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Abstract

We show how the communication complexity method introduced in (Blais, Brody, Matulef
2012) can be used to prove lower bounds on the number of queries required to test properties of
functions with non-hypercube domains. We use this method to prove strong, and in many cases
optimal, lower bounds on the query complexity of testing fundamental properties of functions
f : {1, . . . , n}d → R over hypergrid domains: monotonicity, the Lipschitz property, separate
convexity, convexity and monotonicity of higher-order derivatives. There is a long line of work
on upper bounds and lower bounds for many of these properties that uses a diverse set of
combinatorial techniques. Our method provides a unified treatment of lower bounds for all
these properties based on Fourier analysis.

A key ingredient in our new lower bounds is a set of Walsh functions, a canonical Fourier
basis for the set of functions on the line {1, . . . , n}. The orthogonality of the Walsh functions
lets us use a product construction to extend our method from properties of functions over the
line to properties of functions over hypergrids. Our product construction applies to properties
over hypergrids that can be expressed in terms of axis-parallel directional derivatives, such as
monotonicity, the Lipschitz property and separate convexity. We illustrate the robustness of our
method by making it work for convexity, which is the property of the Hessian matrix of second
derivatives being positive semidefinite and thus cannot be described by axis-parallel directional
derivatives alone. Such robustness contrasts with the state of the art in the upper bounds for
testing properties over hypergrids: methods that work for other properties are not applicable
for testing convexity, for which no nontrivial upper bounds are known for d ≥ 2.

1 Introduction

Property testing examines the following general question: given a property P of functions mapping
one set D to another set R, how many queries does a randomized algorithm with oracle access to
some unknown function f : D → R need to distinguish functions with the property P from those
that are “far” from having this property? (See Section 2 for formal definitions.) Over the last
two decades, many powerful tools have been developed for designing efficient algorithms for testing
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various properties (see, e.g., [Gol10, Ron09, RS11] for recent surveys). In contrast, few tools are
known for establishing the limitations of these algorithms.

One such tool is the communication complexity method recently introduced by Blais, Brody,
and Matulef [BBM12]. This method yields new lower bounds on the query complexity of property
testing problems from known lower bounds in communication complexity. It has been remarkably
successful in establishing strong lower bounds on the query complexity for testing many properties
of functions mapping the hypercube {0, 1}d to some (finite or infinite) set R. The best previously
known lower bounds for testing monotonicity [BBM12, Bro13], k-linearity [BBM12], low Fourier
degree [BBM12, Hat12], the Lipschitz property [JR13], and function linear isomorphism [GWX13]
have all been established using this method.

Yet, despite the success in establishing lower bounds for properties of functions on the hyper-
cube, so far the communication complexity method has not yielded property testing lower bounds
in any other setting. The state of affairs is not due to any inherent limitation of the method itself.
Rather, it is due to the specialized nature of the constructions developed so far in applications of
the method. Roughly speaking, most existing constructions rely on the fact that they can treat
the d dimensions of the Boolean hypercube {0, 1}d “independently” to obtain the desired lower
bounds. In particular, many of these constructions use the parity functions, an orthonormal basis
for functions on the hypercube, as a basic building block. To obtain lower bounds for properties of
functions over other domains, new construction techniques and new building blocks are required.

We give the first applications of the communication complexity method to the setting of testing
properties of functions over non-hypercube domains. Specifically, we focus our attention on func-
tions over the line [n] := {1, 2, . . . , n} and the hypergrid [n]d. An extensive research effort has been
devoted to the study of testing fundamental properties of functions over these domains, with par-
ticular emphasis on testing monotonicity [DGL+99, EKK+00, Fis04, AC06, BGJ+12, CS13b], the
Lipschitz property [JR13, AJMR12, CS13b], and convexity [PRR03, Ras03, RV04]. (Subsequent
to the publication of the preprint of this article [BRY13], several more works on testing functions
over hypergrid domain appeared [CS13c, CDJS13, BRY14, CDJS14].) Yet, prior to this work, large
gaps remained between the best upper and lower bounds on the query complexity of these property
testing problems. We establish strong, and in many cases optimal, lower bounds for testing all of
these properties. See Table 1 for a summary of our lower bounds.

The basic building block used in our constructions is the set of Walsh functions, which form a
canonical Fourier basis for the set of functions over the line and the hypergrid. The choice of an
orthonormal Fourier basis is crucial because it allows us to express the rich families of functions
used in our reductions concisely, i.e., using a small number of bits, which is necessary for the
application of the communication complexity framework. Moreover, it often allows us to lift our
constructions from the line to the high-dimensional hypergrids using a generic product rule without
losing optimality of the results (see the first part of Table 1). Finally, the expressive power of the
Fourier basis allows us to obtain lower bounds for properties for which no good upper bounds are
known (specifically, convexity, separate convexity and monotonicity of high-order derivatives).

We also streamline the formulation of the communication complexity method, which results in
simpler proofs. After the publication of a preprint of this article [BRY13], Goldreich [Gol13] gener-
alized the streamlined formulation of the communication complexity method and gave a thorough
comparison with the original formulation.
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Table 1: Query complexity bounds for testing properties of the function f : [n]d → Z (top) and of
the function f : [n]→ [r] (bottom). All the bounds are for nonadaptive tests with two-sided error
unless marked otherwise.

Functions on the hypergrid

Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(d log n) Ω(d) (adaptive, n = 2) [BBM12] O(d log n) [CS13b]

Convexity Ω(d log n) — —

Separate convexity Ω(d log n) — —

Lipschitz Ω(d log n) Ω(d) (adaptive, n = 2) [JR13] O(d log n) [CS13b]

Functions on the line

Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(min{log r, log n}) Ω(min{log r, log n}) (1.-s. err.) [EKK+00]
O(log n) [EKK+00]

Ω(log n) (adaptive, r � n) [Fis04]

Convexity Ω(log n) (r = Ω(n2)) — O(log n) [PRR03]

Lipschitz Ω(min{log r, log n}) Ω(min{log r, log n}) (1-s. err.) [JR13] O(log n) [JR13]

Monotone `-th
Ω(log n) (r = Ω(n`+1)) — —

derivative

1.1 Our results

We give lower bounds for several properties of functions on the hypergrid. For each of these
properties, we first construct a lower bound for one-dimensional functions. Many properties we
consider can be expressed as conditions of the axis-parallel derivatives of the function. For these
properties, the orthogonality of Walsh functions enables us to extend the lower bounds to the
hypergrid setting with a natural product construction.

1.1.1 Monotonicity

The function f : [n]d → R is monotone if f(x) ≤ f(y) for every pair of inputs x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ [n]d that satisfy x1 ≤ y1, . . . , xn ≤ yn. Monotonicity testing is a classic problem in
property testing that has been studied extensively for functions on the line [EKK+00, Fis04], on
the hypercube [GGL+00, DGL+99, FLN+02, BBM12, CS13b, CS13a], on general partially ordered
domains [FLN+02], and on hypergrid domains [DGL+99, AC06, CS13b]. The best upper bound for
testing monotonicity on the hypergrid is due to Chakrabarty and Seshadhri [CS13b], who recently
showed that O(d log n) queries suffice to test whether f : [n]d → R is monotone, for any range
R ⊆ R.

Prior to this work, however, there were no general lower bounds for the problem of testing
monotonicity of functions on the hypergrid. We give the first lower bound for this problem. Fur-
thermore, the bound that we obtain is optimal for nonadaptive tests,1 since it matches the upper

1A property tester is nonadaptive if its choice of queries does not depend on the answers to the previous queries.
See Definition 2.2.
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bound of Chakrabarty and Seshadhri [CS13b].

Theorem 1.1. Fix ε ∈ (0, 1
8 ] and m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for monotonicity

of functions f : [n]d → [nd] makes Ω(d log n) queries.

The special case of the theorem with d = 1 also gives a new lower bound for the classic problem
of testing monotonicity of functions on the line. Theorem 3.6 gives a more nuanced lower bound
for this special case, claimed in Table 1. Ergun et al. [EKK+00] showed that Θ(log n) queries are
necessary and sufficient for testing monotonicity of f : [n]→ R nonadaptively with one-sided error,
and Fischer [Fis04] showed that the lower bound also holds for adaptive testers with two-sided
error. But Fischer’s proof relies on Ramsey theory arguments that only hold when the range of
f is extremely large (i.e., at least exponential in n). Theorem 3.6 gives the first lower bound for
two-sided error monotononicity testers of functions with smaller ranges.

1.1.2 Convexity

The function f : [n]d → R is convex if for all x, y ∈ [n]d and all ρ ∈ [0, 1] such that ρx+(1−ρ)y ∈ [n]d,
the function f satisfies f(ρx+(1−ρ)y) ≤ ρf(x)+(1−ρ)f(y). Parnas, Ron, and Rubinfeld [PRR03]
showed that we can test if f : [n]→ R is convex with O(log n) queries. They also stated the open
problem of testing convexity of functions on the hypergrid. Our next lower bound represents the
first progress on this ten-year-old problem.

Theorem 1.2. Fix ε ∈ (0, 1
16 ] and m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for convexity of

functions f : [n]d → R makes Ω(d log n) queries.

Notably, the special case of the theorem where d = 1 gives the first lower bound for testing
convexity on the line. This lower bound is optimal because it matches the query complexity of the
nonadaptive tester in [PRR03].

Convexity, unlike the other properties we consider in this paper, cannot be expressed in terms
of conditions on axis-parallel derivatives—it is a property of the Hessian matrix of all partial
derivatives of a function being positive semidefinite. As a result, our lower bound construction for
convexity on the hypergrid is more technically involved.

In contrast, a closely related property, separate convexity, can be expressed in terms of conditions
on axis-parallel derivatives. The function f : [n]d → R is separately convex if for every i ∈ [d] and
x ∈ [n]d, the function g : [n] → R defined by g(y) = f(x1, . . . , xi−1, y, xi+1, . . . , xd) is convex.
Separate convexity is a strictly weaker condition than convexity (namely, all convex functions are
also separately convex, but the converse statement is false—consider, for example, f(x, y) = xy).
Separate convexity has been studied in many settings, including convex analysis [Tar93], probability
theory [AH86], and computational geometry [MP98, Mat01]. We give the first lower bound for the
query complexity of testing separate convexity.

Theorem 1.3. Fix ε ∈ (0, 1
16 ] and m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for separate

convexity of functions f : [n]d → [r], where r = Ω(dn2), makes Ω(d log n) queries.

1.1.3 Lipschitz property

The function f : [n]d → R is Lipschitz if |f(x1, . . . , xn) − f(y1, . . . , yn)| ≤
∑n

i=1 |xi − yi| for
every (x1, . . . , xn), (y1, . . . , yn) ∈ [n]d. Lipschitz functions play a fundamental role in many areas
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of mathematics and computer science. Of particular interest to our present study, the problem
of testing whether a function f : [n]d → R is Lipschitz was recently found to have important
applications to data privacy and program checking [JR13, DJRT13]. These applications motivated
a flurry of research on the topic [JR13, AJMR12, CS13b, DJRT13, DJRT13]. A highlight of this
line of work is is Chakrabarty and Seshadhri’s nonadaptive tester which needs O(d log n) queries
to test whether f : [n]d → R is Lipschitz [CS13b]. We establish the first lower bound on the query
complexity of this problem. Our bound is optimal because it matches the upper bound in [CS13b].

Theorem 1.4. Fix ε ∈ (0, 1
8 ] and m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for the Lipschitz

property of functions f : [n]d → [r], where r = Ω(dn), makes Ω(d log n) queries.

The special case of Theorem 1.4 when d = 1 is also new. Jha and Raskhodnikova [JR13]
showed that a nonadaptive one-sided error algorithm requires Ω(min{log n, log r}) queries to test if
f : [n]d → [r] is Lipschitz. Theorem 3.12, a more nuanced version of Theorem 1.4 for d = 1, shows
that the same lower bound also holds for testers with two-sided error.

1.1.4 Generalizations

Our techniques are extendable to other properties as well. We illustrate this fact on two classes of
properties of functions on the line: (α, β)-Lipschitz properties and the properties of non-negativity
of higher-order discrete derivatives.

For any parameters −∞ ≤ α ≤ β ≤ ∞, a function f : [n] → R is (α, β)-Lipschitz if α ≤
f(x + 1) − f(x) ≤ β for every x ∈ [n − 1]. The class of (α, β)-Lipschitz properties, introduced by
Chakrabarty and Seshadhri [CS13b], includes monotonicity and the Lipschitz property as special
cases. Our lower bound constructions for these two properties can be generalized to to all (α, β)-
Lipschitz properties.

As we discuss in Section 3.2, convexity of a function f : [n] → R is equivalent to the non-
negativity of its discrete derivative f ′ defined by f ′(x) = f(x + 1) − f(x). We extend the lower
bound construction for testing convexity to give a unified lower bound for testing the non-negativity
of any higher discrete derivative of a given function. This is in stark contrast to the situation with
the upper bounds, where significantly different algorithms and analyses are used to test monotonic-
ity [EKK+00] (non-negativity of the first derivative) and convexity [PRR03] (non-negativity of the
second derivative), and no algorithm is known for testing non-negativity of higher derivatives.

1.2 Discussion and open problems

All lower bounds presented in this paper are for nonadaptive tests. Interestingly, all the best known
upper bounds on the query complexity of testing monotonicity, convexity, or the Lipschitz property
(for functions over any domain) are achievable with nonadaptive tests, with one exception: the new
adaptive bound for testing Boolean functions on constant-dimensional hypergrids from [BRY14].

Subsequent to the publication of a preprint of this article [BRY13], Chakrabarty and Se-
shadhri [CS13c] and later Dixit et al. [CDJS13] gave lower bounds of Ω(d log n) queries for testing
(adaptively or not) whether the function f : [n]d → R is monotone and, respectively, Lipschitz.
These results follow from an extension of the Ramsey theory argument of Fischer [Fis04]. Like
Fischer’s lower bound, their method only applies to functions with very large ranges. These re-
sults leave two open problems that we find particularly intriguing. Can the adaptive lower bounds
also be established for functions with small ranges? Can they be obtained via the communication
complexity method?
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Organization

The basic definitions and facts for property testing and communication complexity are introduced
in Section 2. In Section 3, we prove our lower bounds for functions on the line. The more general
lower bounds for functions with hypergrid domains are presented in Section 4. Finally, in Section 5,
we present the proofs for the generalization results regarding the (α, β)-Lipschitz property and non-
negativity of higher-derivatives.

2 Preliminaries

2.1 Property testing

This section is devoted to basic property testing definitions. For a more thorough introduction to
the area, we recommend [Ron09, RS11].

Definition 2.1 (Distance). The distance between two functions f, g : D → R is the fraction of
points x in D for which f(x) 6= g(x). The distance between f and a property P of functions
mapping D to R is the minimal distance between f and any g ∈ P. We say f is ε-far from P if
its distance to P is at least ε.

Definition 2.2 (Property tester [RS96, GGR98]). Fix ε ∈ (0, 1). An ε-tester for a property P is a
randomized algorithm which, given oracle access to a function f , accepts with probability at least
2/3 if f ∈ P, and rejects with probability at least 2/3 if f is ε-far from P.

A tester has one-sided error if it always accepts functions in P and has two-sided error otherwise.
It is nonadaptive if the queries to f do not depend on the answers to the previous queries; otherwise,
it is adaptive.

2.2 Communication complexity

In a (two-player) communication game C, Alice receives some input a, Bob receives some input b,
and they must compute the value of some function fC(a, b) on their joint input. A protocol defines
how Alice and Bob communicate. The maximum number of bits exchanged by Alice and Bob during
the execution of a protocol over the possible inputs a and b is the complexity of the protocol. A
randomized protocol is valid for fC if for every input, the protocol computes fC correctly with
probability at least 2/3. The communication complexity of fC is the minimum complexity of any
protocol that is valid for fC .

A number of different communication models have been extensively studied. We focus on the
one-way shared randomness model. In this model, communication is allowed only from Alice to
Bob. Alice and Bob share access to a common source of randomness that can be used to determine
the protocol. The communication complexity of fC in the one-way shared randomness model is
denoted RA→B(fC).

A fundamental function fC studied in the one-way shared randomness model is AugmentedIndext,
where t ≥ 1 is a parameter specifying the instance size. Alice’s input to this function is a set A ⊆ [t]
while Bob’s input is an index i ∈ [t] and the set B = A∩ [i−1]. The output of AugmentedIndext
is 1 if i ∈ A and 0 otherwise. No randomized one-way communication protocol for this function
does significantly better than the näıve protocol where Alice communicates her whole set to Bob.
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Theorem 2.3 ([MNSW98]). The one-way communication complexity of AugmentedIndext in
the shared randomness model is RA→B(AugmentedIndext) = Θ(t).

2.3 Communication complexity method

A combining operator ψ takes as input a and b, the inputs of Alice and Bob for a given commu-
nication game C, and returns a function ψ[a, b]. It is a one-way one-bit combining operator if for
every a and b, and every element x in the domain of ψ[a, b], Bob can compute the value of ψ[a, b](x)
with only one bit of communication from Alice. A combining operator is also called a reduction
operator if it satisfies the conditions we require to complete a reduction from C to a property testing
problem:

Definition 2.4 (Reduction operator). A one-bit one-way combining operator ψ is a reduction
operator for the communication game C, the property P, and the parameter ε0 ∈ (0, 1) if for all
possible inputs a and b of Alice and Bob, respectively,

1. if fC(a, b) = 0, then ψ[a, b] ∈ P, and

2. if fC(a, b) = 1, then ψ[a, b] is ε0-far from P.

The following lemma is the main tool in our lower bound constructions. The proof of this
lemma is implicit in [BBM12]. For completeness, we include it below.

Lemma 2.5 (Reduction lemma). If there exists a reduction operator for the communication game
C, the property P and the parameter ε0 ∈ (0, 1), then for all ε ∈ (0, ε0], every nonadaptive ε-tester
for P makes RA→B(C) queries.

Proof. Let ψ be a reduction operator for C, P, and ε0. Consider a nonadaptive ε-tester T for P
that makes at most q queries for some ε ∈ (0, ε0]. Let Alice and Bob use their shared randomness
to both simulate the tester T and identify the inputs x(1), . . . , x(q) queried by T . The tester T is
nonadaptive, so they can both identify the queried inputs without observing the value of ψ[a, b]
on any of these inputs. Since ψ is a one-way one-bit combining operator, Alice only needs to send
q bits of information to enable Bob to compute ψ[a, b](x(1)), . . . , ψ[a, b](x(q)). Bob completes the
execution of T then outputs 0 if T accepts or 1 if T rejects. The correctness of this protocol is
guaranteed by conditions 1 and 2 of Definition 2.4.

The definition of the reduction operator and the reduction lemma can be generalized to handle
two-way bounded-bit combining operators. Goldreich [Gol13] introduces this generalized formu-
lation and provides a thorough comparison with the original formulation of the communication
complexity method. All our reductions use one-way one-bit combining operators, and in fact they
are all obtained from the Augmented Index communication game. We write ψ[A, i,B] (instead
of ψ[A, (i, B)]) to denote the functions obtained by the reduction operator ψ for this game. The
following corollary follows directly from the reduction lemma (Lemma 2.5) and Theorem 2.3.

Corollary 2.6 (Reduction corollary). If there exists a reduction operator for AugmentedIndext,
the property P and the parameter ε0 ∈ (0, 1), then for all ε ∈ (0, ε0], every nonadaptive ε-tester for
P makes Ω(t) queries.
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Figure 1: Blocks Bi
k and step functions si: an illustration of Definitions 3.1 and 3.2.

3 Lower bounds on the line

In this section, we consider properties of functions mapping the domain [2m] = {1, . . . , 2m} (where
m ∈ N) to a range R ⊆ R. Two classes of functions play a central role in the study of these
properties: step functions and Walsh functions. The functions in both of these classes are constant
on blocks of inputs in [2m], which we define next.

Definition 3.1 (Blocks). Let i ∈ {0, . . . ,m}. For k ∈ [2m−i], the kth block of length 2i is the set
of integers {2i(k − 1) + 1, . . . , 2ik}. We denote this block Bi

k.

Definition 3.2 (Step functions). For i ∈ {0, . . . ,m}, the step function of block length 2i is the
function si : [2m] → [2m−i] defined by si(x) = k, such that x ∈ Bi

k. (Equivalently, si(x) =⌊
x−1
2i

⌋
+ 1.)

The definitions of blocks and step functions are illustrated in Figure 1. Note that blocks of
length 2i partition [2m] and that the step functions of block length 2i are constant on each block
Bi
k.

The Walsh functions can be defined in terms of blocks. Specifically, the Walsh function indexed
by i is equal to 1 on the first half of each block Bi

k and to −1 on the second half. In other words, the
value of the ith Walsh function on input x is determined by the ith bit of the binary representation
of x− 1. We denote this value by biti(x− 1), where the bits are numbered starting from the least
significant.

Definition 3.3 (Walsh functions). For i ∈ [m], the function wi : [2m] → {−1, 1} is defined by
wi(x) = (−1)biti(x−1). For any S ⊆ [m], the Walsh function wS : [2m] → {−1, 1} corresponding to
S is wS(x) =

∏
i∈S wi(x). (If S = ∅ then wS(x) = 1 for all x.) Lastly, we define wm+1(x) = 1.

The Walsh functions are illustrated in Figures 2 and 3. We use two basic properties of Walsh
functions in this section.

Proposition 3.4. For every S ⊆ [m], the Walsh function wS satisfies
∑

x∈[2m]wS(x) ≥ 0.

8



1 2𝑖  2 ⋅ 2𝑖  2𝑚 2𝑚 − 2𝑖  

1 

-1 
⋯ 

𝒙 

𝒘𝒊(𝒙) 

⋯ 

⋯ 

Figure 2: Walsh functions wi: an illustration of Definition 3.3.
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Figure 3: Walsh functions wS for m = 3 and all subsets S of [3]: an illustration of Definition 3.3.

For two functions f, g : [n] → R, we write f · g to denote the pointwise product of the two
functions: for every x ∈ [n], f · g(x) = f(x)g(x).

Proposition 3.5. For every A,B ⊆ [m], the Walsh function wA4B : [2m]→ {−1, 1} corresponding
to the symmetric difference between A and B satisfies wA4B = wA · wB.

3.1 Monotonicity

In this section, we establish the following lower bound for testing monotonicity of functions on the
line.

Theorem 3.6. Fix ε ∈ (0, 1
4 ] and m, r ∈ N. Let n = 2m. Any nonadaptive ε-tester for monotonicity

of functions f : [n]→ [r] makes Ω(min(log n, log r)) queries.

A central component of the proof of Theorem 3.6 is the following observation regarding combi-
nations of step functions and Walsh functions.

Lemma 3.7. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Define h = 2si + wS and h− = 2si − wS .

1. If i /∈ S, then h and h− are monotone;

2. If i ∈ S, then h is 1
4 -far from monotone.

Proof. When i /∈ S, then S ⊆ {i+1, . . . ,m} and the functions si, wS and −wS are constant on each
block Bi

k (for k ∈ [2m−i]). This means that the value of the functions wS and −wS can decrease
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(from 1 to −1) only between adjacent blocks (i.e., the inequality wS(x) > wS(x+ 1) can only hold
when x ∈ Bi

k and x + 1 ∈ Bi
k+1 for some k ∈ [2m−i − 1]). But the step function si increases by 1

between adjacent blocks, so h and h− are monotone.
When i ∈ S, then the Walsh function wS changes value in the middle of each block Bi

k. If this
change is from 1 to −1, then wS is 1/2-far from monotone on this block, and so is h because the
step function si is constant on each Bi

k. Note that this change is from 1 to −1 for all blocks on
which wS\{i} evaluates to 1. By Proposition 3.4, this is the case for at least half of the blocks.

Thus, h is 1
4 -far from monotone.

Proof of Theorem 3.6. To prove the lower bound of Ω(log n) queries (for n < r), we use the reduc-
tion corollary (Corollary 2.6) with the parameter t in the corollary set to m. To get the bound
of Ω(log r) queries (for r ≤ n), we use the same proof with t set to blog2(r − 1)c and with the
additional restriction that the sets given to Alice and Bob reside in {m− t + 1, . . . ,m} instead of
[m].

Let ψ be the combining operator that receives Alice’s set A, Bob’s index i and set B as input
and returns the function h : [2m]→ Z defined by

h(x) = 2si(x) + wA4B(x). (1)

Note that A4B = A ∩ {i, . . . ,m} and that the range of h is [2 · 2t−1 + 1] = [2t + 1]. That is, the
range is [n+ 1] when t = m and is [r] when t = blog2(r − 1)c.

By Proposition 3.5, wA4B = wA · wB. Bob knows B, so to determine h(x) he only needs Alice
to communicate a single bit—namely, the value of wA(x). Thus, ψ is a one-bit one-way combining
operator. Furthermore, by Lemma 3.7 the function h is monotone when i /∈ A and it is 1

4 -far
from monotone when i ∈ A, so ψ is a reduction operator for monotonicity of functions of the form
f : [2m]→ [t+ 1] and ε0 = 1/4. Then, by Corollary 2.6, for any ε < 1

4 , every nonadaptive ε-tester
for monotonicity requires Ω(t) = Ω(min(log n, log r)) queries.

3.2 Convexity

The main result of this section is the following lower bound on the query complexity for testing the
convexity of functions on the line.

Theorem 3.8. Fix ε ∈ (0, 1
8 ] and n = 2m for some m ≥ 1. Any nonadaptive ε-test for convexity

of functions f : [n]→ [r], where r = Ω(n2), makes Ω(log n) queries.

Recall that the function f : [n] → R is convex if for all x, y ∈ [n] and all ρ ∈ [0, 1] such that
ρx+(1−ρ)y is also an integer in [n], the function f satisfies f(ρx+(1−ρ)y) ≤ ρf(x)+(1−ρ)f(y).
Equivalently, we can define convexity in terms of the discrete derivative of functions on the line.

Definition 3.9 (Discrete derivative, convexity). The discrete derivative of f : [n] → R is the
function f ′ : [n − 1] → R defined by f ′(x) = f(x + 1) − f(x). The function f : [n] → R is convex
(resp., concave) if its derivative f ′ is a monotone nondecreasing (resp., nonincreasing) function.

The proof of Theorem 3.8 uses two variants of the step functions: rising-step-size functions and
double-step functions.
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Figure 4: Double-step functions r′i: an illustration of Definition 3.10.

1 2𝑖  2 ⋅ 2𝑖  2𝑚 2𝑚 − 2𝑖  
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−2 
⋯ 

𝒙 

𝒘′𝒊(𝒙) 

⋯ 

⋯ 

Figure 5: Derivative of singleton Walsh functions w′i. Illustration for the proof of Lemma 3.11

Definition 3.10 (Rising-step-size and double-step functions). Fix i ∈ [m]. The rising-step-size
function ri : [n] → [n2] is defined by ri(x) = si(x) + 2

∑x−1
y=1 si(y). Its discrete derivative, r′i(x) =

si(x + 1) + si(x), is called a double-step function. Equivalently, for every k ∈ [2m−i] the function
r′i(x) is equal to 2k on all but the last element x of the block Bi

k and to 2k+ 1 on the last element
of Bi

k.

Lemma 3.11. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Define h = ri+
1
2(wS +1) and h− = ri− 1

2(wS +1).

1. If i /∈ S, then h and h− are both convex.

2. If i ∈ S, then h is 1
8 -far from convex.

Proof. First, consider the case where i /∈ S. The discrete derivative of h is h′(x) = r′i(x)+ 1
2w
′
S(x). It

is sufficient to prove that h′ is nondecreasing. Since S ⊆ {i+1, . . . ,m}, the function wS is constant
on each block Bi

k (for k ∈ [2m−i]). That is, for all but the last element x of a block Bi
k, the discrete

derivative w′(x) = 0 and, consequently, h′(x) = r′i(x) = 2k. Now consider h′(x), where x is the last
element of a block Bi

k. Recall that r′i(x) = 2k + 1. Since Walsh functions are ±1-valued, the value
1
2w
′
S(x) is in {−1, 0, 1} (see Fig. 5 for an illustration of a derivative of a singleton Walsh function

w′i). Thus, h′(x) ∈ [2k, 2k + 2], i.e., h′(x− 1) ≤ h′(x) ≤ h′(x+ 1). Therefore, h′ is a nondecreasing
function. The same argument shows that when i /∈ S, the function h− is also convex.

Now consider the case where i ∈ S. We start the analysis of this case by showing that for at
least half of the blocks Bi

k, the derivative w′S(x) = −2 on the 2i−1th element of Bi
k (i.e., on the

11



input x = 2i(k − 1) + 2i−1.) Note that wS = wi · wS\{i}. By Proposition 3.4, wS\{i}(x) = 1 for at
least half of the inputs x ∈ [2m]. Since S ∩ [i − 1] = ∅, the function wS\{i} is constant within the
blocks Bi

k. Thus, for at least half of these blocks it is a constant 1. For each block Bi
k, the function

wi is 1 on the first half of the block and −1 on the second half. Combining these observations, for
half of the blocks Bi

k, the derivative of wS on the middle point x = 2i(k − 1) + 2i−1 of the block
satisfies w′S(x) = wS(x+ 1)− wS(x) = wS\{i}(x+ 1) · wi(x+ 1)− wS\{i}(x) · wi(x) = −2.

Let Bi
k be a block where w′S(x) = −2 on the 2i−1th element x of Bi

k. Note that w′S(x) = 0 on all
other inputs in the block apart from the last one because wS is constant on all blocks Bi−1

j . Consider

any three points x, y, z ∈ Bi
k such that x ≤ (k− 1)2i + 2i−1 < y < z, namely, x is in the first half of

the block Bi
k while y and z are in the second half. Then h′(y) = h′(y+ 1) = · · · = h′(z− 1) = 2k so

(h(z)− h(y))/(z − y) = 2k. However, h′((k − 1)2i + 2i−1) = 2k − 2 so (h(y)− h(x))/(y − x) < 2k,
which violates convexity. To fix convexity on all such triples, we must change the value of h on all
the points (k− 1)2i + 1, . . . , (k− 1)2i + 2i−1 in the first half of the block Bi

k, or on all but one point
in the second half of Bi

k. Thus, we need to change at least 1/4 of the points in Bi
k. Since this is

the case for at least half of all blocks, h is 1/8-far from convex.

Proof of Theorem 3.8. We use the reduction corollary (Corollary 2.6) with the parameter t in the
corollary set to m. Given Alice’s set A ⊆ [m] and Bob’s index i ∈ [m] and the prefix set B =
A ∩ [i− 1], the combining operator ψ[A, i,B] returns the function

h(x) = ri(x) + 1
2(wA4B(x) + 1).

Note that A4B = A ∩ {i, . . . ,m}. Since wA4B = wA · wB, the operator ψ is a one-bit one-way
combining operator. Furthermore, by Lemma 3.11, if i /∈ A then h is convex and if i ∈ A then h
is 1/8-far from convex. So ψ is a reduction operator for convexity with parameter ε0 = 1

8 and the
theorem follows from Corollary 2.6.

3.3 The Lipschitz property

Theorem 3.12. Fix ε ∈ (0, 1
4 ] and m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for the Lipschitz

property of functions f : [n]→ [r] makes Ω(min(log n, log r)) queries.

The proof of Theorem 3.12 uses yet another variant on the step functions: up-down staircase
functions.

Definition 3.13 (Up-down staircase functions). For all i ∈ {0, 1, . . . ,m}, let the up-down staircase
function of block-length 2i be the function ui : [2m] → [2i], such that ui(1) = 1 and the discrete
derivative of ui is

u′i(x) =

{
0 if x is divisible by 2i;

wi+1(x) otherwise.

Equivalently, the function ui takes the values 1, . . . , 2i on consecutive inputs from the block Bi
j if

j is odd, and the values 2i, . . . , 1 if j is even. (See Figure 6.)

Lemma 3.14. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Define h(x) = ui(x)− 1
2(wS(x) + 1) and h−(x) =

ui(x)− 1
2(−wS(x) + 1).

1. If i /∈ S, then h and h− are both Lipschitz.
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Figure 6: Up-down staircase functions ui: an illustration of Definition 3.13.

2. If i ∈ S, then h is 1
4 -far from Lipschitz.

Proof. If i /∈ S, i.e., S ⊆ {i + 1, . . . ,m}, then the function wS is constant on each block Bi
k

(for k ∈ [2m−i]). Let w(x) = −1
2(wS(x) + 1). Since Walsh functions are ±1-valued, the discrete

derivative w′(x) is in {−1, 0, 1} for all x, and w′(x) = 0 for all x not divisible by 2i. By definition
of the up-down staircase functions, u′i(x) ∈ {−1, 0, 1} for all x, and u′i(x) = 0 for all x divisible by
2i. Thus, h′ = u′i +w′ takes values only in {−1, 0, 1}, implying that h is Lipschitz. The proof that
h− is Lipschitz is analogous.

When i ∈ S, i.e., i is the smallest element in S, the rescaled Walsh function w(x) = −1
2(wS(x)+

1) changes value in the middle of each block Bi
k. This change is either from -1 to 0 or vice versa.

In the former case, the discrete derivative w′ is 1 on the 2i−1th element of the block, in the latter,
it is -1. In both cases, it is 0 on all other elements of the block besides the last one. Next we show
that if the former case occurs on a block with odd i (similarly, if the latter case occurs on a block
with even i), then h is 1/2-far from Lipschitz on this block.

Consider the case when i is odd and w′ is 1 on the 2i−1th element of a block Bi
k. Since i is odd,

u′i takes value 1 on all but the last element of Bi
k. Then h′ = u′i + w′ is 2 on the 2i−1th element of

Bi
k, and 1 on all other elements of the block besides the last one. We pair up all elements of Bi

k as
follows: each element x in the first half of the block is paired up with the element x + 2i−1. The

function h is not Lipschitz on each such pair: h(x + 2i−1) − h(x) =
∑x+2i−1−1

y=x h′(y) = 2i−1 + 1.
Thus, h is 1/2-far from Lipschitz on each such block. The other case (when i is even and w′ is
-1 on the 2i−1th element of a block Bi

k) is analogous—the only difference is that h′ takes negative
values.

We can rephrase what we just proved as follows: the function h is 1/2-far from Lipschitz on
all blocks Bi

k with k ∈ [2m−i], where wS\{i}(x) = wi+1(x) for all x ∈ Bi
k. Equivalently, wS\{i}(x) ·

wi+1(x) = w(S\{i})4{i+1}(x) = 1 for all x ∈ Bi
k. By Proposition 3.4 and the fact that it is constant

on each block Bi
k, the function w(S\{i})4{i+1} is the constant 1 function on at least half of the

blocks. Thus, h is 1/2-far from Lipschitz on at least half of the blocks Bi
k. That is, overall h is

1/4-far from Lipschitz.

Proof of Theorem 3.12. The structure of the proof is very similar to that of the previous two lower
bounds in this section. As in the monotonicity testing lower bound, when n < r we will invoke
Corollary 2.6 with parameter t set to m, and when r ≤ n we use the same proof with t set to
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blog2(r− 1)c and add the restriction that Alice and Bob’s sets reside in {m− t+ 1, . . . ,m} instead
of in [m].

Define a combining operator ψ that receives Alice’s set A, and Bob’s index i and set B as input
then returns the function h : [2m]→ Z defined by

h(x) = ui(x)− 1

2
(wA4B(x) + 1),

where A4B = A ∩ {i, . . . ,m}. The additional restriction on the sets A and B that we introduced
when r ≤ n guarantee that in this case the range of the function is {0, 1, . . . , 2t} ⊆ {0, 1, . . . , r −
1}. Since wA4B = wA · wB, the operator ψ is a one-bit one-way combining operator. And by
Lemma 3.14, when i /∈ A then h is Lipschitz and when i ∈ A then h is 1/4-far from Lipschitz.
Therefore, we can apply Corollary 2.6 to obtain the desired lower bound.

4 Lower bounds on the hypergrid

In this section, we generalize the lower bounds for testing functions on the line to the hypergrid
setting. Specifically, we consider properties mapping the domain [2m]d to some range R ⊆ R.
All of the lower bounds in this section are obtained via reductions from the AugmentedIndexmd
problem. In order to obtain these reductions, we associate each subset of [md] with a d-dimensional
vector of subsets of [m] and each index in [md] with a d-dimensional vector of indices in {0, 1, . . . ,m}.

Definition 4.1 (Vector representation). Fix m, d ∈ N. The d-dimensional representation of the
set S ⊆ [md] is the vector S = (S1, . . . ,Sd) defined by Sj = {` ∈ [m] : (j − 1)m + ` ∈ S} for each
j ∈ [d]. The d-dimensional representation of the index i ∈ [md] is the vector i = (i1, . . . , id) defined
by ij = max{0,min{m, i− (j − 1)m}} for each j ∈ [d].

Equivalently, the d-dimensional representation of the index i ∈ [md] is the vector i = (m, . . . ,m, ij∗ , 0, . . . , 0),
where j∗ = di/me and ij∗ = i− (j∗−1)m. We call j∗ the active coordinate of the vector i. Observe
that i ∈ S iff ij∗ ∈ Sj∗ .

The notions of step functions and Walsh functions extend very naturally to the d-dimensional
setting.

Definition 4.2 (Multidimensional step functions). The step function indexed by the d-dimensional
vector i ∈ [m]d is the function si : [2m]d → [d2m] defined by

si(x1, . . . , xd) =

d∑
j=1

sij (xj).

Definition 4.3 (Multidimensional Walsh functions). The Walsh function indexed by the d-dimensional
vector S of subsets of [m] is the function wS : [2m]d → {−1, 1} defined by

wS(x1, . . . , xd) =

d∏
j=1

wSj (xi).

The multidimensional Walsh functions satisfy the same basic properties that we used in our
lower bound constructions for properties of functions on the line (c.f. Propositions 3.4 and 3.5).
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Proposition 4.4. For every S ⊆ [md] with d-dimensional representation S, the Walsh function
wS satisfies

∑
x∈[2m]d wS(x) ≥ 0.

Proof. It is sufficient to prove that if the random variables X1, . . . , Xd are i.i.d. and uniform over
[2m] then Pr[wS(X1, . . . , Xd) = 1] ≥ 1/2. If Sj = ∅ then wSj (Xj) = 1. For all j ∈ [d] such that
Sj 6= ∅, the random variables wSj (Xj) ∈ {−1, 1} are i.i.d. and uniformly distributed over {−1, 1}.
Thus, Pr[wS(X1, . . . , Xd) = 1] = Pr[

∏
j∈[d]wSj (Xj) = 1] ≥ 1/2.

Corollary 4.5. Let S be the d-dimensional representation of S ⊆ [md]. The product
∏
k∈[d]\{j}wSk

(xk),
where xk ∈ [2m] for all k ∈ [d] \ {j}, evaluates to 1 for at least half of the settings of variables xk.

Proof. Let S′ be the (d−1)-dimensional vector (S1, . . . ,Sj−1,Sj+1, . . . ,Sd). Then
∏
k∈[d]\{j}wSk

(xk) =
wS′(x1, . . . , xj−1, xj+1, . . . , xd). By Proposition 4.4, this expression is 1 for at least half of the set-
tings of xk.

Proposition 4.6. Fix A,B ⊆ [md] and S = A4B. Let A, B, and S be the d-dimensional
vector representations of the sets A, B, and S, respectively. Then wS : [2m]d → {−1, 1} satisfies
wS(x) = wA(x) · wB(x) for all x ∈ [2m]d.

4.1 Monotonicity

The lower bound for testing monotonicity over the hypergrid domain is conceptually similar to the
monotonicity lower bound for the line domain. For the hypergrid domain, however, we start with
the AugmentedIndexmd problem and use the d-dimensional representation of Alice and Bob’s
inputs A,B, and i to define a combining operator ψ that returns a function h that (a) is monotone
in every dimension when i /∈ A, and (b) is far from monotone in one dimension j∗ when i ∈ A. The
details follow.

Proof of Theorem 1.1. We use Corollary 2.6 with parameter t = md. Let A ⊆ [md] be Alice’s input
and i ∈ [md] and B = A ∩ [i− 1] be Bob’s input.

The combining operator ψ is defined as follows. It receives A, i,B as input. Then it computes
S = A4B = A ∩ {i, . . . ,md} and the d-dimensional vectors i and S corresponding to i and S,
respectively. It returns the function h : [n]d → {d− 1, . . . , dn+ 1} defined by

h(x) = 2si(x) + wS(x).

By Proposition 4.6, wS = wA ·wB, where A and B are the d-dimensional representations of A and
B, respectively. Bob knows i and B and can compute their vector representations. To determine
h(x), he only needs Alice to communicate the bit wA(x). Thus, ψ is a one-bit one-way combining
operator. Lemma 4.7, below, concludes the proof that ψ is a reduction operator for monotonicity
and ε0 = 1/8, implying the theorem.

Lemma 4.7. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S, respectively, be their d-dimensional
vector representations. If i /∈ S, then h is monotone. Otherwise, h is 1

8 -far from monotone.

Proof. Let j∗ = di/me. We will show that all line restrictions of h to dimensions other than j∗ are
monotone. If i /∈ S, we will show that all line restrictions of h to dimension j∗ are also monotone,
so h itself is monotone. Conversely, if i ∈ S, we will show that at least half of the line restrictions
of h to dimension j∗ are 1/4-far from monotone, so h itself is 1/8-far from monotone.
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Consider the restriction of h = 2si+wS to a line in dimension j ∈ [d], i.e., a function h̄ : [2m]→ N
defined by h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈ [2m] are fixed for all
k ∈ [d] \ {j}. Then

h̄(xj) = 2
∑
k 6=j

sik(x̄k) + 2sij (xj) + wSj (xj) ·
∏
k 6=j

wSk
(x̄k)

= 2sij (xj)± wSj (xj) + c, (2)

where ± means “either + or −” and c is a constant independent of xj .
If j < j∗ then Sj = ∅, ij = m and h̄ = 2sm ± w∅ + c = 2± 1 + c. And if j > j∗ then ij = 0, so

h̄(xj) = 2xj ± wSj (xj) + c. In both cases, the function h̄ is monotone.
Finally, if j = j∗ then ij = i − (j − 1)m. In this case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then,

by (2) and Lemma 3.7, h̄(xj) is monotone. Since all line restrictions of h(x) are monotone, the
overall function h(x) is monotone. Now suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk

(x̄k) that
determines whether the expression ± in (2) is actually a plus or a minus. By Corollary 4.5, this
product evaluates to 1 for at least half of the line restrictions h̄ of h in dimension j. For those
restrictions, h̄(xj) = 2sij (xj) + wSj (xj) + c and, since ij ∈ Sj , Lemma 3.7 implies that h̄ is 1

4 -far
from monotone. Thus, at least half of the line restrictions of h in dimension j are 1/4-far from
monotone. Since the domains of line restrictions of h in dimension j partition the domain of h, it
implies that the overall function h(x) is 1

8 -far from monotone.

4.2 Convexity

The lower bound for testing separate convexity on the hypergrid domain is obtained with an argu-
ment similar to the one in Section 4.1: we define a combining operator ψ for the AugmentedIndexmd
problem that returns a function h that is (a) convex in every dimension when i /∈ A, and (b) far
from convex in one dimension when i ∈ A.

This approach does not suffice for the convexity lower bound, however, since the convexity of
the restriction of a function h in every dimension does not imply that h itself is convex; to ensure
that h is convex, we need to construct a reduction such that when i /∈ A, the projection of h is
convex on every line, not just the axis-parallel ones.

The proofs of the lower bounds for testing separate convexity and for testing convexity share
some common elements, so we present them together.

Proof of Theorems 1.2 and 1.3. We apply Corollary 2.6 with parameter t = md. Let A ⊆ [md] be
the set received by Alice and let i ∈ [md] and B = A∩ [i− 1] be Bob’s input. Let j∗ = di/me. Let
A,B and i be the d-dimensional vectors corresponding to A,B and i respectively. The combining
operator ψ receives A and i as input and returns the function h : [n]d → R defined by

h(x) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+

d∑
j=j∗+1

xj
2,

where S is the d-dimensional vector corresponding to S = A4B = A ∩ {i, . . . ,md} and rij∗ is a
rising-step-size function (see Definition 3.10). The parameter α is set to 1 for separate convexity.
In this case, the range of h is [r] for r = O(dn2) because for every k ∈ [m] the range of rk is O(n2).
For convexity, α ∈ (0, 1) is selected later, to satisfy Lemma 4.8 below. For any x ∈ [n]d, Bob
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only needs the single bit wA(x) from Alice to compute h(x), so ψ is a one-bit one-way combining
operator.

To show that ψ is a reduction operator for convexity (resp., separate convexity) we need to show
that if i /∈ S (or equivalently ij∗ /∈ Sj∗) then h is convex (resp., separately convex) and otherwise
h is 1

16 -far from convex (resp., separately convex). We do so with the help of the following lemma.
To apply Lemma 4.8 in the case of convexity recall that the distance of a function f to convex is
at least the distance of f to separately convex.

Lemma 4.8. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S, respectively, be their d-dimensional
vector representations. j∗ = di/me. If ij∗ /∈ Sj∗ then (1) for α = 1 the function h is separately
convex; (2) there exists α > 0 such that the function h is convex. Otherwise (if ij∗ ∈ Sj∗), the
function h is 1

16 -far from separately convex for all α > 0.

Proof. To prove part (1), it suffices to show that every restriction of h to any dimension j ∈ [d] is
a convex function.

Every one-dimensional restriction h̄ of h in dimension j∗ can be expressed as h̄(xj∗) = α(rij∗ (xi)±
1
2wSj∗ (xj∗)) + c, where c is some constant independent of xj∗ . Since ij∗ /∈ Sj∗ , this function is con-

vex by Lemma 3.11. For all j < j∗, every one-dimensional restriction h̄ of h to dimension j is
a constant function. For all j > j∗, the restrictions of h to dimension j can be expressed as
h̄(xj) = ±1

2αwSj (xj) + xj
2 + c. The derivative of the first term wSj satisfies that |12αw

′
Sj

(xj)| ≤ α
and the derivative of the second term is 2xj , so for α ≤ 1 the derivative h̄′ is a nondecreasing
function and h̄ is convex. Hence, the function h is separately convex for all α ≤ 1. This completes
the proof of part (1).

To prove part (2), we show how to pick a parameter α ∈ (0, 1) such that the function h is
convex. By definition, to prove that h is convex we need to show that h(z) ≤ γh(x) + (1− γ)h(y)
for every pair of points (x, y) ∈ [n]d × [n]d and every γ ∈ (0, 1) for which z = γx+ (1− γ)y ∈ [n]d.

The function h is independent of the first j∗−1 coordinates, so h(x) = h(y1, . . . , yj∗−1, xj∗ , . . . , xd)
and h(z) = h(y1, . . . , yj∗−1, zj∗ , . . . , zd).

First, consider the case when xj = yj for all j > j∗, so we have x = (x1, . . . , xj∗ , yj∗+1, . . . , yd).
By Lemma 4.8 (Part 1), all the restrictions h̄ of h to dimension j∗ are convex, so in this case
h(z) ≤ γh(x) + (1− γ)h(y).

Otherwise, fix an index j > j∗ such that xj 6= yj .

Proposition 4.9. Define φj∗(x) =
∑d

t=j∗+1 xt
2. For all n, d ≥ 1 there exists a value δ∗(n, d) > 0

such that
φj∗(γx+ (1− γ)y) ≤ γφj∗(x) + (1− γ)φj∗(y)− δ∗(n, d)

for all pairs (x, y), where xj 6= yj for some j > j∗, and all γ ∈ (0, 1), where γx+ (1− γ)y ∈ [n]d.

Proof. Let j be an index such that xj 6= yj and j > j∗. Then

φj∗(γx+ (1− γ)y)− γφj∗(x)− (1− γ)φj∗(y)

=

d∑
t=j∗+1

(
(γxt + (1− γ)yt)

2 − γxt2 − (1− γ)yt
2
)

≤
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
< 0.
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The first inequality uses convexity of x2. The second inequality uses its strict convexity and the
fact that xj 6= yj . Let

δ(x, y, j, γ, n, d) = −
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
> 0.

Note that j and γ can take at most d and nd different values respectively for any fixed pair
(x, y). Thus there are at most dn3d different valid tuples (x, y, j, γ). The claim follows by letting
δ∗(n, d) = minx,y,j,γ δ(x, y, j, γ, n, d).

We set α = δ∗(n,d)
6(2n2+1)

. Using the notation introduced above,

h(x) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+
∑
j>j∗

xj
2

= α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+ φj∗(x).

Since the range of rij∗ is [2n2],

h(z)− γh(x)− (1− γ)h(y) ≤ φj∗(z)− γφj∗(x)− (1− γ)φj∗(y) + 3α(2n2 + 1)

≤ −δ∗(n, d) + 3α(2n2 + 1) = −δ∗(n, d)/2 < 0,

where the inequalities follow from Proposition 4.9. This concludes the proof of the fact that h is
convex (part (2) of Lemma 4.8).

Finally, we consider the case ij∗ ∈ Sj∗ . By Corollary 4.5, the product
∏
k 6=j∗ wSk

(xk) evaluates

to 1 for at least half of the line restrictions h̄ of h to dimension j∗. For such restrictions, h̄(xj∗) =
α(1

2wSj∗ (xj∗)+rij∗ (xj∗))+ c, for some constant c. Lemma 3.11 implies that h̄ is 1
8 -far from convex.

The domains of the restrictions h̄ of h in dimension j∗ partition the domain of h, so we conclude
that the function h is 1

16 -far from separately convex.

4.3 The Lipschitz property

Definition 4.10 (Multidimensional up-down staircase functions). The up-down staircase func-
tion indexed by the d-dimensional vector i ∈ [m]d is the function ui : [2m]d → [d2m] defined by
ui(x1, . . . , xd) =

∑d
j=1 uij (xj).

Proof of Theorem 1.4. The starting point of the reduction is the same as in the proof of the lower
bound for monotonicity in Section 4.1. We use the same notation for the parameters of the reduction
from AugmentedIndexmd, Alice’s and Bob’s inputs, the set S = A4B = A∩{i, . . . ,md} and the
vector representation of these objects. The combining operator ψ returns the function

h(x) = ui(x)− 1
2(wS(x) + 1).

As in the proof of Theorem 1.1, ψ is a one-bit one-way combining operator. The next lemma
completes the proof of the theorem.

Lemma 4.11. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S be their respective d-dimensional
vector representations. If i /∈ S, then h is Lipschitz. Otherwise, h is 1

8 -far from Lipschitz.
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Proof. Consider a restriction of h to a line in dimension j ∈ [d], that is, a univariate function
h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈ [2m] are fixed for all k ∈ [d] \ {j}.
Then

h̄(xj) =
∑
k 6=j

uik(x̄k) + uij (xj)−
1

2

(
wSj (xj) ·

∏
k 6=j

wSk
(x̄k) + 1

)
= uij (xj)−

1

2
(±wSj (xj) + 1) + c, (3)

where ± means “either + or −” and c is a constant independent of xj .
Let j∗ = di/me. If j < j∗ then Sj = ∅, ij = m and h̄ = uij− 1

2(±1+1)+c. Since every up-down
staircase function ui is Lipschitz, and since a Lipschitz function plus a constant function is Lipschitz,
the resulting function h̄ is Lipschitz. If j > j∗ then ij = 0, so h̄(xj) = 1 − 1

2(±wSj (xj) + 1) + c,,
i.e., h̄ is again a Lipschitz function because it is the sum of a Lipschitz function and a constant
function.

Finally, if j = j∗ then ij = i − (j − 1)m. In this case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then,
by (3) and Lemma 3.14, h̄ is Lipschitz. Since all line restrictions of h are Lipschitz, the overall
function h is Lipschitz. Now suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk

(x̄k) that determines
whether the expression ± in (3) is a plus or a minus. By Corollary 4.5, this product evaluates
to 1 for at least half of the line restrictions h̄(xj) of h in dimension j. For those restrictions,
h̄(xj) = uij + 1

2(wSj + 1)(xj) + c and, since ij ∈ Sj , Lemma 3.14 implies that h̄ is 1
4 -far from

Lipschitz. Thus, at least half of the line restrictions of h in dimension j are 1/4-far from Lipschitz.
Since the domains of the line restrictions of h in dimension j partition the domain of h, the overall
function h is 1

8 -far from Lipschitz.

5 Generalizations

5.1 (α, β)-Lipshitz properties

The approach described in Section 3.3 can be extended to (α, β)-Lipschitz properties, a class of
properties that includes monotonicity and the Lipschitz property as special cases.

Let R̄ = R ∪ {±∞} be the extended real line.

Definition 5.1 ((α, β)-Lipschitz property [CS13b]). For α, β ∈ R̄, where α ≤ β, the function
f : [n]d → R is (α, β)-Lipschitz if for every x, y ∈ [n]d such that y is obtained from x by increasing
exactly one coordinate by exactly 1 it holds that α ≤ f(y)− f(x) ≤ β.

Monotonicity is equal to the (0,∞)-Lipschitz property and the basic Lipschitz property is the
(−1, 1)-Lipschitz property. The following result can be seen as a generalization of the Theorems 3.8
and 3.12 with the only difference being that it doesn’t capture the dependence of the lower bound
on the range of the function. This is because for an arbitrary (α, β)-Lipschitz property it is no
longer possible to restrict the range to [r] without loss of generality.

Theorem 5.2. Fix ε ∈ (0, 1
4 ]; m, r ∈ N;α, β ∈ R. Let n = 2m. Any nonadaptive ε-test for any

(α, β)-Lipschitz property of functions f : [n]→ R requires Ω(log n) queries.

Proof. For an (α, β)-Lipschitz property to be non-trivial either α or β has to be finite. Without loss
of generality, we assume that α is finite because otherwise we can consider the equivalent problem
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of testing whether a function −f satisfies the (−β,−α)-Lipschitz property. Let δ = (β − α)/4 for
finite β, otherwise let δ = 1 (any positive constant would do). For i ∈ {0, . . . ,m}, let pi : [n] → R
be the function with the initial value pi(1) = 0 and the discrete derivative

p′i(x) =

{
α+ 2δ if x is divisible by 2i

α otherwise.

A one-bit one-way combining operator ψ[A, i,B] for the (α, β)-Lipschitz property can be given as:

h(x) = pi(x) + δ · wA∆B(x). (4)

The rest of the proof follows the lines of the proof the lower bound for monotonicity, Theorem 3.6.
Note that for monotonicity the construction (4) exactly coincides with (1). For a general (α, β)-
Lipschitz property we have two cases:

1. If i /∈ A∆B then the discrete derivative of h satisfies α ≤ h′(x) ≤ α+ 4δ ≤ β for every x, so
h is (α, β)-Lipschitz.

2. If i ∈ A∆B then for at least half of the blocks Bi
k the discrete derivative h′(x) is equal to α on

all points in these blocks except the middle point where it is α− 2δ. For every pair of points
(x, y), where x is from the first half of such block and y is from the second half, the value of
h on at least one of these points has to be changed in order to make the function h satisfy
the (α, β)-Lipschitz property. This gives the distance of at least 1/4 from the (α, β)-Lipschitz
property.

The following theorem can be obtained by applying the same product construction as used in
the proof of Theorem 1.1 and Theorem 1.4 to the reduction (4) from Theorem 5.2.

Theorem 5.3. Fix ε ∈ (0, 1
8 ]; m, r ∈ N;α, β ∈ R. Let n = 2m. Any nonadaptive ε-test for any

(α, β)-Lipschitz property of functions f : [n]d → R requires Ω(d log n) queries.

5.2 Non-negativity of high-order derivatives

Definition 5.4 (`-th discrete derivative). For a function f : [n] → R, let f (1) = f ′ denote its
first derivative. The `-th discrete derivative of a function f : [n] → R for ` ≥ 2 is a function
f (`) : [n− `]→ R defined recursively as f (`) = (f (`−1))′.

We have shown lower bounds for testing non-negativity of the first derivative (monotonicity) and
second derivative (convexity) in Theorem 3.6 and Theorem 3.8 respectively. Our proof technique
can be naturally generalized to yield the following result.

Theorem 5.5. Fix ε ∈ (0, 1
8 ] and n = 2m for some m ≥ 1. For any constant ` ≥ 0 any nonadaptive

ε-test for non-negativity of (`+ 1)-th derivative of functions f : [n]→ R,requires Ω(log n) queries.

Proof. We use the following generalization of the Definition 3.10.

Definition 5.6 (`-rising-step-size functions). Fix i ∈ [m] and ` ≥ 1. The `-rising-step-size function

ri,` is uniquely defined by its `-th derivative, r
(`)
i,` (x) = 2`+1 ·

∑`
j=0 si(x − j) and values ri,`(1) =

· · · = ri,`(`) = 0.
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Given Alice’s set A ⊆ [m] and Bob’s index i ∈ [m] and the prefix set B = A ∩ [i − 1] the
combining operator ψ[A, i,B] returns the function

h(x) = ri,`(x) + wS(x), (5)

where S = A4B = A ∩ {i, . . . ,m}. Since wS = wA × wB, the operator ψ is a one-bit one-way
combining operator. It remains to show that if i /∈ A, then h has a non-negative `-th derivative and
that if i ∈ A, then h is at least 1

8 -far from any function which has a non-negative `-th derivative.

Lemma 5.7. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. The functions h = ri,` + wS and h− = ri,` − wS
satisfy the following properties.

1. If i /∈ S, then h and h− have non-negative (`+ 1)-th derivative;

2. If i ∈ S, then h is 1
8 -far from any function which has non-negative (`+ 1)-th derivative.

Proof. First, consider the case where i /∈ S. The `-th derivative of h is h(`)(x) = r
(`)
i,` (x) + w

(`)
S (x).

It suffices to show that h(`) is nondecreasing. By definition, r
(`)
i,` (x) = 2`+1 ·

∑`
j=0 si(x− j). Thus,

by definition of step functions si, the (`+ 1)-th derivative r
(`+1)
i,` is equal to zero everywhere except

for the last `+ 1 elements of every block Bi
k, where it is equal to 2`+1. Now consider the (`+ 1)-th

derivative w
(`+1)
S . It is also equal to zero everywhere except for the last ` + 1 elements of every

block Bi
k. Because its absolute value is at most 2`+1 we conclude that h(`+1) is non-negative, as

desired. Non-negativity of h
(`+1)
− also follows.

Now consider the case where i ∈ S. The idea is to show that for at least half of the blocks Bi
k

which we will call good the following holds. Fix a block Bi
k and let the midpoint of this block be

denoted as m = 2i(k − 1) + 2i−1. Consider any (` + 2)-tuple of points (x, y1, . . . , y`+1), where all
points are from Bi

k, y0 ≤ m− ` and m < y1 < · · · < y`+1 ≤ k · 2i − `. Intuitively, y0 is in the first
half of the block and all other yi’s are from the second, while all points are separated from the right
boundary of their corresponding half by a margin of width `.

Proposition 5.8. For at least half of the blocks Bi
k, which we call good, and for every (`+2)-tuple

(y0, y1, . . . , y`+1) as defined above the value of the function h has to be changed on at least one point
in the tuple in order for h to have monotone `-th derivative.

Proof. Before we describe the formal proof we explain the main idea, which is based on polynomial

interpolation. By definition the function ri,`(x) has constant `-th derivative r
(`)
i,` (x) within blocks

Bi
k and all higher-order derivatives equal to zero. This means that ri,`(x) can be exactly represented

by a polynomial of degree ` for all points within this block. For a half of the blocks Bi
k, which we

call good, the function wS(x) is a constant −1 in the first half of the block and +1 in the second

half. Fix a good block and assume that the r
(`)
i,` = α within this block. Note that the combined

function h(x) = ri,`(x) + wS(x) can still be represented exactly by a polynomial p(x) = ri,`(x) + 1
of degree ` in the second half of the block, while points in the first half lie below this polynomial
for good blocks. Thus, because the point h(y0) = ri,`(x)− 1 = p(x)− 2 lies below p(x) there exists
some point y∗ ∈ [y0, y`+1] such that h(`)(y∗) > α. Because `-th derivative in the second half of
the block is α this violates monotonicity of the `-th derivative and thus at least one of the points
(y0, y1, . . . , y`+1) has to be modified.
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We will show that every (` + 1)-tuple of points (z1 < · · · < z`+1) can be used to estimate `-th
derivative of a function f by a value e(z1, . . . , z`+1, f(z1), . . . , f(z`+1)) which satisfies the following
condition. If f has a monotone non-decreasing `-th derivative then for every two (` + 1)-tuples
(z1 < · · · < z`+1) and (z2 < · · · < z`+2) which agree on ` points it will hold that

e(z1, . . . , z`+1, f(z1), . . . , f(z`+1)) ≤ e(z2, . . . , z`+2, f(z2), . . . , f(z`+2)). (6)

We will show that for at least half of the blocks

e(x, y1, . . . , y`, h
(`)(x), . . . , h(`)(y`)) > e(y1, . . . , y`+1, h

(`)(y1) . . . h(`)(y`+1)) (7)

and so the function h has to be changed on at least one point in the tuple in order for it to have
a monotone non-decreasing `-th derivative. Note that for ` = 1 the estimation rule satisfying
the conditions above can be given by a standard interpolation formula e(z1, z2, f(z1), f(z2)) =
f(z2)−f(z1)

z2−z1 . We used this interpolation in the proof of Theorem 3.8. For uniformly spaced points,
namely if zi+1 − zi = ∆ for all i a standard interpolation formula is given as:

e(z1, . . . , z`+1, f(z1), . . . , f(z` + 1)) =

∑`
i=0(−1)i

(
`
i

)
f(z`−i+1)

∆`
.

For non-uniformly spaced points the corresponding formula can be defined recursively. For 0 ≤
i ≤ `, let ∆i(z1, . . . , z`+1−i, x1, . . . , x`+1−i) = (x2−x1z2−z1 , . . . ,

x`+1−i−x`−i

z`+1−i−z`−i
) be a vector valued function

corresponding to numerical differentiation. For 0 ≤ i < ` let’s denote ei+1 = ∆i(z1, . . . , z`+1−i, ei)
and e0 = (f(z1), . . . , f(z`+1)). Then the interpolation formula for non-uniformly spaced points is
e(z1, . . . , z`+1, f(z1), . . . , f(z` + 1)) = e`. For example, for ` = 2 we have

e(x1, x2, x3, f(x1), f(x2), f(x3)) =

(
f(x3)− f(x2)

x3 − x2
− f(x2)− f(x1)

x2 − x1

)
/ (x2 − x1) .

If f has monotone non-decreasing `-th derivative then (6) holds because e is essentially the leading
coefficient of the unique `-th degree polynomial fitting `+1 given points. We will denote this unique
polynomial as pe. Monotonicity of `-th derivative means that this coefficient is monotone in its
arguments, implying (6). We refer the reader to Chapter 3 of the book by Ferziger and Peric [FP96]
for a more detailed discussion on finite difference interpolation methods.

It remains to show that (7) holds for at least half of the blocks Bi
k. First, we note that for every

block Bi
k by definition of ri,` the derivative r

(`)
i,` is constant on all points except for the last ` points of

the block. This means that our polynomial interpolation e(y1, . . . , y`+1, ri,`(y1), . . . , ri,`(y`)) exactly
represents function ri,` for all z such that (k − 1)2i ≤ z < k · 2i − `. Now consider the function
h = ri,` + wS . For half of the blocks Bi

k the value of wS is −1 on the first half of the block and
+1 on the second half. This means that the point h(x) lies below the polynomial interpolation via
points (y1, . . . , y`+1) and hence the leading coefficient of the interpolation via points (x, y1, . . . , y`)
is greater than the leading coefficient of the polynomial via points (y1, . . . , y`+1). This implies (7),
completing the proof of Proposition 5.8.

The proof of the second part of Lemma 5.7 now follows from Proposition 5.8. For every good
block Proposition 5.8 implies that the value of h has to be changed either on all but ` points in the
first half of the block or on all but 2` points in the second half. Otherwise we would be able to find
an (` + 1)-tuple satisfying the conditions of Proposition 5.8, a contradiction. If the total number
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of points in the block Bi
k is at least 8` then this implies that the total number of points that has

to be changed in Bi
k is at least 2`. Because at least half of the blocks Bi

k are good this implies that
the distance from h to the closest function having non-negative (`+ 1)-th derivative is at least 1/8.

The following theorem can be obtained by applying the same product construction as used in
the proof of Theorem 1.1 and Theorem 1.2 to the reduction (5) from Theorem 5.5.

Theorem 5.9. Fix ε ∈ (0, 1
16 ] and n = 2m for some m ≥ 1. For any constant ` ≥ 0 any nonadaptive

ε-test for non-negativity of axis-parallel (` + 1)-th derivatives of functions f : [n]d → R,requires
Ω(d log n) queries.
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