
Lower bounds for testing function isomorphism

Eric Blais
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213
eblais@cs.cmu.edu

Ryan O’Donnell∗
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213
odonnell@cs.cmu.edu

Abstract—We prove new lower bounds in the area of
property testing of boolean functions. Specifically, we study the
problem of testing whether a boolean function f is isomorphic
to a fixed function g (i.e., is equal to g up to permutation of
the input variables). The analogous problem for testing graphs
was solved by Fischer in 2005. The setting of boolean functions,
however, appears to be more difficult, and no progress has been
made since the initial study of the problem by Fischer et al.
in 2004.

Our first result shows that any non-adaptive algorithm for
testing isomorphism to a function that “strongly” depends
on k variables requires log k − O(1) queries (assuming k/n
is bounded away from 1). This lower bound affirms and
strengthens a conjecture appearing in the 2004 work of Fischer
et al. Its proof relies on total variation bounds between
hypergeometric distributions which may be of independent
interest.

Our second result concerns the simplest interesting case not
covered by our first result: non-adaptively testing isomorphism
to the Majority function on k variables. Here we show that
Ω(k1/12) queries are necessary (again assuming k/n is bounded
away from 1). The proof of this result relies on recently
developed multidimensional invariance principle tools.

Keywords-Boolean functions, property testing, lower bounds

I. INTRODUCTION

This paper is concerned with the field of property testing
for boolean functions. Let us recall the standard framework,
as originally introduced by Rubinfeld and Sudan [17].

Definition 1.1. Let P be a class of functions {0, 1}n →
{0, 1}. We say that a randomized query algorithm T with
black-box access to an unknown function f : {0, 1}n →
{0, 1} is an (ε, q)-tester for P if it makes at most q queries
to f : {0, 1}n → {0, 1} and then:

• Accepts with probability at least 2/3 when f is in P;
and,

• Rejects with probability at least 2/3 when f is ε-far
from every function f ′ ∈ P.

∗ Supported by NSF grants CCF-0747250 and CCF-0915893, BSF grant
2008477, and Sloan and Okawa fellowships.

Here we say that f and f ′ are ε-far if they differ on at
least an ε fraction of the inputs in {0, 1}n, and are ε-close
otherwise. When the algorithm chooses all of its queries in
advance it is non-adaptive; otherwise we say it is adaptive.

Definition 1.2. For a fixed ε > 0 and choice of adaptivity,
the query complexity of P is the minimum value of q for
which there is an (ε, q)-tester. Following standard conven-
tions, when the query complexity q is independent of n for
every ε > 0, we say that P is easy to test; otherwise we
say that it is hard to test.1 This notion is independent of the
choice of adaptivity, since non-adaptive query complexity
can be (exponentially) bounded in terms of adaptive query
complexity.

The last five years have seen great strides in understanding
the testability of graph properties. This is the special case in
which f : {0, 1}(

V
2) → {0, 1} encodes the adjacency matrix

of a graph on vertex set V , and P is a property that is closed
under graph symmetries; i.e., permutations of V . Indeed, the
works [2], [3], [1], [4] have to a large extent characterized
the testability of graph properties.

However the characterization problem for general boolean
functions is very far from understood and remains a long-
standing open problem. In this paper we revisit a major
subproblem, introduced in the early work of Fischer, Kindler,
Ron, Safra, and Samorodnitsky [7]: the difficulty of testing
isomorphism to a function given in advance.

A. Testing g-isomorphism

Two boolean functions f : {0, 1}n → {0, 1} and
g : {0, 1}n → {0, 1} are said to be isomorphic to each
other if they are identical up to reordering input variables.
More precisely, we say that f and g are isomorphic to
each other if there is a permutation σ on [n] such that for
every x = (x1, x2, . . . , xn) ∈ {0, 1}n, f(x1, x2, . . . , xn) =
g(xσ(1), xσ(2), . . . , xσ(n)).

For each function g : {0, 1}n → {0, 1}, we let Pg denote
the class of all functions isomorphic to g. This gives a natural

1Formally speaking, this makes sense only for a family of properties
(Pn)n, one for each input length.

testing problem: testing whether an unknown function f
is isomorphic to the known function g. This is called
the problem of testing g-isomorphism. Fischer et al. [7]
proposed the following question, a significant component of
the research program to characterize testability of boolean
functions:
Research goal: Classify all boolean functions g according
to whether testing g-isomorphism is easy or hard.

We remark that Fischer [6] solved the analogous problem
for graph properties soon after; see also [8]. But he called
the general case of boolean functions “rather hard”, and
indeed the authors are not aware of any additional progress
specifically on this problem.

In this paper we make progress towards a characterization
by showing hardness of testing g-isomorphism for a large
class of functions g.

B. Prior work

When the problem of testing function isomorphism was
first raised by Fischer et al. [7], a few simple cases were
already well understood. First, it is easy to see that for any
totally symmetric function g : {0, 1}n → {0, 1}, testing g-
isomorphism is easy – no other functions are isomorphic to
g, and testing function identity requires only O(1/ε) queries.

Another instance of the g-isomorphism testing problem
that is well understood is one where g(x) = xi for some
i ∈ {1, . . . , n}. Then the g-isomorphism problem is equiv-
alent to the well-studied dictatorship testing problem at the
heart of PCP constructions (first studied in [5]). The query
complexity of the dictatorship testing problem is O(1/ε), so
this special case of the function isomorphism problem is also
easy. Parnas, Ron, and Samorodnitsky [15] also showed that
testing g-isomorphism is easy when g is an AND function
on any number of variables.

The paper of Fischer et al. [7] introduced a strong new
upper bound: they showed that for any k, if g is a k-junta
– meaning that g depends on at most k variables – then
it is possible to ε-test g-isomorphism (non-adaptively, even)
with poly(k/ε) queries. Therefore, testing isomorphism to
any O(1)-junta is easy.

Regarding hardness results, prior to this work the only
known lower bound for testing g-isomorphism was for the
case of g being the Parityk function, where Parityk :
{0, 1}n → {0, 1} is defined by Parityk(x) = x1 ⊕
x2 ⊕ · · · ⊕ xk. Fischer et al. [7] showed that when k ≤
o(
√

n), ε-testing Parityk-isomorphism non-adaptively re-
quires Ω̃(

√
k/ε) queries. This result implies that testing

Parityk-isomorphism is hard for ω(1) ≤ k ≤ o(
√

n).

C. Our results

It seems clear that more work needs to be done on the
hardness side of testing g-isomorphism. A first direction

would be to investigate the following conjecture, stated
in [7]: “If n is sufficiently large compared to k, and g is a
k-junta which is ε-far from all (k− 1)-juntas, then ε-testing
g-isomorphism requires ωk(1) queries.”

Our first main result affirms and significantly strengthens
this conjecture:

Theorem 1.3. Let g : {0, 1}n → {0, 1} be a k-junta which
is ε-far from being a (k−e)-junta for some e ≥ 1. Then any
non-adaptive ε-tester for g-isomorphism must make at least
log2(k′/e2)−O(1) queries, where k′ = min(k, n− k).

Qualitatively, Theorem 1.3 implies that testing g-
isomorphism for k-juntas is hard whenever ω(1) ≤ k ≤
n − ω(1), provided the k-junta g is far from all juntas on
k−o(

√
k) variables. We discuss the possibility of improving

this theorem in Section V.

As one very special case, Theorem 1.3 extends the Fis-
cher et al. hardness result for testing Parityk-isomorphism
to all ω(1) ≤ k ≤ n − ω(1) (albeit with a worse query
complexity lower bound). It is important to note that the
restriction k ≤ n − ω(1) is not an artifact of our proof,
but rather is inherent. This is because, e.g., testing Parityk-
isomorphism when k = n−O(1) is easy: if the tester XORs
each query response with the parity of all bits in the query, it
reduces testing Parityk-isomorphism to testing Parityn−k-
isomorphism. Thus testing Parityn−O(1)-isomorphism is
easy, by the junta isomorphism-testing result of Fischer et al.

Our Theorem 1.3 is only useful for k-juntas g that are far
from being (k − o(

√
k))-juntas. Perhaps the most natural

case not covered by this theorem is that of the majority
function on k variables, Majk. A straightforward calculation
shows that for all δ > 0, the function Majk is oδ(1)-close
to being a junta on k − δk variables: namely Majk−δk.
Nevertheless, the second main result in our paper proves
a strong hardness result for testing Majk-isomorphism:

Theorem 1.4. For every constant δ > 0, there exists a
constant ε > 0 such that the following holds: Assuming
1/ε ≤ k ≤ (1 − δ)n, any non-adaptive algorithm for ε-
testing Majk-isomorphism must make at least Ω((δk)1/12)
queries.

Qualitatively, Theorem 1.4 implies that testing Majk-
isomorphism is hard for every ω(1) ≤ k ≤ n − Ω(n).
Again, this range is optimal: the upper bound cannot be
improved because as mentioned, Majn−o(n) is o(1)-close
to Majn; thus we can test Majn−o(n)-isomorphism using
the easy Majn-isomorphism tester that follows from Majn
being totally symmetric.

In this extended abstract, we prove Theorem 1.4 only in
the case where δ = 1/4 (and assuming k is divisible by 3).
The few tedious technical modifications needed to handle
smaller values of δ are deferred to the full version of the

article. I.e., we prove:

Theorem 1.5. There is a universal ε0 > 0 such that
whenever k ≤ (3/4)n (and is divisible by 3), any non-
adaptive algorithm for ε0-testing Majk-isomorphism must
make at least Ω(k1/12) queries.

We remark that the bound in Theorem 1.5 is exponentially
stronger than the one in Theorem 1.3: it shows that any
non-adaptive algorithm for testing Majk-isomorphism must
make a number of queries polynomial in k. This bound is
optimal (up to the right value of the exponent), since Fischer
et al.’s [7] upper bound on the query complexity of testing
isomorphism to k-juntas implies that testing isomorphism to
the Majk function can be done with poly(k/ε) queries.

The result of Theorem 1.4 is also interesting in light of
the recent results of Matulef et al. on testing halfspaces:
they showed that testing the class of halfspaces is easy [11],
but testing a natural subclass of halfspaces – the class of
±1-weight halfspaces – is hard [12]. More precisely, they
showed a non-adaptive query lower bound of Ω(log n) for
this class. Our Theorem 1.4 gives an exponentially improved
lower bound for a similar subclass of halfspaces: Ω(n1/12)
queries for the class of majority functions on, say, n/2
variables.

In light of Fischer [6]’s solution to the isomorphism
testing problem for graph properties – i.e., boolean functions
with a certain high degree of symmetry – we believe that
characterizing testability of g-isomorphism for symmetric k-
juntas is an approachable first step. Theorem 1.5 represents
progress in this direction. We remark that our method of
proving Theorem 1.5 can be extended to handle certain other
symmetric k-juntas. However the general case of symmetric
k-juntas g has some unexpected tricky aspects to it, which
we discuss in Section V.

D. Our techniques

The proofs of Theorems 1.3 and 1.5 both use the standard
approach for proving lower bounds in property testing: Yao’s
Minimax Principle [18]. That is, we prove both theorems
by introducing distributions Fyes and Fno on functions that
should be accepted and rejected, respectively, by algorithms
testing g-isomorphism, and show a lower bound on the
number of queries required by any deterministic testing
algorithm. The main technical contribution of this research
is in the design and the analysis of the distributions Fyes

and Fno.

The main challenge in proving Theorem 1.3 is that the
lower bound applies to a very general class of functions g.
To prove the theorem we need to design distributions that
work without using any structural properties of the function
g being tested. The key to doing this involves analyzing the
statistical (total variation) distance between two multivariate

hypergeometric distributions. What follows is the main
lemma we need; it may be of independent interest:

Lemma 1.6. Suppose X ∼ Hyp(n, r, k) and Y ∼
Hyp(n, r, %+e), where Hyp(n, r, %) denotes the (univariate)
hypergeometric distribution: i.e., the number of red balls
drawn when selecting % balls randomly without replacement
from an urn containing n balls, r of which are red. Then

dTV(X, Y) ≤ .01

provided (1− r
n) min(%, n−%) ≥ Ce2, where C is a universal

constant. Here dTV(·, ·) denotes total variation distance.

In Section III-E we comment on why the somewhat
complicated hypothesis on r, n, %, and e is necessary. The
proof of Theorem 1.3, as well as a more complete discussion
of the techniques it requires, is presented in Section III.

The challenge in proving Theorem 1.5 is fundamentally
different. For Theorem 1.3, we know that the k-junta g is
far from all (k − 1)-juntas, say, which means it is okay
for our Fno functions to be “small tweaks” to g. However
when g = Majk, small tweaks result in functions that
are still close to Majk. Thus our Fno functions must be
somewhat drastically changed from Majk, yet still “look
like” Majk. We arrange for this by making the Fno functions
very carefully constructed weighted majority functions on
4
3k coordinates. To show that such functions still “look
like” Majk, we use recently developed multidimensional
invariance principles [13], [9]. However these need to be
adapted to the case of sums of random vectors which are
not independent, but rather are drawn without replacement
from a fixed pool of random vectors.

II. PRELIMINARIES AND DEFINITIONS

A. Probability theory

Given two random variables X, Y defined on a common
discrete sample space Ω, the total variation distance between
X and Y is

dTV(X, Y) =
1
2

∑

ω∈Ω

|Pr[X = ω]−Pr[Y = ω]| .

When X = (X1, . . . , Xn) ∈ Rn is a random vector and
we let µi = E[Xi] for i = 1, . . . , n, then the mean of X is
the vector E[X] = (µ1, . . . , µn) and the covariance matrix
of X is the n × n matrix Cov[X] whose (i, j)th entry is
defined by

Cov[X]i,j = E[(Xi − µi)(Xj − µj)] = E[XiXj]− µiµj .

The function Φ : R → [0, 1] is used throughout this paper
to denote the cumulative density function of the standard
normal distribution N(0, 1).

We write Hyp(n, m, k) to represent the hypergeometric
distribution – the distribution on the number t of red balls

drawn when k balls are drawn without replacement from a
set of n balls, m of which are red.

The following theorem of Höglund [10] provides useful
bounds on the normal approximation of hypergeometric
distributions.

Höglund Theorem. Let S = X1 + · · · + Xn, where
X1, . . . , Xn are chosen uniformly at random without re-
placement from A = {x1, . . . , xN}. Then for all t ∈ R,
˛̨
˛̨
˛Pr[S ≤ t]− Φ

t− nµ

σ
p

n(1− n/N)

!˛̨
˛̨
˛ ≤ C ·

PN
i=1 |xi − µ|3 /N

σ3
p

n(1− n/N)
,

where µ =
∑N

i=1
xi
N , σ2 =

∑N
i=1

(xi−µ)2

N , and C is an
absolute constant.

Höglund’s Theorem yields the following anti-
concentration property of hypergeometric distributions.

Corollary 2.1. Let S ∼ Hyp(n, m, k) and let σ2 =
km
n

(
1− m

n

) (
1− k

n

)
. Then for every t ≥ 0,

Pr[S = t] ≤ C
σ

where C is an absolute constant.

Proof: Let A be a set containing m ones and n − m
zeros. The random variable S = X1 + · · ·+Xk obtained by
choosing k variables uniformly at random without replace-
ment from A follows the Hyp(n, m, k) distributions. Fixing
µ = km/n, Höglund’s Theorem implies that for any t ∈ R,

∣∣Pr[S ≤ t]− Φ
(t−µ

σ

)∣∣ ≤ c0 ·
P

|xi−m/n|3P
(xi−m/n)2 · 1

σ ≤
c0
σ .

Since Pr[S = t] = Pr[S ≤ t]−Pr[S ≤ t− 1], we have

Pr[S = t] ≤ Φ(t−µ
σ)− Φ((t−1)µ

σ) + 2 c0
σ ≤

C
σ ,

where C = 2c0 +
√

2/π.

B. Influence

The influence of the ith variable in the function f :
{0, 1}n → {0, 1} is Inff (i) = Prx[f(x) *= f(x(i))], where
the probability is taken over the uniform distribution of
x ∈ {0, 1}n and x(i) is the input formed by flipping the
value of the ith bit in x.

When Inff (i) > 0, we say that the ith variable is relevant
in f . A function that contains at most k relevant variables
is called a k-junta.

III. GENERAL LOWER BOUND

In this section, we prove Theorem 1.3.

Theorem 1.3 (Restated). Let g : {0, 1}n → {0, 1} be a
k-junta which is ε-far from being a (k − e)-junta for some
e ≥ 1. Then any non-adaptive ε-tester for g-isomorphism
must make at least log2(k′/e2)−O(1) queries, where k′ =
min(k, n− k).

On first reading, the reader is encouraged to focus on
the simplest case, where e = 1. In this case, Theorem 1.3
affirms a conjecture stated in [7], as it shows that for any
ω(1) ≤ k ≤ n − ω(1), when g is a k-junta and is ε-far
from being a (k − 1)-junta for some ε > 0, then testing
g-isomorphism is hard.

We now begin the proof of Theorem 1.3. Let g, n, k, k′, e,
and ε be as in the statement of the theorem. Without loss of
generality, we may assume that the k relevant coordinates for
g are [k] = {1, 2, . . . , k}. We write gcore : {0, 1}k → {0, 1}
for the restriction of g to these coordinates.

As is standard in property testing lower bounds, the
proof of Theorem 1.3 uses Yao’s Minimax Principle [18].
Specifically, we construct two probability distributions Fyes

and Fno over functions isomorphic to g and functions
ε-far from being isomorphic to g, respectively. We then
show that any deterministic non-adaptive algorithm making
+ log2(k′/e2) queries cannot distinguish with probability at
least 1/3 between functions drawn from Fyes or from Fno.

A. The distributions Fyes and Fno

We define Fyes in the most natural way, by randomly
embedding gcore into [n]. More precisely, to obtain a draw
fyes ∼ Fyes, we first choose a uniformly random subset
J ⊆ [n] of cardinality k. Next, we choose a uniformly
random bijection σ : [k] → J . Finally, we define fyes(x) =
gcore(xσ(1), . . . , xσ(k)). It is clear that every such fyes is
isomorphic to g.

As for Fno, we define a draw fno ∼ Fno as follows:
First, we choose a uniformly random subset J ⊆ [n] of
cardinality k− e. Next, we choose a uniformly random map
σ : [k] → J from among those satisfying the following
property: there is one j1 ∈ J with e + 1 preimages under
σ, and the remaining j ∈ J \ {j1} have a unique preimage.
Finally, we define fno(x) = gcore(xσ(1), . . . , xσ(k)). Each
such fno only depends on the coordinates J and hence is a
(k− e)-junta. Thus by the assumption in Theorem 1.3, each
such fno is indeed ε-far from being isomorphic to g.

To prove Theorem 1.3, it suffices to prove the following:

Theorem 3.1. Let T be any deterministic non-adaptive q-
query testing algorithm for functions {0, 1}n → {0, 1}. Then
˛̨
˛̨ Pr
fyes∼Fyes

[T acc. fyes]− Pr
fno∼Fno

[T acc. fno]

˛̨
˛̨ ≤ O(2qe2

k′) + .01.

Note that if q < log2(k′/e2)− c0 for a sufficiently large
constant c0, then the upper bound in this theorem is at most
1/3. From this we deduce Theorem 1.3 immediately using
Yao’s Minimax Principle.

B. Distance between multivariate hypergeometrics

The typical way to prove a property testing bound such
as Theorem 3.1 is as follows. First, we write the q queries

of tester T as x1, . . . , xq ∈ {0, 1}n. We then introduce
the response vector random variables Ryes and Rno. Here
Ryes ∈ {0, 1}q is defined by drawing fyes ∼ Fyes and
letting Ryes = 〈fyes(x1), . . . , fyes(xq)〉, and Rno is defined
analogously. Finally, we show that

dTV(Ryes, Rno) ≤ 2q · O(e2)
k′

+ .01. (1)

We will in fact prove a stronger statement. To understand
it, let’s reconsider the complete random processes Pyes

and Pno by which the response vectors Ryes and Rno are
generated. We begin by focusing on the “yes” process, Pyes.

Given the tester T’s queries x1, . . . , xq ∈ {0, 1}n, we
think of them as row vectors and arrange them into a q ×
n query matrix Q. We will be especially interested in the
columns of this matrix Q, the jth column consisting of the
jth bits of all the query strings. Abstractly, we define the
set of all possible column (types)

C = {0, 1}q.

Since |C| = 2q + n, some columns will occur many times
in the matrix Q. In fact, we will think of the query matrix
Q as being an ordered multiset of columns from C.

Recalling the definition of Fyes, we think of the first step
of Pyes as choosing k column indices j1, . . . , jk randomly
and without replacement from [n]. We next extract columns
j1, . . . , jk from Q. We view this as a multiset of columns,
and call it the argument multiset Syes. Next, we randomly
order the columns in Syes, forming a q×k argument matrix
Ayes. Finally, we produce the response vector Ryes by
applying gcore to the argument matrix, row-wise.

The reader can easily verify this process Pyes generates
the correct distribution on the response vector random vari-
able Ryes.

The “no” process Pno is very similar, differing only in
the way it generates the argument multiset from the query
matrix. Recalling the definition of Fno, we think of Pno as
forming the argument multiset Sno by choosing % = k − e
random columns from Q without replacement, and including
an additional e copies of the first-chosen column. The
process Pno then forms the argument matrix Ano by again
randomly ordering the columns in the argument multiset, and
finally produces the response rector Rno again by applying
gcore to Ano, row-wise. The reader can again easily verify
that Pno generates the correct distribution on Rno.

Because the processes are identical after the argument
multiset is formed, a coupling argument immediately implies
that

dTV(Ryes, Rno) ≤ dTV(Syes, Sno). (2)

This inequality can be extremely lossy, depending on the
function gcore. However, since Theorem 1.3 applies for an
extremely broad range of functions, we are almost forced to

design a proof of Theorem 3.1 that uses no properties of the
function gcore. That is, in the absence of additional restric-
tions on the class of functions considered, there is no obvious
way to bound dTV(Ryes, Rno) except by dTV(Syes, Sno).

Letting Syes denote the subprocess of Pyes generating
Syes, and similarly for Sno, we have reduced proving (1),
and hence Theorem 1.3, to the following:

Theorem 3.2. For Syes ∼ Syes, Sno ∼ Sno, we have

dTV(Syes, Sno) ≤ |C| · O(e2)
min(k, n− k)

+ .01.

The reader can see now why our query complexity lower
bound in Theorem 1.3 is only logarithmic; we have |C| = 2q

competing against 1
k in the above bound. Indeed, we can

never prove a better-than-logarithmic lower bound if our
proof only involves showing statistical closeness of the
argument multisets Syes and Sno. To see this, suppose
k = n/2, so n − k = n/2 as well. Then if 2q / n/2, it
is possible that every column in the query matrix is unique.
In this case, the total variation distance between argument
multisets Syes and Sno will be 1 even in the case e = 1,
because Syes will always consist of unique columns, whereas
Sno will always have one column duplicated.

Notice that the ordering of the columns in the query
matrix Q has proven to be unimportant; we can think of Q
simply as an unordered multiset of columns from C. Thus
Theorem 3.2 is really a statement about the total variation
distance between certain multivariate hypergeometric ran-
dom variables. Specifically, for each column c ∈ C, let m(c)
denote the number of copies of c in Q. In process Syes, we
choose k random columns from Q without replacement and
count the number of copies of each column (type) in the
draw. Process Sno is similar, except we choose % random
columns from Q without replacement, and count an extra e
copies of the first-drawn column.

C. Reduction of Theorem 3.2 to two lemmas

This preceding discussion motivates the following nota-
tion:

Definition 3.3. Given integers N, e ≥ 1, M,L ≥ 0, with
M,L + e ≤ N , we define λN,M,L(e) = dTV(X, Y), where
X ∼ Hyp(N, M,L + e) and Y ∼ Hyp(N, M,L) + e.

The proof of Theorem 3.2 relies on the following two
lemmas. The first lemma is relatively straightforward, and
relates the distance between Syes and Sno to the total
variation distance between hypergeometric distributions.

Lemma 3.4.

dTV(Syes, Sno) ≤
∑

c∈C:m(c) %=0

m(c)
n

· λn−1,m(c)−1,$−1(e).

The second lemma is a total variation distance bound be-
tween (univariate) hypergeometric random variables which
may be of independent interest.

Lemma 3.5. There is a universal constant 2 ≤ κ < ∞
such that for any N, M,L, if L′ = min(L, N −L) satisfies
ML′

N ≥ κe2, then λN,M,L(e) ≤ .01.

This lemma is in fact identical to the key Lemma 1.6: to
see this, one only needs to replace M with r = N −M and
use the obvious fact that Hyp(N, N − M, L) is the same
distribution as L−Hyp(N, M,L).

We briefly comment on why the hypothesis ML′

N / e2

is necessary to show that Hyp(N, M,L + e) and
Hyp(N, M,L) + e are close in total variation distance. For
simplicity, first suppose that e = 1. It is necessary that that
ML
N / 1; this quantity is the mean of Hyp(N, M,L), and

if it is + 1 then X ∼ Hyp(N, M,L + 1) is likely to be
0 whereas Y ∼ Hyp(N, M,L) + 1 is at least 1. Second, it
is also necessary that M(N−L)

N = M(1 − L
N) / 1. To see

this, note that if by way of contrast 1− L
N + 1

M , then X is
concentrated at M and Y is concentrated at M +1. Finally,
to understand the hypothesis’s dependence on e, suppose
M = N/2 and L is quite small. Then Hyp(N, M,L) is
distributed very much like Binomial(L, e); hence we require
L / e2 or else the extra +e in Y will dominate the standard
deviation of Binomial(L, e).

We prove Lemmas 3.4 and 3.5 in the next sections, but
first we show how Theorem 3.2 follows from the lemmas.

Proof of Theorem 3.2: Note that we may freely assume
k ≥ 2e + 2, as otherwise the bound we are trying to
prove exceeds 1 (assuming the constant in the O(·) is
large enough). Let us introduce the notation N = n − 1,
M(c) = m(c) − 1, L = % − 1, L′ = min(L, N − L). Then
by Lemma 3.4,

dTV(Syes, Sno) ≤
∑

c∈C:m(c) %=0

m(c)
n

· λn−1,m(c)−1,$−1(e)

=
∑

0≤M(c)
N < κe2

L′

m(c)
n

· λN,M(c),L(e)

+
∑

M(c)
N ≥κe2

L′

m(c)
n

· λN,M(c),L(e)

≤
∑

0≤M(c)
N < κe2

L′

m(c)
n +

∑

M(c)
N ≥κe2

L′

m(c)
n · .01,

where the last inequality uses Lemma 3.5. Since∑
c∈C m(c) = n, the second sum above is at most .01. Thus

it remains to bound the first sum by |C| O(e2)
min(k,n−k) . There

are at most |C| summands in this first sum, and for each we
have

m(c)
n

≤ M(c) + 1
N

≤ κe2

L′
+

1
N
≤ 2κe2

L′

by the condition of the sum.
To complete the proof, it remains to show that L′ =

min(%−1, n− %) ≥ Ω(min(k, n−k)). When %−1 ≤ n− %,
then L′ = %−1 = k−e−1 ≥ k/2 by the fact that k ≥ 2e+2.
And when n−% <% −1, then L′ = n−% = n−k+e ≥ n−k.
so L′ ≥ 1

2 min(k, n− k), as we wanted to show.

D. Proof of Lemma 3.4

Let us think of the experiment Syes in an alternate way.
We begin by choosing a first column from Q for Syes —
call it C1. We next decide how many additional copies of
C1 to include into Syes. Call this quantity T . We have

T | (C1 = c) ∼ Hyp(n− 1, m(c)− 1, k − 1).

(Note that m(c)− 1 ≥ 0 always, because c won’t be chosen
if m(c) = 0.) So far, Syes consists of T + 1 copies of C1.
Finally, we complete the draw of Syes by choosing k−(T +
1) columns without replacement from “Q\C1”, meaning the
multiset of columns formed from Q by removing all copies
of C1.

We think of the experiment Sno in a similar way. Again,
we begin by choosing a first column C1 from Q for Sno.
We next determine how many additional copies of C1 there
will be from among the remaining % − 1 choices. Calling
this quantity U , we have

U | (C1 = c) ∼ Hyp(n− 1, m(c)− 1, %− 1).

Recall, however, that in Sno, we include an additional e
copies of C1 into Sno. Hence Sno ends up with U + e + 1
copies of C1. Finally, we complete Sno by adding %−(U+1)
columns drawn without replacement from Q \ C1.

Let V = U + e. We claim that by coupling the random
variables T | (C1 = c) and V | (C1 = c), we couple
Syes and Sno. This follows immediately from the two
descriptions, as then T + 1 = V + 1 = U + e + 1, and
k − (T + 1) = % + e− (V + 1) = %− (U + 1). Hence

dTV(Syes, Sno) ≤
∑

c∈C

Pr[C1 = c] ·

dTV(T | (C1 = c), V | (C1 = c)).

On one hand, Pr[C1 = c] is simply m(c)
n . On the other

hand, we have

T | (C1 = c) ∼ Hyp(n− 1, m(c)− 1, % + e− 1),
V | (C1 = c) ∼ Hyp(n− 1, m(c)− 1, %− 1) + e.

So by definition, dTV(T | (C1 = c), V | (C1 = c)) =
λn−1,m(c)−1,$−1(e), and hence

dTV(Syes, Sno) ≤
∑

c∈C:m(c) %=0

m(c)
n

· λn−1,m(c)−1,$−1(e),

as claimed.

E. Proof of Lemma 3.5

Recall that L′ = min(L, N − L),

ML′

N
≥ κe2, (3)

and our goal is to bound λN,M,L(e) = dTV(X, Y) ≤ .01,
where X ∼ Hyp(N, M,L+e) and Y ∼ Hyp(N, M,L)+e.

We begin by coupling X and Y , as follows. Imagine
drawing balls randomly and without replacement from an
urn containing N balls, M of which are white. We draw
L + e balls from the urn. We let X be the number of white
balls among all balls drawn; we let Y be the number of
white balls among the first L balls drawn, plus e. Note that
X ≤ Y always under this coupling.

Let us now compare the probability mass functions of X
and Y . The integers u < e can be in X’s range but not Y ’s;
the integers u > min(M, L+e) can be in Y ’s range but not
X’s. The remaining integers are in the range of both X and
Y , and we have

Pr[X = u]
Pr[Y = u]

=

(M
u

)(N−M
L+e−u

)
(N
L+e

)
/ (M

u−e

)(N−M
L+e−u

)
(N

L

)

=
(M

u

)
(M
u−e

) ·
(N

L

)
(N
L+e

)

= (M−u+e)(M−u+e−1)···(M−u+1)
u(u−1)···(u−e+1) · (N

L)
(N

L+e)
.

Evidently (and unsurprisingly), this ratio is a decreasing
function of u. Letting t be the largest integer for which the
ratio is at least 1, we conclude that

Pr[X = u] ≥ Pr[Y = u] iff u ≤ t.

It follows immediately that

dTV(X, Y) = Pr[X ≤ t]−Pr[Y ≤ t].

But by our coupling,

Pr[X ≤ t]−Pr[Y ≤ t] = Pr[X ≤ t ∩ Y > t]
−Pr[X > t ∩ Y ≤ t]

= Pr[X ≤ t ∩ Y > t],

since X ≤ Y always. Our goal, then, is to bound

dTV(X, Y) = Pr[X ≤ t ∩ Y > t]. (4)

We will in fact prove something slightly stronger: we will
show that for any value of t, the right-hand side of (4) is
small.

To analyze (4) we recall the ball and urn process defining
X and Y . Having drawn L + e balls, let W be the number
of white balls among the last e balls drawn, and let Z be the
number of white balls among the first L. Thus X = W +Z
and Y = e + Z. As a first observation, we may note that

if W = e then X = Y and hence the event in (4) does not
occur. I.e.,

dTV(X, Y) ≤ Pr[W *= e] ≤ e(1− M
N), (5)

where we used a union bound over each of the last e balls
being non-white. Now by (3),

e ≤
√

1
κ

ML′

N
≤

√
L′

κ
≤ .001

√
N, (6)

if we assume κ large enough. It follows that we may
additionally assume

M ≤ N − .01
√

N ⇔ 1− M

N
≥ .01√

N
(7)

because otherwise the bound in (5) is at most .001
√

N ·
.01√

N
= .00001, which establishes the theorem with room to

spare. We also use this opportunity to mention that

M ≥ 2e, L′ ≥ 2e, (and hence certainly N ≥ 2e) (8)

follow easily from (3).
We next give a more refined upper bound on (4). By

conditioning on W we have

dTV(X, Y) = Pr[X ≤ t ∩ Y > t]

=
e−1X

i=0

Pr[W = i]Pr[t− e < Z ≤ t− i | W = i].

Now Z | (W = i) has distribution Hyp(N − e, M − i, L)
(and note that M − i ≥ M − e ≥ 0 by (8)). Let us write
σ2 = L(1 − L

N−e)M−i
N−e (1 − M−i

N−e). Applying Corollary 2.1
and a union bound we get

dTV(X,Y) ≤
e−1∑

i=0

Pr[W = i] · (e− i)
C

σ

≤ max
0≤i<e

{
C

σ

}
·

e−1∑

i=0

Pr[W = i](e− i)

= max
0≤i<e

{
C

σ

}
· E[e−W].

We have W ∼ Hyp(N, M, e), and thus E[e − W] =
e(1− M

N). And by definition,

max
0≤i<e

{
C

σ

}
= max

0≤i<e





C√

L(1− L
N−e)(M−i

N−e)(1− M−i
N−e)






≤ C√
L(1− L

N−e)(M−e
N−e)(1− M

N−e)
.

Thus we have established

dTV(X, Y) ≤ Ce√
L(1− L

N−e)
·

1− M
N√

1− M
N−e

· 1√
M−e
N−e

. (9)

We will bound the three fractions in (9) one at a time.
We begin with the middle one. Note first that

d

dM



 1− M
N√

1− M
N−e



 = − N − 2e−M

2N
√

1− M
N−e (N − e−M)

.

By combining (6) and (7) we get M ≤ N − 10e < N − 2e.
Hence the derivative above is always negative, implying that
(1− M

N)/
√

1− M
N−e is a decreasing function of M on M ’s

range. Hence we may upper-bound this fraction by taking
M = 0, giving an upper bound of 1. Substituting this into (9)
gives

dTV(X, Y) ≤ Ce√
L(1− L

N−e)
· 1√

M−e
N−e

. (10)

We next examine the fraction on the right. It is at most

1√
M−e

N

≤ 1√
M/2
N

=
√

2N

M
,

where we used (8). By virtue of (3), we can upper-bound
this by

√
2
κ ·

√
L′

e . Substituting this upper bound into (10)
yields

dTV(X,Y) ≤ C

√
2
κ
·
√

L′

L(1− L
N−e)

≤ .001

√
L′

L(1− L
N−e)

, (11)

assuming κ is sufficiently large compared with C.
Finally, we split into two cases, depending on whether

L ≤ N/2. If indeed L ≤ N/2, then L′ = L and we have

.001

√
L′

L(1− L
N−e)

=
.001√

1− L
N−e

≤ .001√
1− N/2

N−e

.

But N−e ≥ N− .001
√

N ≥ (2/3)N (using (6) and N ≥ 2
from (8)), so we upper-bound

dTV(X, Y) ≤ .001√
1− N/2

(2/3)N

= .002 ≤ .01,

as needed. The second case is that L ≥ N/2, in which case
L = N − L′ and the bound in (11) is

.001
√

L′

(N − L′)(1− N−L′

N−e)
= .001

√
L′

(N − L′)L′−e
N−e

= .001
√

L′

L′ − e

√
N − e

N − L′
.

(12)

But using (8),
√

L′

L′ − e
≤

√
L′

L′/2
=
√

2,

and using L′ ≤ N/2,
√

N − e

N − L′
≤

√
N

N − L′
≤

√
N

N/2
=
√

2.

Hence the upper bound (12) on dTV(X, Y) is at most
.001

√
2
√

2 < .01, as needed.
This completes the proof of Lemma 3.5.

IV. MAJORITY FUNCTIONS

Recall that Majk : {−1, 1}n → {−1, 1} is defined by
Majk(x) = sgn(

∑k
i=1 xi), where we define sgn(0) (arbi-

trarily) to be 1. We sometimes abuse notation by thinking
of Majk also as a function on {−1, 1}k. In this section
we prove our lower bound for testing Majk-isomorphism,
Theorem 1.5, which we restate here for convenience:

Theorem 1.5 (Restated). There is a universal ε0 > 0 such
that whenever k ≤ (3/4)n (and is divisible by 3), any non-
adaptive algorithm for ε0-testing Majk-isomorphism must
make at least Ω(k1/12) queries.

Note that the result of Theorem 1.5 cannot be handled by
Theorem 1.3 since the Majk function is o(1)-close to being
a (k − e)-junta whenever e = o(k). Specifically, the full
version of this paper establishes the following proposition,
which is very similar to the problem of computing the noise
sensitivity of majority [16].

Proposition 4.1. For 0 < e < k/2, the Majk function is
ε-close to the Majk−e function, where ε = 6(e/k)1/3.

Our proof of Theorem 1.5 reuses much of the framework
introduced in the previous section in our testing lower bound
for general g. As before, our goal is to construct probability
distributions Fyes and Fno over functions isomorphic to
Majk and functions ε0-far from being isomorphic to Majk
(respectively) such that any deterministic non-adaptive test-
ing algorithm making o(k1/12) queries cannot distinguish
with probability at least 1/3 between functions drawn from
Fyes or from Fno.

We define Fyes just as we did in Section III: a function
fyes ∼ Fyes is obtained by choosing j1, . . . , jk randomly
and without replacement from [n] and defining fyes(x) =
Majk(xj1 , . . . , xjk). The definition Fno, however, is very
different from the definition we used in that section to ensure
that it is supported on functions far from Majk.

To define Fno, we first introduce a certain weighted
majority function WgtMajk on 4

3k bits (note that 4
3k ≤ n):

WgtMajk(x1, . . . , x 4
3 k) =

sgn
(k/3∑

i=1

(
1
2x4i−3 + 1

2x4i−2 + 1
2x4i−1 + 3

2x4i

))
.

(13)

I.e., WgtMajk gives k variables weight 1
2 and k/3 vari-

ables weight 3
2 . This weight pattern is chosen very care-

fully; see the proof of Lemma 4.7 below. We then define
fno ∼ Fno is obtained by choosing j1, . . . , j 4

3 k randomly
and without replacement from [n] and taking fno(x) =
WgtMajk(xj1 , . . . , xj 4

3 k
).

The following proposition, whose proof is included in the
full version of this paper, implies that functions in Fno are
ε-far from Majk functions for large enough values of ε:

Proposition 4.2. There exist universal constants ε0 > 0 and
k0 ∈ N such that when k ≥ k0, every function fno in the
support of Fno is ε0-far from being a k-junta.

Note that we may always assume k ≥ k0 as otherwise
Theorem 1.5 is trivial. To complete the proof of Theo-
rem 1.5, it suffices to prove the following:

Theorem 4.3. Let T be any deterministic non-adaptive q-
query algorithm for testing isomorphism to Majk. Then
˛̨
˛̨ Pr
fyes∼Fyes

[T acc. fyes]− Pr
fno∼Fno

[T acc. fno]

˛̨
˛̨ ≤ O

„
q3/2

k1/8

«
.

To prove Theorem 4.3, we continue to recall the frame-
work developed in Section III. Given a deterministic q-query
tester T, we arrange its q queries x1, . . . , xq ∈ {−1, 1}n

into a q × n query matrix Q. We again think of two
processes Syes and Sno for generating argument multisets
Syes and Sno. However in the present case we simply have
that Syes chooses k columns at random from Q without
replacement, and Sno chooses 4

3k columns at random from Q
without replacement. Again, we imagine that the argument
multisets are randomly ordered to form argument matrices:
Ayes which is q × k, and Ano which is q × 4

3k. Finally, we
obtain the response vector random variable Ryes ∈ {−1, 1}q

by applying Majk to Ayes row-wise, and the response
vector Rno ∈ {−1, 1}q by applying WgtMajk to Ano row-
wise. It is clear that this distribution on Ryes is equivalent
to the one given by drawing fyes ∼ Fyes and letting
Ryes = 〈fyes(x1), . . . , fyes(xq)〉. The analogous statement is
true for Rno. Hence we can prove Theorem 4.3 by showing

dTV(Ryes, Rno) ≤ O

(
q3/2

k1/8

)
. (14)

We now come to the main difference between our Majk
lower bound and the general lower bound from Section III.
Obviously, we cannot proceed as in Section III by bounding
the total variation distance between Syes and Sno: this total
variation distance is 1, since Syes and Sno have disjoint
support! (Specifically, the multiset Syes has cardinality k
whereas Sno has cardinality 4

3k.) Instead, we exploit the
fact that applying Majk or WgtMajk involves adding up
the columns in the argument matrix (in WgtMajk’s case,
with certain weights), and this addition “loses a lot of
information”.

More precisely, suppose that we write X1, . . . , Xk for the
(randomly chosen) columns in argument matrix Ayes and let

S = X1 + · · · + Xk.

Then the response vector Ryes is given by taking the sgn of
each entry of S; i.e., it is determined by the orthant of Rq

in which S lies. Similarly, if we write Y1, . . . , Y 4
3 k for the

columns in argument matrix Ano, and let

T = 1
2Y1 + 1

2Y2 + 1
2Y3 + 3

2Y4 + · · ·
+ 1

2Y 4
3 k−3 + 1

2Y 4
3 k−2 + 1

2Y 4
3 k−1 + 3

2Y 4
3 k,

then Rno is determined by the orthant in which T lies. Hence
we can establish (14) and thus Theorem 1.5 by proving the
following:

Theorem 4.4. Let S and T be defined as above. Then for
any union O of orthants in Rd,

|Pr[S ∈ O]−Pr[T ∈ O]| ≤ O(q3/2/k1/8).

A. Multidimensional invariance

To prove Theorem 4.4 we will use recently developed
invariance principle tools [14], [13], [9]. In particular, we
quote the following multidimensional results which essen-
tially appear in [13], [9].

Lemma 4.5. (Essentially Theorem 4.1 in [13]; cf. [9].) Let
ψ : Rq → R be a thrice continuously differentiable function
with uniformly bounded third partial derivatives: |ψ(J)| ≤
β for all multi-indices J = (j1, . . . , jq) with |J | = j1 +
· · · + jq = 3. Let S = S1 + · · · + Sm, where the Si’s
are independent Rq-valued random variables, and let T =
T1 + · · · + Tm similarly. Assume that for each i ∈ [m],
Si and Ti have matching means and covariance matrices:
E[Si] = E[Ti] and Cov[Si] = Cov[Ti]. Then

|E[ψ(S)]−E[ψ(T)]| ≤ O(β) ·
mX

i=1

X

|J|=3

“
E[|SJ

i |] + E[|T J
i |]
”

,

where UJ denotes U j1
1 · · ·U jq

q when U ∈ Rq.

Lemma 4.6. (Essentially appears in [9].) Let O be any
union of orthants in Rq and let S, T be any Rq-valued
random variables. Let r > 0. Then there is a certain smooth
function ψ satisfying |ψ(J)| ≤ O(1/r3) for all multi-indices
J with |J | = 3 and such that
|Pr[S ∈ O]−Pr[T ∈ O]| ≤ Pr[S ∈ Wr]+|E[ψ(S)]−E[ψ(T)]|,

where Wr = {x ∈ Rq : |xi| ≤ r/2 for some i ∈ [q]}.

At first, it does not appear as though these tools are of
any help to us, because Lemma 4.5 very crucially uses
the fact that the random vectors being summed are inde-
pendent. Whereas, in our Theorem 4.4 the random vectors
X1, . . . , Xk are certainly not independent, being drawn
randomly without replacement from the fixed population Q.
The same goes for Y1, . . . , Y 4

3 k. Nevertheless, we can still
reduce to Lemma 4.5 using a trick: finding random vectors
which are conditionally independent.

B. How to handle drawing without replacement

Let us recap the scenario in Theorem 4.4. We have a fixed
multiset Q of n columns (vectors) from {−1, 1}q. We draw k
columns randomly from Q without replacement, yielding the
vector-valued random variables X1, . . . , Xk; we also define

S = X1 + · · · + Xk.

Similarly, the vector-valued random variables Y1, . . . , Y 4
3 k

are drawn randomly from Q without replacement, and

T = 1
2Y1 + 1

2Y2 + 1
2Y3 + 3

2Y4 + · · ·
+ 1

2Y 4
3 k−3 + 1

2Y 4
3 k−2 + 1

2Y 4
3 k−1 + 3

2Y 4
3 k.

To introduce conditional independence, we reimagine how
the Xi’s and Yi’s are drawn. Specifically, we can couple the
drawing of these random vectors as follows:

1) Define m = k/3 (an integer).
2) Randomly partition the columns of Q into m parts

Q1, . . . , Qm, each of cardinality 4, along with a leftover
set of cardinality n− 4m ≥ 0.

3) Independently for each i ∈ [m], choose X3i−2, X3i−1,
X3i randomly without replacement from Qi. Define
also Si = X3i−2 + X3i−1 + X3i.

4) Independently for each i ∈ [m], choose Y4i−3, Y4i−2,
Y4i−1, Y4i, randomly without replacement from Qi

(i.e., choose them by randomly ordering the vectors in
Qi). Define also Ti = 1

2Y4i−3+ 1
2Y4i−1+ 1

2Y4i−2+ 3
2Y4i.

It is easy to see that this coupling gives the correct marginal
distributions on X1, . . . , Xk and Y1, . . . , Y 4

3 k. We also have
S = S1 + · · · + Sm and T = T1 + · · · + Tm. And crucially,
S1, · · · , Sm are independent conditioned on any choice of
the partition (Q1, . . . , Qm), and similarly for T1, . . . , Tm.
The following lemma will allow us to apply Lemma 4.5; it
also explains the choice of the weight pattern (1

2 , 1
2 , 1

2 , 3
2):

Lemma 4.7. Conditioned on any choice of the partition
(Q1, . . . , Qm), we have E[Si] = E[Ti] and Cov[Si] =
Cov[Ti] for each i ∈ [m].

Let Wr = {x ∈ Rd : ∃j ∈ [d] s.t. |xj | ≤ r} represent the
region around the orthant boundaries. The following Lemma
gives an upper bound on the probability that our random
vector S lands near any orthant boundary:

Lemma 4.8. For r ≥ 1 it holds that

Pr[S ∈ Wr] ≤ O

(
qr√
m

)
.

We present the proofs of Lemmas 4.7 and 4.8 below. First,
let us now combine all these results to complete the proof
of Theorem 4.4 and hence Theorem 1.5:

Proof of Theorem 4.4: Let us first condition on a par-
ticular partition (Q1, . . . , Qm). Having done so, S1, . . . , Sm
become independent, as do T1, . . . , Tm. By Lemma 4.7, we

may apply Lemma 4.5. Doing so with the function ψ from
Lemma 4.6 (with r ≥ 1 to be chosen later) yields

|E[ψ(S)]−E[ψ(T)]| ≤ O
`

1
r3

´
·

mX

i=1

X

|J|=3

“
E[|SJ

i |] + E[|T J
i |]
”

.

(15)
We emphasize that (15) is conditional on a particular

(Q1, . . . , Qm). However, note that we can bound the quanti-
ties E[|SJ

i |] and E[|T J
i |] uniformly in (Q1, . . . , Qm): Each

coordinate of Si is at most 1 + 1 + 1 = 3 in absolute value,
and similarly each coordinate of Ti is at most 1

2+ 1
2+ 1

2+ 3
2 =

3 in absolute value. Hence each expectation is at most 27,
and we can therefore upper-bound the right-hand side of (15)
by O(mq3/r3), since there are at most q3 many J’s.

Now averaging over the choice of partition (Q1, . . . , Qm),
the triangle inequality implies

|E[ψ(S)]−E[ψ(T)]| ≤ O(mq3/r3).

Here the expectation is over the whole definition of S and
T . Substituting this into Lemma 4.6 gives

|Pr[S ∈ O]−Pr[T ∈ O]| ≤ Pr[S ∈ Wr] + O(mq3/r3).

Applying Lemma 4.8 we can bound this by O(qr/
√

m) +
O(mq3/r3). We optimize by taking r = m3/8d1/2, yielding
a final upper bound of O(q3/2/m1/8) = O(q3/2/k1/8) and
completing the proof.

C. Proof of Lemma 4.7

It suffices to check the claim for i = 1. Let µ ∈ Rq denote
the average of the four vectors in Q1. Then

E[S1] = E[X1 + X2 + X3] = 3E[X1] = 3µ,

using the fact that X1, X2, X3 are identically distributed,
and similarly

E[T1] = E[12Y1 + 1
2Y2 + 1

2Y3 + 3
2Y4]

= (1
2 + 1

2 + 1
2 + 3

2)E[Y1] = 3µ,

verifying the first claim.

We now verify that Cov[Si] = Cov[Ti]. Fix j, j′ ∈ [q]
and let us write x1, x2, x3 for the j-coordinate of X1, X2, X3

respectively, and write x′1, x
′
2, x

′
3 for the j′-coordinate of

X1, X2, X3. Then

E[(S1)j(S1)j′] = E[(x1 + x2 + x3)(x′1 + x′2 + x′3)]
= 3E[x1x

′
1] + 6E[x1x

′
2],

where we use the facts that (x1, x1) has the same distribution
as (x2, x2) and (x3, x′3), and that (x1, x′2) has the same
distribution as (x$, x′$′) for any % *= %′ ∈ {1, 2, 3}. So

Cov[S1]j,j′ = 3E[x1x
′
1] + 6E[x1x

′
2]− µjµj′ .

Similarly, we define y1, . . . , y4 and y′1, . . . , y
′
4 as the jth

and j′th coordinates of Y1, . . . , Y4, respectively. Then

E[(T1)j(T1)j′] = E[(1
2y1 + 1

2y2 + 1
2y3 + 3

2y4) ·
(1
2y′1 + 1

2y′2 + 1
2y′3 + 3

2y′4)]
= (3 · (1

2)2 + (3
2)2)E[y1y

′
1] +

(6 · (1
2)2 + 6 · 1

2 · 3
2)E[y1y

′
2]

= 3E[y1y
′
1] + 6E[y1y

′
2],

where we use the facts that (y1, y′1) has the same distribution
as (y$, y′$) for any % = 2, 3, 4 and (y1, y′2) has the same
distribution as (y$, y′$′) for any % *= %′ ∈ {1, 2, 3, 4}. So

Cov[T1]j,j′ = 3E[y1y
′
1] + 6E[y1y

′
2]− µjµj′ .

Noting that (X1, X2) and (Y1, Y2) have the same distribu-
tion, we get that Cov[S1] = Cov[T1].

D. Proof of Lemma 4.8

By union-bounding over the q coordinates, Lemma 4.8
reduces to proving the following statement:

Lemma 4.9. Let r ≥ 1. Suppose we fix any query row
(x1, . . . , xn) ∈ {−1, 1}n from Q and form the random
variable

s = xi1 + · · · + xi3m ,

where the sequence i1, . . . , i3m is drawn randomly without
replacement from [n]. Then

Pr[|s| ≤ r/2] ≤ O(r/
√

m).

Proof: Let us recall that k = 3m ≤ (3/4)n. Let u
denote the number of 1’s among x1, . . . , xn. The statement
to be proved is precisely equivalent to the following: Let
Z ∼ Hyp(n, u, k). Then

Pr[Z ∈ [k/2− r/4, k/2 + r/4]] ≤ O(r/
√

k). (16)

We divide into two cases.
Case 1: 1/4 ≤ u/n ≤ 3/4.: In this case we use

Corollary 2.1 and a union bound over the at most r/2 + 1
integers in the range [k/2− r/4, k/2 + r/4] to deduce

Pr[Z ∈ [k/2− r/4, k/2 + r/4]] ≤ O(r)/σn,u,k,

where σn,u,k =
√

k(1− k/n)(u/n)(1− u/n). We have 1−
k/n ≥ 1/4 and also u/n, 1 − u/n ≥ 1/4. Thus σn,u,k =
Ω(
√

k), establishing (16).
Case 2: u/n *∈ [1/4, 3/4].: By symmetry, it suffices to

treat just one of the cases u/n < 1/4 or u/n > 3/4; say,
the former. In this case we have E[Z] = k(u/n) ≤ k/4, and
we have Var[Z] = ku/n(1− u/n)(1− k/n) ≤ k. Finally,
we may assume that r ≤ k/2, as otherwise (16) is trivial.
Thus by Chebyshev’s Inequality,

Pr[Z ≥ k/2− r/4] ≤ Pr[Z ≥ (3/8)k] ≤ k

(k/8)2
= O(1

k),

establishing (16) with room to spare.

V. DISCUSSION

We conclude this work by discussing what we feel are
promising directions towards closing the basic research
problem of characterizing the functions g for which g-
isomorphism is testable.

It is possible that Fischer et al. [7]’s positive result, that
testing g-isomorphism is easy when g is an O(1)-junta is
mostly best possible. We pose the following question:

Question: Suppose g : {0, 1}n → {0, 1} is an (n− %)-junta
which is ε-far from being an %-junta. Is it true that ε-testing
g-isomorphism requires ω$(1) queries?2

We are not quite bold enough to conjecture that this
is true, but we do not know any g which rules it out.
Proving the result seems like it might be difficult, but we
believe the problem is approachable for the special case
when g is a symmetric k-junta. Our Theorem 1.4 establishes
the result for the simplest symmetric function, Majk. It is
not too hard to extend our methods to deal with similar
symmetric functions; for example, we are able to show
(proof omitted) that testing g-isomorphism is hard for a
function g : {0, 1}n → {0, 1} such as

g(x) =

{
1 if k/2−

√
k ≤

∑k
i=1xi ≤ k/2 +

√
k,

0 else.

Roughly speaking, we can handle this case because it has
only a constant number of “jumps” (just 2, in fact) between
0 and 1 on the main range of

∑k
i=1 xi, namely k/2±O(

√
k).

If, on the other hand, g is a symmetric k-junta with “many”
jumps between 0 and 1 on the main range of

∑k
i=1 xi (e.g.,

if g is Parityk), then the techniques we used for our general
lower bound Theorem 1.3 may begin to apply.

However, we wish to close by drawing attention to a pecu-
liar intermediate case. Suppose g is the following symmetric
k-junta:

g(x) =

{
0 if

∑k
i=1xi = 1 or 3 ≤

∑k
i=1xi < k/2,

1 if
∑k

i=1xi ∈ {0, 2} or k/2 ≤
∑k

i=1xi ≤ k,

In this case g is ok(1)-close to Majk. Hence it would seem
at first blush that the few jumps between 0 and 1 when∑k

i=1 ≤ 3 are irrelevant, and we should have an ωk(1)
lower bound for testing isomorphism to this g.

But oddly, this is not clear. Because g is so close to
Majk, it seems we would need to use “Fno functions” which
are fairly different from Majk, like the weighted majority
function WgtMajk introduced in Section IV. However there
is a one-query test that distinguishes between a function
isomorphic to the above g and a function isomorphic to
WgtMajk: simply query the string (0, 0, . . . , 0), which has

2I.e., is the query complexity of the problem bounded below by
Ω(log∗ !)? Or by Ω(log !)? Or even by Ω(poly(!))?

value 1 under g and value 0 under WgtMajk! We could
fix this by changing WgtMajk(0, . . . , 0) to 0, but there
are still problems. For example, the tester could query
random strings having a 1/k fraction of 1’s. For such
strings x, Pr[g(x) = 1] will be noticeably higher than
Pr[Majk(x) = 1], because there is a good chance that the
string x will contain exactly two 1’s among the k coordinates
on which g depends.

So strangely, even though strings in {0, 1}k with zero,
one, or two 1’s constitute only an ok(1) + ε probability
mass, a clever tester can exploit them for its advantage. This
makes proving untestability for functions isomorphic to the
above g somewhat tricky, and we leave it as a problem for
future research.

ACKNOWLEDGMENTS

The second author would like to thank Adi Akavia and
Guy Kindler for several helpful discussions. Both authors
also thank the anonymous referees for valuable feedback on
an earlier draft of this paper.

REFERENCES

[1] Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira.
A combinatorial characterization of the testable graph prop-
erties: It’s all about regularity. In Proc. of the 38th annual
ACM Symposium on the Theory of Computing, pages 251–
260, 2006.

[2] Noga Alon and Asaf Shapira. A characterization of the (nat-
ural) graph properties testable with one-sided error. In Proc.
of the 46th IEEE Symposium on Foundations of Computer
Science, pages 429–438, 2005.

[3] Noga Alon and Asaf Shapira. Every monotone graph property
is testable. In Proc. of the 46th IEEE Symposium on
Foundations of Computer Science, pages 128–137, 2005.

[4] Tim Austin and Terence Tao. On the testability and repair of
hereditary hypergraph properties. To appear, Random Struct.
Alg.

[5] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits,
PCPs and non-approximability – towards tight results. SIAM
J. Comput., 27(3):804–915, 1998.

[6] Eldar Fischer. The difficulty of testing for isomorphism
against a graph that is given in advance. SIAM J. Comput.,
34(5):1147–1158, 2005.

[7] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and
Alex Samorodnitsky. Testing juntas. J. Comput. Syst. Sci.,
68(4):753–787, 2004.

[8] Eldar Fischer and Arie Matsliah. Testing graph isomorphism.
SIAM J. Comput., 38(1):207–225, 2008.

[9] Parikshit Gopalan, Ryan O’Donnell, Yi Wu, and David
Zuckerman. Fooling functions of halfspaces under product
distributions. In Proc. of the 25th annual IEEE Conference
on Computational Complexity, 2010.

[10] Thomas Höglund. Sampling from a finite population. A
remainder term estimate. Scandinavian Journal of Statistics,
5:69–71, 1978.

[11] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and
Rocco A. Servedio. Testing halfspaces. In SODA ’09:
Proc. of the 19th Annual ACM -SIAM Symposium on Discrete
Algorithms, pages 256–264, 2009.

[12] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and
Rocco A. Servedio. Testing ±1-weight halfspace. In RAN-
DOM ’09: Proc. of the 13th Intl. Workshop on Randomization
and Computation, pages 646–657, 2009.

[13] Elchanan Mossel. Gaussian bounds for noise correlation of
functions and tight analysis of long codes. In Proc. of the
49th IEEE Symposium on Foundations of Computer Science,
pages 156–165, 2008.

[14] Elchanan Mossel, Ryan O’Donnell, and Krzysztof
Oleszkiewicz. Noise stability of functions with low
influences: invariance and optimality. Annals of Mathematics,
171(1):295–341, 2010.

[15] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing
basic boolean formulae. SIAM J. Discrete Math., 16(1):20–
46, 2002.

[16] Yuval Peres. Noise stability of weighted majority, 2004.
http://arxiv.org/abs/math/0412377.

[17] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations
of polynomials with applications to program testing. SIAM
J. Comput., 25(2):252–271, 1996.

[18] Andrew Chi-Chih Yao. Probabilistic computations: Toward
a unified measure of complexity. In Proc. of the 28th IEEE
Symposium on Foundations of Computer Science, pages 222–
227, 1977.

