

1: x1, x2, . . . , xs ← draw s = S(2k, 2n−k, ε,
(
3
(
n
k

))−1
) samples from P.

2: for all subsets J ⊆ [n] of size |J | = k do

3: Convert each sample xj to a pair pJ(xj) = (i, z) such that z = x
([n]\J)
j and the binary

encoding of i is x
(J)
j .

4: Run the uniformity test of the collection of distributions using pJj ’s
5: if the test accepts then
6: return Accept
7: end if
8: end for
9: return Reject.

The proofs of Equation (5) and Lemmas 7–9 are presented in Appendices B–E. Combin-
ing the three lemmas, we obtain that with large constant probability, every invalid set J has
estimated value f̃(J) less than f̃(J∗) and, therefore, that the set J† output by Algorithm 1
is not invalid. To complete the proof of correctness of the algorithm, it remains to show
that with large constant probability, dTV(PJ† , P̃J†) ≤ ε

2 . This is done via a standard use of
Hoeffding’s inequality and the union bound.

Finally, to analyze the running time of the algorithm, observe that we consider
(
n
k

)
subsets of size k. Each of them has 2k − 1 non-empty subsets (the S’s). We compute
χS(x) for each sample x in time O(k). Thus, the time complexity of our algorithm is
O(nk ·23k ·k ·min(k log n, n)/ε4). We can obtain a faster algorithm using dynamic program-
ming and the fact that χS(x) = (−1)xi ·χS\{i}(x). We compute the number of samples with

χS(xi) = 1 for each S of size at most k in time O(s ·
∑k

i=1

(
n
i

)
), or O(s ·min(2n, nk)). Then,

the running time of the algorithm can be improved to O(min(2n, nk)·min(k log n, n)·22k/ε4).

3. Testing junta distributions

In this section we consider the problem of testing junta distributions: how do we determine
whether there exists a subset of coordinates of size k, namely J , such that conditioning
on any setting of x(J), we get the uniform distribution? One way to cast the problem of
testing that a distribution is a k-junta distribution is as the problem of testing whether a
collection of 2k distributions are all uniform. In Section 3.1, we provide a uniformity test
for a collection of distributions, which is a natural problem in its own right. In Algorithm
2, we describe the reduction and prove its correctness in the following theorem.

Theorem 10 Assume there exists an ε-tester for uniformity of a collection of m distribu-
tions over [n] that uses S(m,n, ε, δ) samples. Then, Algorithm 2 is an ε-tester for k-junta

distributions using S(2k, 2n−k, ε,
(
3
(
n
k

))−1
) samples.

Proof We use P to denote the underlying distribution that we want to test. Fix a set J
of size k. Given J , we view P as a collection of 2k distributions over the domain {0, 1}n−k.

8
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We denote the binary encoding of i over k bits by Ci. Let PJi be the marginal distribution
over the domain {0, 1}n−k such that

PJi (z) := Pr
x∼P

[
x([n]\J) = z|x(J) = Ci

]
.

Assume x is a sample drawn from P. We convert x to a pair pJ(x) = (i, z) such that
z = x([n]\J) and the binary encoding of i is x(J). Drawing x from P can be viewed as
drawing pJ(x) from a collection of distributions according to the following process. First,
i is drawn from {0, 1, . . . , 2k − 1} with probability Prx∼P [x(J) = Ci]. Then, z is drawn
from PJi . Using this conversion, we can view P as a distribution over a collection of 2k

distributions with the domain of size 2n−k elements.
Now, we prove the correctness of Algorithm 2. We first show that if P is a junta dis-

tribution, then it passes with probability at least 2/3: Assume P is a junta distribution on
the set J∗. By definition, the PJ∗i ’s are uniform, i.e., PJ∗i (z) = 1/2n−k for z ∈ {0, 1}n−k.
This means that in the iteration where J = J∗ in the algorithm, the collection of distribu-
tions (PJi ’s) should be accepted by the uniformity test of a collection. Thus, the algorithm
outputs the correct answer with probability at least 2/3.

Second, we show that the algorithm rejects every distribution P which is ε-far from being
a junta distribution with probability at least 2/3. Recall PJ as defined in (1). By definition
it is a |J |-junta distribution and so, by assumption, P is ε-far from PJ . We compute the
distance of PJ and P. Let Xi be the set of all x’s such that x(J) = Ci. Then,

2 dTV(P,PJ) =
∑
x

|P(x)− PJ(x)| =
2k−1∑
i=1

∑
x∈Xi

|P(x)− PJ(x)|

=

2k−1∑
i=0

∑
x∈Xi

Pr
y∼P

[y ∈ Xi] ·
∣∣∣∣ P(x)

Pry∼P [y ∈ Xi]
− PJ(x)

Pry∼P [y ∈ Xi]

∣∣∣∣
=

2k−1∑
i=0

∑
x∈Xi

Pr
y∼P

[y ∈ Xi] ·
∣∣∣∣ P(x)

Pry∼P [y ∈ Xi]
− PJ(x)

Pry∼PJ [y ∈ Xi]

∣∣∣∣
=

2k−1∑
i=0

∑
x∈Xi

Pr
y∼P

[y ∈ Xi] ·
∣∣∣∣PJi (x([n]\J))− 1

2n−k

∣∣∣∣ = 2
2k−1∑
i=0

Pr
y∼P

[y ∈ Xi] · dTV(PJi ,U).

The third line is from Pry∼P [y ∈ Xi] = Pry∼P [y(J) = Ci] = Pry∼PJ [y(J) = Ci] by the defini-
tion of PJ . Note that if we view the distribution as a collection of PJi ’s then Pry∼P [y ∈ Xi]
is the weight of PJi in the collection, namely wi. Thus, the value of dTV(P,PJ) or (equiva-
lently dTV(P,PJ)) is equivalent to the weighted distance of the collection. Since P is ε-far
from any junta distribution, dTV(P,PJ) is at least ε. Thus, the collection is ε-far from
being a collection of uniform distributions and will be rejected by the uniformity test for
all J ’s with high probability.

Note that by applying Theorem 11 with standard amplification and union bound argu-
ments, we can assume that all tests return the correct answer with probability at least 2/3.

9
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In addition, by setting m = 2k and n = 2n−k in Theorem 11, it is not hard to see that the
total number of samples is Õ(k · log n · S(m,n, ε, δ)) = Õ(2n/2k4/ε3 + 2k/ε).

3.1. Uniformity Test of a Collection of Distributions

In this section we consider the problem of testing uniformity of a collection ofm distributions
{Pi|wi}mi=1 on the domain [n]. To draw a sample (i, j) from the collection, first we pick the
distribution Pi with probability wi and then we draw a sample j from Pi. The näıve
approach to solving this problem is to test uniformity of each distribution separately using
Ω(m
√
n) samples. However, this is not optimal. For example if we know all the wi’s are

equal to 1/m then our problem can be converted to the uniformity test over the domain
[m] × [n], which requires O(

√
mn) samples (Paninski (2008)). This observation suggests

that when the weights wi are similar to each other, it may be preferable not to test the
distributions separately. Implementing this idea, we introduce an ε-tester for the special
case where all the weights wi’s are within a constant factor of each other (See Appendix
F). To generalize this idea to general weights, we use a bucketing argument such that the
Pi’s in each bucket have roughly the same wi weights. Then, we perform the uniformity
test in each bucket separately and integrate the result to conclude whether the collection is
uniform or not. The sample complexity of the resulting algorithm is Õ(

√
mn+m).

Another problem that is closely related to that of testing uniformity is the more gen-
eral problem of testing equivalence of distributions. This more general problem has been
considered before by Levi et al. (2013) and Diakonikolas and Kane (2016). Levi et al.
(2013) consider several different testing models, including the model of testing collections
of distributions that we consider here. The sample complexity of their algorithm for testing
equivalence of distributions in this model is Õ(n2/3m1/3 +m). In the regime of parameters
where m ≤ n, our algorithm requires fewer samples.

Another testing model introduced in Levi et al. (2013) considers the setting where the
testing algorithm knows the weights in advance. Levi et al. (2013) present an algorithm for
testing equivalence of distributions in this model with Õ

(
max(n2/3m1/3,

√
mn)

)
samples.

Very recently, Diakonikolas and Kane (2016) provide another algorithm for the same task
with sample complexity O

(
max(n2/3m1/3,

√
mn)

)
. This result is optimal in terms of m,

n, and ε. We did not explicitly provide a result in this model. However, it is not hard to
see that if our algorithm knows the weights wi’s, it will only uses Õ

√
mn) samples, which

outperforms the other two algorithms for the special case of testing uniformity in the setting
where m ≤ n.

Theorem 11 Algorithm 3 is an ε-tester for uniformity of a collection of distributions
{Pi|wi} using s = Õ(

√
mn/ε3 +m/ε) samples.

Proof In the algorithm, instead of drawing a fixed number of samples, we use the “Pois-
sonization method”3 and draw s samples where s is a random variable drawn from a Poisson

3. Observe that when we draw a fixed number of samples, the number of appearances of each element
depends on others. This would usually convolute the analysis of the algorithm. However, the Poisson
distribution has the convenient property that the number of appearances of each symbol is independent
from the others. It is known that if a single distribution P is sampled Poi(n) times, then the number
of samples equal to a symbol x is a random variable from a Poisson distribution with mean nP(x) (see

10
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Algorithm 3 An ε-tester for testing uniformity of a collection of distributions

1: B ← dlog(4m/ε)e
2: S ← 40m log(12(m+ 1))/ε
3: Draw a sample, namely s, from Poi(S).
4: if s > 2S then
5: Reject and halt.
6: end if
7: x1, x2, . . . , xs ← draw s samples from the collection {Pi|wi}mi=1.
8: si ← number of samples from Pi for i ∈ [m].
9: ŵi ← si/S number of samples from Pi for i ∈ [m].

10: for ` = 1, . . . , B do
11: B` ← {i | 2`−1ε/(4m)} ≤ ŵi < 2`ε/(4m)

12: Ŵ` ←
∑

i∈B` ŵi
13: Sl ←

∑
i∈B` si

14: if Ŵ` ≥ ε/4B then
15: Run bucket uniformity test with distance parameter ε/2B and maximum error

probability 1/6B
16: if the test rejects then
17: return Reject.
18: end if
19: end if
20: end for
21: return Accept.

distribution with mean S. Thus, we can assume the number of samples from each distri-
bution Pi, namely si, is distributed as Poi(wi · S) and is independent from the rest of sj ’s.
Now, we show in the following concentration lemma that the si’s are not far from their
mean. Equivalently, we prove that ŵi = si/S is close to wi.

Lemma 12 Suppose we draw s ∼ Poi(S) samples from a collection of distributions
{Pi|wi}mi=1 such that S ≥ 40m log 12(m + 1)/ε. Let ŵi = si/S where si is the number
of samples from Pi. With probability of 5/6 all of the following events happen.

• s is in the range [S/2, 2S].

• For any i if wi ≥ ε/8m, then ŵi is in the range [1
2wi, 2wi].

• For any i if wi < ε/8m, then ŵi ≤ ε/4m.

Proof Here we need to use concentration inequalities for Poisson distribution. (See Theorem
5.4 in Mitzenmacher and Upfal (2005)) For a Poisson random variable X with mean µ

Pr(X ≥ (1 + β)µ) ≤
(

eβ

(1 + β)(1+β)

)µ
;

for example Mitzenmacher and Upfal (2005)). This also implies that the number of appearances of each
symbol is independent of the others.

11
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and

Pr(X ≤ (1− β)µ) ≤
(

e−β

(1− β)(1−β)

)µ
.

It is not hard to see

1− Pr[µ/2 ≤ X ≤ 2µ] < 0.68µ + 0.86µ < 2 · 2−µ/5 ≤ 1

6(m+ 1)
.

where the last inequality holds for µ ≥ 5 log(12 (m+ 1)). Thus, s is in the range [S/2, 2S]
with probability 1− 1/6(m+ 1).

Note that by properties of the Poissonization method (Mitzenmacher and Upfal (2005)),
the si’s are distributed as independent draws from Poi(wi · S). For a fixed wi ≥ ε/8m, since
wi · S is at least 5 log(12 (m+ 1)), we can conclude that si is in the range [wi · S/2, 2wi · S]
or equivalently ŵi is in the range [wi/2, 2wi] with probability at least 1− 1/6(m+ 1). Now
assume wi is less than ε/8m. Clearly, the expected value of si is less than S ·ε/8m. Consider
another random variable X which is drawn from Poi(S · ε/8m). Thus,

Pr[si > S · ε/4m] ≤ Pr[X > S · ε/4m] ≤ 1

6(m+ 1)

Thus, by the union bound over the si’s and the s with probability at least 5/6 the conclu-
sions of the lemma hold.

Partitioning into buckets: Based on the idea that uniformity test of a collection of
distributions is easier when wi’s are uniform, we partition the distributions into buckets
such that wi in the same buckets are within a constant factor of each other. Assume we
have B = dlog(4m/ε)e buckets where the `-th buckets contains all the distributions Pi’s such
that 2`−1ε/4m < ŵi ≤ 2`ε/4m. By Lemma 12, the wi’s are in the range [ε/8m2`−1, ε/2m2`].
Observe that each bucket ` can be viewed as a (sub-)collection of m` = |B`| distributions
with the new weights wi/W` where W` is the total weight of the `-th bucket.

Reduction to the bucket uniformity test: Here, we want to show that there is a
reduction between uniformity test of a collection of distributions and uniformity test of each
bucket as a sub-collection of distributions. For uniformity test of a collection, we partition
the collection into buckets as explained before. Then for each bucket, we invoke the bucket
uniformity test with distance parameter ε/2B and with error probability of at most 1/6B.
To prove the correctness of the reduction, we consider the two following cases:

• {Pi|wi}mi=1 is a collection of uniform distributions. Since all of the distributions
are uniform, all buckets contain only uniform distributions. Then, all the B invoca-
tions of bucket uniformity test should accept with probability at least 1−1/6B. Thus,
none of them rejects with probability 1− 1/6 by the union bound.

• {Pi|wi}mi=1 is ε-far from being a collection of uniform distributions. We prove
that at least one bucket should be rejected with high probability. Note that in our
bucketing method we ignore the distributions with ŵi ≤ ε/4m: by Lemma 12, the
total weight of these distributions is at most ε/2 and since the total variation distance

12
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is at most one, they can not contribute to the weighted distance by more than ε/2.
Thus,

B∑
l=1

∑
i∈B`

wi · dTV(Pi,U) ≥ ε/2.

By averaging there is at least one bucket, namely `, such that
∑

i∈B` wi ·dTV(Pi,U) ≥
ε/2B. Let W` be the total weight of the `-th bucket. Since the total variation distance

is at most one, W` =
∑

i∈B` wi ≥ ε/2B. Therefore, Ŵ` =
∑

i∈B` ŵi ≥ ε/4B. In addi-
tion, we consider this bucket as a separate collection. Since W` ≤ 1, if we renormalize
the weights, we also see that∑

i∈B`

wi
W`
· dTV(Pi,U) ≥ ε

2BW`
≥ ε

2B
.

Now if we show the assumptions of Corollary 27 are satisfied, then the bucket unifor-
mity test rejects the bucket ` with probability at least 1− 1/6B. It is not hard to see

that our estimation of the new weight of the i-th distribution in bucket ` is ŵi/Ŵ`,
which is in the range [wi/4W`, 4wi/W`] by Lemma 12. Moreover, since the ŵi’s are
in the range [2`−1ε/8m, 2`ε/2m], every wi/W` is at most 8/mi where mi = |B`|.
Thus the sample complexity for testing the buckets is

B∑
i=1

si = O

(
B∑
i=1

B2√mi n log(6B)/ε2 + log(6B)mi logmi

)
.

Using the Cauchy-Schwarz inequality and since B = O(log(m/ε)), it is not hard to
see that the total sample complexity is Õ(

√
mn/ε2 +m).

Using the union bound, the test does not fail with probability more than a 1/3. The total
sample complexity is Õ(

√
mn/ε2 +m/ε). Hence, the proof is complete.

4. Lower Bounds

4.1. Sample complexity lower bound for learning juntas

We now complete the proof of the first part of Theorem 3.

Theorem 13 (Restatement of the first part of Theorem 3) Fix 0 < ε < 1
2 and 1 ≤

k < n. Any ε-learner for k-junta distributions with respect to the uniform distribution over
{0, 1}n must have sample complexity s = Ω(max{2k/ε2, log

(
n
≤k
)
/ε}).

Proof The first part of the lower bound, s = Ω(2k/ε2) follows from the (folklore) lower
bound on the number of samples required to learn a general discrete distribution over a
domain of size N . Ω(N/ε2) samples are required for this task. Observing that the set of
juntas on the set J = {1, 2, . . . , k} is a set of general discrete functions on a domain of size
N = 2k, we conclude that any k-junta learning algorithm must draw Ω(2k/ε2) samples—
even if it is given the identity of the junta coordinates.
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We now want to show that s = Ω(log
(
n
≤k
)
/ε). By Yao’s minimax principle, it suffices

to show that there is a distribution P on k-junta distributions such that any deterministic
ε-learner for D ∼ P must draw at least s = Ω(log

(
n
≤k
)
/ε) samples from D. For non-empty

sets S ⊆ [n], let DS be the distribution with the probability mass function

pS(x) =

{
(1

2 + ε)/2n−1 if
⊕

i∈S xi = 1

(1
2 − ε)/2

n−1 if
⊕

i∈S xi = 0.

Let D∅ be the uniform distribution on {0, 1}n. We let P be the distribution defined by
P(D∅) = 1

2 and P(DS) = 1
2(( n≤k)−1)

for every set of size 1 ≤ |S| ≤ k. Every function in the

support of P is a k-junta distribution, and they are all ε-far from each other.
Fix any deterministic learning algorithm A that is ε-learner for the k-junta distributions

drawn from P. Let X be a sequence of s samples drawn from D. The success probability
of A guarantees that

2

3
≤ Pr[A identifies the correct distribution]

=
∑

S∈( n≤k)

P(DS)
∑

X∈{0,1}n×s
pS(X) · 1[A outputs DS on X]

≤
∑

X∈{0,1}n×s
max
S∈( n≤k)

P(DS) · pS(X).

We can partition the set of s-tuples of samples, {0, 1}n×s into
(
n
≤k
)

parts χS , S ∈
(
n
≤k
)

such that X ∈ χS iff P(DS) ·pS(X) = maxT∈( n≤k)
P(DT ) ·pT (X) (breaking ties arbitrarily).

If every X belongs to χ∅, then it means that our algorithm always outputs the uniform
distribution, which clearly does not satisfy the learning requirement. (With probability
1/2, the hypothesis from this algorithm will be epsilon-far from the target function.) So
some X must belong in χS for a non-empty set S. For any set of samples X, we have that
P(D∅) · pS(X) = 1

2 · 2
−ns since D∅ is the uniform distribution. This means that if X ∈ χS

for some S 6= ∅, then P(DS) · pS(X) ≥ 2−ns−1 and hence pS(X) ≥ (
(
n
≤k
)
− 1)2−ns. Let

κS(X) denote the number of samples x ∈ X such that
⊕

i∈S xi = 1. Then from the above
inequality we have((

n

≤ k

)
− 1

)
· 2−ns ≤ pS(X) = (

1

2
+ ε)κS(X)(

1

2
− ε)s−κS(X)2−s(n−1)

≤ (1 + 2ε)κS(X) · 2−ns ≤ e2εκS(X) · 2−ns.

Therefore, s ≥ κS(X) = Ω(log
(
n
≤k
)
/ε), as we wanted to show.

4.2. Time complexity lower bound for learning juntas

The time complexity component of Theorem 3 is established via the intermediate problem
of learning k-junta pmfs in the standard functional setting.
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Definition 14 The function f : {0, 1}n → [0, 1] is a k-junta pmf if
∑

x∈{0,1}n f(x) = 1 and
f is a k-junta.

An ε-learner for a class C of pmfs f : {0, 1}n → [0, 1](under the uniform distribution) is a
learning algorithm that draws s samples x1, . . . , xs independently and uniformly at random
from {0, 1}n, observes the s pairs (x1, f(x1)), . . . , (xs, f(xs)), and outputs a hypothesis
function h : {0, 1}n → R such that with probability at least 2

3 ,
∑

x∈{0,1}n |f(x)− h(x)| ≤ ε.
An ε-learner for Boolean functions f : {0, 1}n → {0, 1} is defined analogously, except that
the guarantee on the hypothesis h : {0, 1}n → {0, 1} is that it satisfies Prx[f(x) 6= h(x)] ≤ ε
with probability at least 2

3 .

Lemma 15 If there is an ε-learner for k-junta distributions with time complexity t and
sample complexity s, then there is an ε-learner for the class of k-junta pmfs which runs in
time O(t+ 2ks).

Proof Let f : {0, 1}n → [0, 1] be the input to the k-junta pmf learning problem, and let
A be an algorithm for learning k-junta distributions with sample complexity s and time
complexity t.

Consider now the algorithm A′ that draws x ∈ {0, 1}n uniformly at random, observes
(x, f(x)), and then with probability 2n−kf(x), passes x along as a sample toA. After passing
s samples to A in this way, A′ returns the function h : {0, 1}n → [0, 1] that corresponds to
the pmf of the distribution D′ learned by A.

Note that since f is a k-junta, for every x ∈ {0, 1}n there are at least 2n−k inputs y ∈
{0, 1}n that have the same value as x on the (at most) k relevant coordinates and so satisfy
f(y) = f(x). Taking the sum of f(y) over all such inputs, we get

∑
f(y) = 2n−kf(x) ≤ 1,

so the expression 2n−kf(x) defined above is indeed a valid probability.
For any given x ∈ {0, 1}n, the probability that A′ draws x and passes it along to A

is Pr[x is drawn] · Pr[x is accepted] = 2−n · 2n−kf(x) = 2−kf(x). The probability that the
current sample is accepted is therefore

∑
z 2−kf(z) = 2−k. So the probability that the next

sample to be accepted is x is 2−kf(x)
2−k

= f(x), guaranteeing that the distribution on samples

passed to A indeed has pmf f , and O(2ks) initial samples are sufficient to generate the s
samples required by A with large constant probability. When this condition is satisfied,
then A returns a distribution with pmf h : {0, 1}n → [0, 1] that with large constant proba-
bility satisfies

∑
x |f(x)− h(x)| ≤ ε, as required.

Lemma 16 If there is an ε
2 -learner for k-junta pmfs with time complexity t, then there is

an ε-learner for the class of k-junta Boolean functions which runs in time O(t+ 22k).

Proof Let A be an algorithm for ε
2 -learning k-junta pmfs with sample complexity s and

time complexity t. We can design an algorithm A′ for learning k-junta Boolean functions
as follows.

Let f : {0, 1}n → {0, 1} be the input to the Boolean function k-junta learning problem.
Define Σ(f) :=

∑
x∈{0,1}n f(x) and let g : {0, 1}n → [0, 1] be the pmf defined by g(x) =

f(x)/Σ(f).
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Since f is a k-junta, Σ(f) ∈ {0, 2n−k, 2 · 2n−k, . . . , 2k · 2n−k} and so the algorithm A′
can learn Σ(f) exactly with large constant probability with O(22k) samples. It can then
use A to learn a hypothesis g̃ of g by passing along the sample (x, f(x)/Σ(f)) when it
observes the sample (x, f(x)). The total running time of the estimation and simulation is
O(22k + t), as required. Furthermore, A guarantees that with large constant probability,
the hypothesis g̃ satisfies

∑
|g̃(x) − g(x)| ≤ ε

2 . Let A′ output the function f̃ defined by

f̃(x) = 1
[
g̃(x) ≥ 1

2Σ(f)

]
. By this construction, for every input x ∈ {0, 1}n, if f(x) 6= f̃(x)

then |g̃(x)− g(x)| ≥ 1
2Σ(f) . So by Markov’s inequality,

Pr
x

[f̃(x) 6= f(x)] = Pr
x

[
|g̃(x)− g(x)| ≥ 1

2Σ(f)

]
≤ 2Σ(f)· 1

2n

∑
x∈{0,1}n

|g̃(x)−g(x)| ≤ 2E[f ]· ε
2
≤ ε

and A′ is indeed an ε-learner for k-junta Boolean functions, as we wanted to show.

4.3. Lower bound for testing juntas

In this section, we prove a lower bound for testing junta distributions.

Theorem 17 There is no ε-tester for k-junta distributions using o(2n/2/ε2) samples for
sufficiently small ε.

Proof We show a reduction from testing uniformity of a collection of distributions to testing
k-junta distributions. Then, we use the lower bounds for testing uniformity of a collection
of distributions to prove the theorem.

Assume we have a collection of distributions, C = {Pi|wi}Mi=1, over the domain [N ].
Without loss of generality assume M = 2k1 and N = 2k2 . If they are not powers of two,
round each of them to the next power of two and this does not affect M , N and ε in our
proof by more than a constant factor.

Given C, we construct a distribution over {0, 1}k1+k2+1.

D(x) =

 0 if x([k1+1]) has odd parity.

Pix+1(jx + 1) if x([k1+1]) has even parity.

such that Cix = x([k1]) and Cjx = x([k1+k2+1]\[k1+1]). Note that we use Ci to indicate the
binary encoding of i. Let k = k1 + 1. If C is a collection of uniform distributions, it is not
hard to see that D is k-junta on the set [k]. Moreover, if D is a k-junta distribution, then C
has to be a collection of uniform distributions. Below, we show this fact, by proving that D
is 1/4-far from being k-junta on every set J 6= [k]. This implies that D has to be a k-junta
distribution on the set [k] which means that all Pi’s are uniform.

Fix an arbitrary set J 6= [k] of size k. Let D′ be any arbitrary k-junta distribution on
the set J . Let ai = Prx∼D

[
x(J) = Ci

]
for i = 0, 1, . . . , 2k − 1. We define Xi to be the set

of all x’s such that x(J) = Ci. Now, we show that at least half of the elements in Xi have
probability zero. Since J 6= [k] and |J | = k, there exists a coordinate ` ∈ [k] such that ` is
not in the set J . Consider an element x ∈ Xi. Let y be x with the `-th bit flipped. Since
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` is not in J , x(J) = y(J). Thus, y is also in Xi. On the other hand, the parity of the first
k bits of x and y is not the same, because ` ∈ [k]. Thus, one of them has probability zero.
Note that we can pair up all the elements in Xi as we did for to x and y. Therefore, at least
half of the elements in Xi have probability zero. By definition, we know ai =

∑
x∈Xi D

′(x)

for i = 0, 1, . . . , 2k − 1 and D′(x) = ai/2
k2 for x ∈ Xi. We can conclude that D′ is 1/4-far

from D, since

dTV(D,D′) =
1

2

∑
x

|D(x)−D′(x)| = 1

2

2k−1∑
i=0

∑
x∈Xi

|D(x)−D′(x)|

=
1

2

2k−1∑
i=0

∑
x∈Xi

|D(x)− ai/2k2 | ≥
1

2

2k−1∑
i=0

∑
x∈Xi:D(x)=0

ai/2
k2 ≥

2k−1∑
i=0

ai
4
≥ 1

4

where the first inequality follows from the fact that at least 2k2−1 elements in Xi have
probability zero. Since D′ is an arbitrary k-junta distribution on an arbitrary set J 6= [k],
it follows that D is 1/4-far from being a junta distribution on any J 6= [k].

As we mentioned earlier, this implies that D is a k-junta distribution iff C is a collection
of uniform distributions. It is not hard to see that we can convert a sample drawn from
C to get a sample from D. Thus, any ε-tester for a k-junta distribution can be used as an
ε-tester for a collection of uniform distributions. Diakonikolas and Kane (2016) (in section
3.1.1) have shown that Ω(

√
MN/ε2) = Ω(2(k1+k2)/2) samples are required to distinguish a

collection of M uniform distributions from a collection which is ε-far from being uniform
with probability 2/3. This implies that we need Ω(2n/2/ε2) samples to test k-junta distri-
butions.
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Appendix A. Learning juntas with the cover method

Fix any class C of distributions over {0, 1}n. An ε-cover of C is a collection Cε of distributions
on {0, 1}n such that for every distribution D ∈ C, there is a distribution D′ ∈ Cε such that
dTV(D,D′) ≤ ε. We can obtain a good learning algorithm for C by designing a small ε-cover
for it and using the following lemma.

Lemma 18 Let C be an arbitrary family of distributions and ε > 0. Let Cε ⊆ C be an
ε-cover of C of cardinality N . Then there is an algorithm that draws O(ε−2 logN) samples
from an unknown distribution D ∈ C and, with probability 9/10, outputs a distribution
D′ ∈ Cε that satisfies dTV(D,D′) ≤ 6ε. The running time of this algorithm is O(N logN/ε2).

See Diakonikolas (2016); Devroye and Lugosi (2001); Daskalakis et al. (2014) for good
introductions to the lemma itself and its application to distribution learning problems. We
are now ready to use it to complete the proof of Theorem 19.

Theorem 19 Fix ε > 0 and 1 ≤ k ≤ n. Define t =
(
n
k

)(2k−1+2k/ε
2k−1

)
. There is an algorithm

A with sample complexity O(log t/ε2) = O(k log n/ε2 + (2k log(1/ε))/ε2) and running time

O(t log t/ε2) =
(
n
k

)
(c/ε)2k+2

(
k log n+ 2k log(1/ε)

)
for some constant c that, given samples

from a k-junta distribution D, with probability at least 2
3 outputs a distribution D′ such that

dTV(D,D′) :=
∑

x∈{0,1}n |D(x)−D′(x)|/2 ≤ ε.

Proof By Lemma 18, it suffices to show that the class of all k-junta distributions has a

cover of size N =
(
n
k

)(2k−1+2k/ε
2k−1

)
. This, in turn, follows directly from the fact that we can

simply let Cε be the set of all k-juntas with probability mass function p where p(x) is a
multiple of ε/2n for each element x ∈ {0, 1}n. There are

(
n
k

)
ways to choose the set J ⊆ [n]

of junta coordinates and at most (2k)2k/ε ways to allocate the probability mass in ε/2k

increments among the 2k different restrictions of x on J .

Appendix B. Proof of Equation (5)

We establish some basic properties of PJ as described in Section 2. First, we introduce the
notation we use below. For a fixed set J , define the biases bi’s, i ∈ {0, 1, . . . , 2k − 1}, to be
the probability of x(J) = Ci where x is drawn from P and Ci is the binary encoding of i with
k bits. For a subset I of size k, we define a function rI : I → [k] such that rI(c) indicates
the rank of the coordinate c ∈ I (rank the smallest first). Basically, when x(I) = Ci, the
c-th bit of x is equal to the rI(c)-th bit of Ci for all c ∈ I. In addition, we define rI(S)
to be the image of subset S under the function rI . In particular, if x(I) = Ci, we have

x(S) = C
(rI(S))
i for any S ⊆ I. For a junta distribution on the set J∗, let L(i, T ) = {j | 0 ≤

j < 2k and C
rJ∗ (T )
j = C

rJ∗ (T )
i } for any i ∈ {0, 1, . . . , 2k − 1} and T ⊆ J∗. In other words,

L(i, T ) is a set of j’s such that all the Cj ’s agree on the setting of the coordinates in T .

Lemma 20 Assume P is a k-junta distribution on the set J∗. Let J be a subset of [n] such
that |J | = k. We define PJ similar to Equation 1. Then, for any i ∈ {0, 1, . . . , 2k − 1}, we
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have
Pr
y∼P

[
y(J) = Ci

]
= 2−|J\J

∗|
∑

j∈L(i,J∩J∗)

Pr
y∼P

[
y(J∗) = Cj

]
(6)

Proof If J = J∗, then L(i, J ∩ J∗) has just one member, i, and the proof is clear. Thus,
assume J 6= J∗. Let t = |J \ J∗| and it is at least one. Then, we have

bi = Pr
y∼P

[
y(J) = Ci

]
= Pr

y∼P

[
y(J\J∗) = C

rJ (J\J∗)
i ∧ y(J∩J∗) = C

rJ (J∩J∗)
i

]
=

2k−1∑
j=0

Pr
y∼P

[
y(J\J∗) = C

rJ (J\J∗)
i ∧ y(J∩J∗) = C

rJ (J∩J∗)
i |y(J∗) = Cj

]
· Pr
y∼P

[
y(J∗) = Cj

]
Observe that the assumption on P implies that the non-junta coordinates (including J \J∗)
are distributed uniformly. Thus, the probability of each setting for the coordinates in J \J∗
is 2−|J\J

∗| = 2−t. Consequently, it is independent of the junta coordinates. Therefore, we
conclude

bi =
2k−1∑
j=0

Pr
y∼P

[
y(J\J∗) = C

rJ (J\J∗)
i

]
· Pr
y∼P

[
y(J∩J∗) = C

rJ (J∩J∗)
i |y(J∗) = Cj

]
· Pr
y∼P

[
y(J∗) = Cj

]

=
2k−1∑
l=0

2−t · Pr
y∼P

[
y(J∩J∗) = C

rJ (J∩J∗)
i |y(J∗) = Cj

]
· Pr
y∼P

[
y(J∗) = Cj

]
.

Note that if y(J∗) = Cj , then the values of xi’s on all the coordinates in J∩J∗ are determined.
Therefore, both binary encodings Ci and Cj should appoint the same value to these coordi-

nates. In other words, if C
rJ (J∩J∗)
i 6= C

rJ∗ (J∩J∗)
j , then the probability of y(J∩J∗) = C

rJ (J∩J∗)
i

is zero given the fact y(J∩J∗) = C
rJ∗ (J∩J∗)
j . Otherwise, it is one. Therefore,

bi =
∑

j∈L(i,J∩J∗)

2−t · Pr
y∼P

[
y(J∩J∗) = C

rJ (J∩J∗)
i |y(J∗) = Cj

]
· Pr
y∼P

[
y(J∗) = Cj

]
= 2−t ·

∑
j∈L(i,J∩J∗)

Pr
y∼P

[
y(J∗) = Cj

]
.

Since t = |J \ J∗|, the proof is complete.

Moreover, by definition of PJ and Equation 6, and setting Ci = x(J)

PJ(x) = Pr
y∼P

[
y(J) = x(J)

]
/2n−k

=
∑

j∈L(i,J∩J∗)
Pr
y∼P

[
y(J∗) = Cj

]
/2n−k+|J\J∗|

=

(
Pr
y∼P

[
y(J∩J∗) = x(J∩J∗)]) /2n−k+|J\J∗|

where the last equality comes from the fact that L(i, J ∩ J∗) contains all Cj ’s such that

C
(J∩J∗)
j = x(J∩J∗). Thus, the proof of Equation (5) is complete.
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Appendix C. Proof of Lemma 7

Lemma 21 (Step 1) Let P be a k-junta distribution on the set J∗ and PJ be a k-junta
distributions defined in Equation 1. Then,

E[(P(x)− 1/2n)2]− E[(PJ(x)− 1/2n)2] ≥ 4 · dTV(P,PJ)2/22n. (4)

Proof Before we go to prove the inequality, we prove the following equality

E[PJ(x)(P(x)− PJ(x))] = 0. (7)

Assume we partition all x’s into Xi’s such that for any two vectors x1 and x2 in Xi

then x
(J∩J∗)
1 = x

(J∩J∗)
2 . We prove that for each Xi,

∑
x∈Xi PJ(x)(P(x) − PJ(x)) is zero

which yields the Equation 7. By Equation 5, PJ is a junta distribution on the set J ∩ J∗.
Therefore, for any two vectors x1 and x2 in Xi for a fixed i, we have PJ(x1) = PJ(x2).
Thus, we just need to prove

∑
x∈Xi PJ(x) =

∑
x∈Xi P(x) which follows from Equation 5

directly. Moreover, observe that E[D(x)] = 1/2n for any distribution D. Therefore, we have

E[(D(x)− 1/2n)2] = E[D(x)2] + E[1/22n]− 2E[D(x)/2n]

= E[D(x)2] + 1/22n − 2/22n = E[D(x)2]− 1/22n = E[D(x)2]− E[D(x)]2.
(8)

Now, we prove (4). Since P and PJ are distributions, their pmfs satisfy E[P(x)] =
E[PJ(x)] = 1/2n. By this fact and linearity of expectation,

E[(P(x)− 1/2n)2]− E[(PJ(x)− 1/2n)2] = E[P(x)2]− E[PJ(x)2]

= E[(P(x)− PJ(x) + PJ(x))2]− E[PJ(x)2]

= E[(P(x)− PJ(x))2] + 2E[((PJ(x)(P(x)− PJ(x))] + E[PJ(x)2]− E[PJ(x)2]

= E[(P(x)− PJ(x))2] ≥ (E[|P(x)− PJ(x)|])2 = 4 · dTV(P,PJ)2/22n

where the second to last equality comes from Equation 7.

Appendix D. Proof of Lemma 8

Below, we first show that the Fourier coefficient P̂(S) of a set S 6⊆ J∗ is zero. This lemma
allows us to infer that it is enough to compute the low degree Fourier coefficients, because
the other ones are zero. Intuitively, such a high degree S contains a coordinate that will
be either zero or one each with probability a half. Therefore, the Fourier coefficient of S
is zero. We prove this formally in Lemma 22. Leveraging this lemma, we prove that the
values of h(J) and f(J) are equal in Lemma 8.

Lemma 22 For any J ⊂ [n], let D be a junta distribution with J being the set of junta
coordinates. For any S 6⊆ J , D̂(S) is zero.

22



Learning and Testing Junta Distributions

Proof Observe that J might be the empty set, in which case D is a uniform distribution.
Since S is not a subset of J , there is a coordinate i such that i is in S but not J . Thus,
the i-th coordinate in each sample x is one or zero, each with probability a half. We simply
pair up all x’s based on their agreement on x([n]\{i}) and denote a pair by (x0, x1). Since i
is not in the junta, D(x0) = D(x1). And since i is in S, χS(x0) = −χS(x1). Therefore,

D̂(S) =
1

2n

∑
x∈{0,1}n

D(x) · χS(x) =
1

2n

∑
(x0,x1)

(D(x0) · χS(x0) +D(x1) · χS(x1))

=
1

2n

∑
(x0,x1)

(D(x0) · χS(x0)−D(x0) · χS(x0)) = 0

as we wanted to show.

Now we are ready to prove that f(J) is equal to h(J) for any J ⊆ [n] of size k.

Lemma 23 (Step 2) With f and h as defined in Equation (3) and Equation (2), for any
J ⊂ [n] of size k we have f(J) = h(J).

Proof By (8),

h(J) = 22n·E[(PJ(x)−1/2n)2] = 22n·
(
E[PJ(x)2]− E[PJ(x)]2

)
= 22n·

(∑
S

P̂J(S)2 − P̂J(∅)2

)

where the last equality follows by Parseval’s Theorem and the fact that

P̂J(∅) =
1

2n

∑
x∈{0,1}n

PJ(x) · χ∅(x) = E[PJ(x)].

In addition, note that by (5), any PJ is a junta distribution over the set J ∩ J∗. By
Lemma 22, for any S 6⊆ (J ∩ J∗), P̂J(S) is zero. Thus,

h(J) = 22n ·

(∑
S

P̂J(S)2 − P̂J(∅)2

)
= 22n ·

∑
S⊆(J∩J∗),S 6=∅

P̂J(S)2.

Now, it is clear that h(J∗) = f(J∗). Assume J 6= J∗. Let S be a non-empty set of
J ∩ J∗ and c be a fixed binary vector of size |S|. By definition of PJ , it is not hard to see
Prx∼P [x(S) = c] = Prx∼PJ [x(S) = c]. Thus, by conditioning over all possible c, we can prove
Prx∼P [χS(x) = b] = Prx∼PJ [χS(x) = b] when b is +1 or −1. Therefore,

P̂J(S) = 2−n ·
∑
x

PJ(x)χS(x) = 2−n ·
(

Pr
x∼PJ

[χS(x) = 1]− Pr
x∼PJ

[χS(x) = −1]

)
= 2−n ·

(
Pr
x∼P

[χS(x) = 1]− Pr
x∼P

[χS(x) = −1]

)
= 2−n ·

∑
x

PJ(x)χS(x) = P̂(S).
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In this way, for any non-empty subset S of J ∩ J∗, P̂J(S) is equal to P̂(S). By Lemma 22
for any S ⊆ J which is not subset of J∗ then P̂(S) is zero. Thus,

h(J) = 22n ·
∑

S⊆(J∩J∗),S 6=∅

P̂J(S)2 = 22n ·
∑

S⊆(J∩J∗),S 6=∅

P̂(S)2

= 22n ·

 ∑
S⊆(J∩J∗),S 6=∅

P̂(S)2 +
∑

S⊆J,S 6⊆J∗
P̂(S)2

 = 22n ·
∑

S⊆(J),S 6=∅

P̂(S)2 = f(J)

and the proof is complete.

Appendix E. Proof of Lemma 9

Lemma 24 (Step 3) Let P be a junta distribution on the set J∗ of size k. Suppose we
draw s = 72 ·22k · ln(12 min(nk, 2n))/ε4 samples from P. For any set J of size k, we estimate
f(J), as defined in (3), by

f̃(J) =
∑

S⊆J,S 6=∅

(
2 · [# samples x with χS(x) = 1]

s
− 1

)2

.

With probability 5/6 all of the J ’s we have |f(J)− f̃(J)| < ε2.

Proof By the definition of Fourier coefficients, we have

f(J) = 22n ·
∑

S⊆J,S 6=∅

P̂(S)2 =
∑

S⊆J,S 6=∅

(∑
x

P(x)χS(x))

)2

=
∑

S⊆J,S 6=∅

(
Pr
x∼P

[χS(x) = 1]− Pr
x∼P

[χS(x) = −1]

)2

=
∑

S⊆J,S 6=∅

(
2 Pr
x∼P

[χS(x) = 1]− 1

)2

.

Now for abbreviation, let PS = 2·Pr[χS(x) = 1]−1 and let P̃S be 2·[# samples x with χS(x) =
1]/s− 1. First, notice that P̃S is an estimator for PS such that their difference is not likely
to be more than ε′ = ε2/(6 · 2k), because by the Hoeffding bound we have

Pr
[∣∣∣PS − P̃S∣∣∣ > ε′

]
= Pr

[∣∣∣∣ [# samples x with χS(x) = 1]

s
− Pr
x∼P

[χS(x) = 1]

∣∣∣∣ > ε′

2

]
≤ 2·e−

sε′2
2 .

Note that in the Algorithm 1 we estimate this value for all subsets of size at most k. It
is well known that

∑k
i=1

(
n
i

)
≤ min(nk, 2n). Thus, there are at most min(nk, 2n) many

sets. Therefore, for s ≥ 2 ln(12 min(nk, 2n))/ε′2, it is not hard to see that the probability of
estimating at least one PS inaccurately is at most 1/6 by the union bound. We can assume
αS = PS − P̃S is in the range [−ε′, ε′] with probability 5/6. The maximum error of f̃(J) is
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Algorithm 4 An ε-test for testing uniformity of a bucket

1: Input: si samples from each Pi in the collection.
2: Y ← the number of unique elements in the samples.
3: For each sample (i, x), replace x with x′ uniformly chosen from [n].

4: λ← ε2·s2
c2·m·n

5: Y ′ ← the number of unique elements in these s samples.
6: if |Y − Y ′| > λ/2, then
7: return Reject
8: else
9: return Accept

10: end if

bounded by

|f(J)− f̃(J)| =

∣∣∣∣∣∣
∑

S⊆J,S 6=∅

P 2
S −

∑
S⊆J,S 6=∅

P̃ 2
S

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

S⊆J,S 6=∅

(2PSαS − α2
S)

∣∣∣∣∣∣
≤

∑
S⊆J,S 6=∅

(2PS |αS |+ α2
S) < 2k(2ε′ + ε′2) < ε2/2

where the last inequality follows by ε′ = ε2/(6 · 2k) < 1.

Appendix F. Uniformity Test within a Bucket

In this section, we provide a uniformity test for a collection of distributions when the weights
are bounded. In other words, the algorithm distinguishes whether the weighted distance is
zero or at least ε. Our algorithm is based on counting the number of unique elements which
is also negatively related to the number of the coincidences. This idea was proposed before
in Paninski (2008); Batu et al. (2000) for uniformity test of a single distribution. The high
level idea is to estimate the expected value of the number of unique elements when the
underlying collection is an unknown collection and compare that value to the case when
it is a collection of uniform distributions. If these values are close enough to each other
we can infer that the unknown collection is actually a collection of uniform distributions.
Otherwise it is not. More formally, we represent Algorithm 4 and prove its correctness in
the following theorem.

Theorem 25 Assume we have a collection of distributions C = {Pi|wi}mi=1. We draw
Poi(s) samples from C. Assume the following conditions hold.

• For all i ∈ [m], wi is at most T .

• The number of samples from Pi, namely si, is in [wi · s/c, cwi · s] for a constant c.

• s is at least c3m
√

30Tn/ε2.
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Then, Algorithm 4 distinguishes whether C is a collection of uniform distributions or it is
ε-far from it with probability 2/3.

Proof Let Y be a random variable that indicates the number of unique elements in a set of
samples drawn from P which is the underlying distribution over [m]× [n]. Notice that we
consider each sample as an ordered pair (i, x) which means x is drawn based on Pi. Thus,
(i, x) is not equal to (j, x). Similarly, let Yi denote the number of unique elements from
distribution Pi. It is not hard to see

∑m
i=1 Yi = Y . We use E{Pi}[Y ] to denote the expected

value of Y when samples are drawn from the underlying collection {Pi|wi}mi=1. In addition,
we denote the expected value of Y by E{U}[Y ] when the underlying collection is a set of
uniform distributions with the same weights as P (i.e. {U|wi}mi=1).

Now we need to answer this question: Does the number of unique elements indicate that
the collection is a set of uniform distribution or not? The answer is Yes. We show that
E{Pi}[Y ] is smaller than E{U}[Y ] if the collection is far from being a collection of uniform
distributions. Therefore, if we see a meaningful difference between E{Pi}[Y ] and E{U}[Y ], we
can conclude {Pi|wi}mi=1 is not a collection of uniform distributions. For a single distribution
P, in Paninski (2008), Paninski showed that the difference EP [Y ] and EU [Y ] is related to
the distance between P and the uniform distribution.

EU [Y ]− EP [Y ] ≥ s2 · (dL1(P, U))2

n
.

Since we are looking for E{U}[Y ] (not EU[m]×[n]
[Y ]), we can not use this inequality directly

over the domain [m]× [n]. However, we use this inequality for each Pi separately. Observe
that the way that we convert the samples allows us to get the same number of samples, si
from Pi and U over the domain of size n. Thus, we can use the above inequality separately.
Hence, by linearity of expectation and the Cauchy-Schwarz inequality, we have

E{U}[Y ]− E{Pi}[Y ] =

m∑
i=1

(EU [Yi]− EPi [Yi]) ≥
1

n

m∑
i=1

(si · dL1(Pi, U))2

≥ s2

c2 · n

m∑
i=1

(wi · dL1(Pi, U))2 ≥ s2

c2 · n ·m

(
m∑
i=1

wi · dL1(Pi, U)

)2

where the first inequality follows from Paninski (2008), the second follows from that si ∈
[wi · s/c, cwi · s]. Set λ to (4s2ε2)/(c2 ·m · n). Therefore, if C is ε-far from being a collection
of uniform distributions, then

E{U}[Y ]− E{Pi}[Y ] ≥ 4s2 · ε2

c2n ·m
= λ, (9)

because the weighted L1 distance is at least 2ε. However, these two expected values cannot
be calculated directly since the wi’s and Pi’s are unknown. Thus, we need to estimate them.
By definition, the number of unique elements in s samples, Y , is an unbiased estimator for
E{Pi}[Y ]. To estimate E{U}[Y ], we reuse the samples we get from the collection and change
each sample (i, x) to (i, x′) where x′ is chosen uniformly at random from [n]. Since i and
x′ are picked with probability wi and 1/n respectively, we can assume the sample (i, x′) is
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drawn from the collection {U|wi}mi=1. Therefore, the number of unique elements in the new
sample set, namely Y ′, is an unbiased estimator for E{U}[Y ]. Below, we formally prove that
the number of unique elements, Y , (and Y ′) cannot be far from their own expected value
using the Chebyshev’s inequality. To do so, we need to bound the variance.

Lemma 26 If the constraints of Theorem 25 hold, then

Var[Y ] ≤ EU [Y ]− EPi [Y ] +
c2s2T

n
.

Proof Bounding the variance of the number of unique elements has been studied in Paninski
(2008). Paninski showed the following inequality

VarP [Y ] ≤ EU [Y ]− EP [Y ] +
s2
i

n

Here, since we know the si’s are independent (by using the standard Poissonization method),
we have

Var[Y ] =

m∑
i=1

Var[Yi] ≤
m∑
i=1

(
EU [Yi]− EPi [Yi] +

s2
i

n

)
≤ E{U}[Y ]−E{Pi}[Y ]+

c2s2

n

(
m∑
i=1

w2
i

)
.

On the other hand, it is not hard to see that since wi’s are less than T , we have

∑
i

w2
i ≤

(∑
i

wi

)
· T ≤ T.

Combining the two above inequalities we get Var[Y ] ≤ EU [Y ]− EPi[Y ] +
c2s2T

n
.

Now, we are ready to use the Chebyshev’s inequality to prove that we are able to
estimate Y accurately. Below we consider two cases based on the underlying collection.

• Case 1: C is a collection of uniform distribution: In this case E{Pi}[Y ] is equal
to E{U}[Y ], so by Lemma 26 the variance of Y is at most c2s2T/n. Thus by the
Chebyshev’s inequality we have

Pr[|Y − E{U}[Y ]| ≥ λ/4] ≤ 16Var[Y ]/λ2 ≤ c6 T nm2

s2ε4
.

It is not hard to see that for s ≥ c3m
√

6Tn/ε2 the above probability is at most 1/6.
Similar to Y , we can prove that the probability that Y ′ is λ/4 far away from its mean
is less than 1/6. Therefore, Y ′ − Y is at most λ/2 with probability at least 1− 1/3.

• Case 2: C is ε-far from being a collection of uniform distributions:. Therefore
by Equation 9, E{U}[Y ] − E{Pi}[Y ] is at least λ. Similar to the above, we use the
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Chebyshev’s inequality. By Lemma 26 and (9) we have

Pr
[
|Y − E{Pi}[Y ]| ≥ 1

4(E{U}[Y ]− E{Pi}[Y ])
]
≤ Var[Y ]/(E{U}[Y ]− E{Pi}[Y ]/4)2

≤
E{U}[Y ]− E{Pi}[Y ] + c3s2T/n

(E{U}[Y ]− E{Pi}[Y ]/4)2

≤ 16

E{U}[Y ]− E{Pi}[Y ]
+

16c2s2T

n · (E{U}[Y ]− E{Pi}[Y ])2

≤ 16

λ
+

16c2s2T

n · λ2
≤ 4 c2 nm

s2ε2
+
c6 T nm2

s2ε4
<

5 c6 T nm2

s2ε4
.

Note that T by definition can not be less than 1/m that’s why the last inequality is
true. It is straightforward that for s ≥ c3m

√
30Tn/ε2 the above probability is at most

1/6. On the other hand, similar to what we had in case one, Y ′ cannot go far from
its mean too. Thus,

Pr[|Y ′ − E{U}[Y ]| ≥ 1

4
(E{U}[Y ]− E{Pi}[Y ])] ≤ Pr[|Y ′ − E{U}[Y ]| ≥ λ/4] ≤ 1/6.

Therefore, Y ′ − Y is at least (E{U}[Y ] − E{Pi}[Y ])/2 ≥ λ/2 with probability at least
1− 1/3.

In both cases, the uniformity test outputs the correct answer with probability at least 2/3.

Corollary 27 Assume we have a collection of distributions C = {Pi|wi}mi=1. Assume for
all i ∈ [m], wi is in [1/8m, 8/m]. Then, there exists an algorithm that distinguishes whether
C is a collection of uniform distributions or it is ε-far from being a collection of uniform
distributions with probability 1− δ using O(

√
mn log(δ−1)/ε2 + log(δ−1)m logm) samples.

Proof Let S = max(c3m
√

30Tn/ε2, 40m log(12(m + 1)). Let s be a sample drawn from
Poi(S). Using Lemma 12 and since all the wi ≥ 1/8m, ŵi is in the range [wi/2, 2wi] for all
i’s; and s ≥ 2S with probability 5/6. Now, using Theorem 25 and setting T = 8/m and
c = 2, with probability 5

6 ·
2
3 = 5/9, we can distinguish whether C is a collection of uniform

distributions or not. Using standard amplification, by repeating this argument O(log δ−1)
times, the algorithm answers correctly with probability at least 1−δ. Moreover, the sample
complexity is O(

√
mn log(δ−1)/ε2 + log(δ−1)m logm).
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