
Learning Circuits with Few Negations

Eric Blais1, Clément L. Canonne2, Igor C. Oliveira2,
Rocco A. Servedio2, and Li-Yang Tan2

1 University of Waterloo
200 University Avenue West, Waterloo ON, Canada
eric.blais@uwaterloo.ca

2 Columbia University
500 W 120th Street, New York NY, USA
{ccanonne,oliveira,rocco,liyang}@cs.columbia.edu

Abstract
Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been
intensively studied in complexity theory. In this paper we study the structure of Boolean functions
in terms of the minimum number of negations in any circuit computing them, a complexity
measure that interpolates between monotone functions and the class of all functions. We study
this generalization of monotonicity from the vantage point of learning theory, establishing nearly
matching upper and lower bounds on the uniform-distribution learnability of circuits in terms
of the number of negations they contain. Our upper bounds are based on a new structural
characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our
lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results
even for circuits with no negations (i.e. monotone functions).

1998 ACM Subject Classification I.2.6 Learning, F.2.2 Nonnumerical Algorithms and Problems,
G.1.2 Approximation, G.3 Probability and Statistics

Keywords and phrases Boolean functions, monotonicity, negations, PAC learning

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.512

1 Introduction

A monotone Boolean function f : {0, 1}n → {0, 1} is one that satisfies f(x) ≤ f(y) whenever
x � y, where � denotes the bitwise partial order on {0, 1}n. The structural and combinatorial
properties of monotone Boolean functions have been intensively studied for many decades,
see e.g. [12] for an in-depth survey. Many important results in circuit complexity deal
with monotone functions, including celebrated lower bounds on monotone circuit size and
monotone formula size (see e.g. [22, 23] and numerous subsequent works).

Monotone functions are also of considerable interest in computational learning theory,
in particular with respect to the model of learning under the uniform distribution. In
an influential paper, Bshouty and Tamon [6] showed that any monotone Boolean function
f : {0, 1}n → {0, 1} can be learned from uniform random examples to error ε in time nO(

√
n/ε).

They also gave a lower bound, showing that no algorithm running in time 2cn for any c < 1
can learn arbitrary monotone functions to accuracy ε = 1/(

√
n logn). (Many other works in

learning theory such as [3, 11, 5, 1, 26, 20, 21] deal with learning monotone functions from a
range of different perspectives and learning models, but we limit our focus in this paper to
learning to high accuracy with respect to the uniform distribution.)

© Eric Blais, Clément L. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang Tan;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 512–527

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.512
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 513

1.1 Beyond monotonicity: Inversion complexity, alternations, and
Markov’s theorem

Given the importance of monotone functions in complexity theory and learning theory, it is
natural to consider various generalizations of monotonicity. One such generalization arises
from the simple observation that monotone Boolean functions are precisely the functions
computed by monotone Boolean circuits, i.e. circuits which have only AND and OR gates
but no negations. Given this, an obvious generalization of monotonicity is obtained by
considering functions computed by Boolean circuits that have a small number of negation
gates. The inversion complexity of f : {0, 1}n → {0, 1}, denoted I(f), is defined to be the
minimum number of negation gates in any AND/OR/NOT circuit (with access to constant
inputs 0/1) that computes f . We write Cnt to denote the class of n-variable Boolean functions
f : {0, 1}n → {0, 1} that have I(f) ≤ t.

Another generalization of monotonicity is obtained by starting from an alternate char-
acterization of monotone Boolean functions. A function f : {0, 1}n → {0, 1} is monotone
if and only if the value of f “flips” from 0 to 1 at most once as the input x ascends any
chain in {0, 1}n from 0n to 1n. (Recall that a chain of length ` is an increasing sequence
(x1, . . . , x`) of vectors in {0, 1}n, i.e. for every j ∈ {1, . . . , `− 1} we have xj ≺ xj+1.) Thus,
it is natural to consider a generalization of monotonicity that allows more than one such
“flip” to occur. We make this precise with the following notation and terminology: given a
Boolean function f : {0, 1}n → {0, 1} and a chain X = (x1, . . . , x`), a position j ∈ [`− 1] is
said to be alternating with respect to f if f(xj) 6= f(xj+1). We write A(f,X) ⊆ [`− 1] to
denote the set of alternating positions in X with respect to f , and we let a(f,X) = |A(f,X)|
denote its size. We write a(f) to denote the maximum of a(f,X) taken over all chains X in
{0, 1}n, and we say that f : {0, 1}n → {0, 1} is k-alternating if a(f) ≤ k.

A celebrated result of A. A. Markov from 1957 [14] gives a tight quantitative connection
between the inversion and alternation complexities defined above:

I Markov’s Theorem. Let f : {0, 1}n → {0, 1} be a function which is not identically 0.
Then (i) if f(0n) = 0, then I(f) = dlog(a(f) + 1)e − 1; and (ii) if f(0n) = 1, then
I(f) = dlog(a(f) + 2)e − 1.

This robustness motivates the study of circuits which contain few negation gates, and
indeed such circuits have been studied in complexity theory. Amano and Maruoka [2] have
given bounds on the computational power of such circuits, showing that circuits for the clique
function which contain fewer than 1

6 log logn many negation gates must have superpolynomial
size. More recently, Rossman [24] proved that there exists an explicit monotone function
that cannot be computed by fan-in two circuits of logarithmic depth containing less than(1

2−ε
)

logn negations. Other works have studied the effect of limiting the number of negation
gates in formulas [16, 9], bounded-depth circuits [25, 27], and non-deterministic circuits [17].
Another line of work that has received attention lately is the role of monotonicity and
negation complexity in cryptography and related areas [8, 10].

In the present work, we study circuits with few negations from the vantage point of
computational learning theory, giving both positive and negative results. We observe that
some of the recent works mentioned [10, 9] build on techniques introduced in a preliminary
version of this paper.

1.2 Our results
We begin by studying the structural properties of functions that are computed or approximated
by circuits with few negation gates. In Section 2 we establish the following extension of
Markov’s theorem:

APPROX/RANDOM’15

514 Learning Circuits with Few Negations

I Theorem 1.1. Let f be a k-alternating Boolean function. Then f can be expressed as
f(x) = h(m1(x), . . . ,mk(x)), where each mi(x) is monotone and h is either the parity
function or its negation. Conversely, any function of this form is k-alternating.

Theorem 1.1 along with Markov’s theorem yields the following characterization of Cnt :

I Corollary 1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT) where h is either
PART or its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

A well-known consequence of Markov’s theorem is that every Boolean function is exactly
computed by a circuit which has only logn negation gates, and as we shall see an easy argument
shows that every Boolean function is 0.01-approximated by a circuit with 1

2 logn + O(1)
negations. In Section 2 we note that no significant savings are possible over this easy upper
bound:

I Theorem 1.3. For almost every function f : {0, 1}n → {0, 1}, any Boolean circuit C that
0.01-approximates f must contain 1

2 logn−O(1) negations.

We then turn to our main topic of investigation, the uniform-distribution learnability of
circuits with few negations. We use our new extension of Markov’s theorem, Theorem 1.1,
to obtain a generalization of the Fourier-based uniform-distribution learning algorithm of
Bshouty and Tamon [6] for monotone circuits:

I Theorem 1.4. There is a uniform-distribution learning algorithm which learns any unknown
f ∈ Cnt from random examples to error ε in time nO(2t

√
n/ε).

We observe that many natural functions are indeed computed by circuits with few negations.
As an example, consider the property of undirected graphs that is satisfied by an n-vertex
graph G if and only if G contains a triangle but does not contain a cycle of size logn. Clearly,
this property is non-monotone. However, it is easy to see that it can be represented by a
Boolean function f : {0, 1}(

n
2) → {0, 1} that is computed by a circuit with a single negation.

Our positive result implies that learning such properties does not take much more time than
learning monotone properties.1

Theorem 1.4 immediately leads to the following question: can an even faster learning
algorithm be given for circuits with t negations, or is the running time of Theorem 1.4
essentially the best possible? Interestingly, prior to our work a matching lower bound for
Theorem 1.4 was not known even for the special case of monotone functions (corresponding
to t = 0). As mentioned earlier, Bshouty and Tamon proved that to achieve accuracy
ε = 1/(

√
n logn) any learning algorithm needs time ω(2cn) for any c < 1 (see Claim 3.13 for

a slight sharpening of this statement). For larger values of ε, though, the strongest previous
lower bound was due to Blum, Burch and Langford [5]. Their Theorem 10 implies that any
membership-query algorithm that learns monotone functions to error ε < 1

2 − c (for any
c > 0) must run in time 2Ω(

√
n) (in fact, must make at least this many membership queries).

However, this lower bound does not differentiate between the number of membership queries
required to learn to high accuracy versus “moderate” accuracy – say, ε = 1/n1/10 versus
ε = 1/10. Thus the following question was unanswered prior to the current paper: what is

1 In contrast to the robustness we show in the learning setting, there are natural computational problems
whose complexity changes drastically with the addition of a single negation gate. For instance, checking
if a monotone circuit is non-constant is trivial. Nevertheless, it is possible to prove that the same
computational problem for circuits with a single negation gate admits polynomial time algorithms if
and only if P = NP.

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 515

the best lower bound that can be given, both as a function of n and ε, on the complexity of
learning monotone functions to accuracy ε?

We give a fairly complete answer to this question, providing a lower bound as a function of
n, ε and t on the complexity of learning circuits with t negations. Our lower bound essentially
matches the upper bound of Theorem 1.4, and is thus simultaneously essentially optimal
in all three parameters n, ε and t for a wide range of settings of ε and t. Our lower bound
result is the following:

I Theorem 1.5. For any t ≤ 1
28 logn and any ε ∈ [1/n1/12, 1/2− c], c > 0, any membership-

query algorithm that learns any unknown function f ∈ Cnt to error ε must make 2Ω(2t
√
n/ε)

membership queries.

We note that while our algorithm uses only uniform random examples, our lower bound
holds even for the stronger model in which the learning algorithm is allowed to make arbitrary
membership queries on points of its choosing.

Theorem 1.5 is proved using tools from the study of hardness amplification. The proof
involves a few steps. We start with a strong lower bound for the task of learning to high
accuracy the class of balanced monotone Boolean functions (reminiscent of the lower bound
obtained by Bshouty and Tamon). Then we combine hardness amplification techniques and
results on the noise sensitivity of monotone functions in order to get stronger and more
general lower bounds for learning monotone Boolean functions to moderate accuracy. Finally,
we use hardness amplification once more to lift this result into a lower bound for learning
circuits with few negations to moderate accuracy. An ingredient employed in this last stage
is to use a k-alternating combining function which “behaves like” the parity function on
(roughly) k2 variables; this is crucial in order for us to obtain our essentially optimal final
lower bound of 2Ω(2t

√
n/ε) for circuits with t negations. These results are discussed in more

detail in Section 3.2.
Lastly, we mention an interesting research direction left unanswered by our results.

Specifically, we focus in this work on the uniform-distribution learnability to high accuracy,
i.e. when the error parameter ε is thought of as “small” (or at least bounded away from
1/2). While we provide almost optimal bounds for this regime, the complexity of weakly
learning circuits with negations – that is obtaining inverse-polynomial advantage over random
guessing – remains open. As a concrete question, is there an efficient algorithm that learns
circuits with a single negation with error at most 1/2− Ω(1/nc) for some c > 0? (Note that
the analogue question for monotone circuits is well-understood [5, 1, 21].)

2 Structural facts about computing and approximating functions
with low inversion complexity

2.1 An extension of Markov’s theorem
We begin with the proof of our new extension of Markov’s theorem. For any A ⊆ {0, 1}n
let 1[A] : {0, 1}n → {0, 1} be the characteristic function of A. For f : {0, 1}n → {0, 1} and
x ∈ {0, 1}n, we write af (x) to denote

af (x) def= max{a(f,X) : X is a chain that starts at x},

and note that a(f) = maxx∈{0,1}n{af (x)} = af (0n). For 0 ≤ ` ≤ a(f) let us write Sf` to
denote Sf`

def= {x ∈ {0, 1}n : af (x) = `}, and let T f`
def= Sf0∪· · ·∪S

f
` .We note that Sf0 , . . . , S

f
a(f)

partition the set of all inputs: Sfi ∩S
f
j = ∅ for all i 6= j, and T fa(f) = Sf0 ∪· · ·∪S

f
a(f) = {0, 1}n.

APPROX/RANDOM’15

516 Learning Circuits with Few Negations

We will need the following simple observation:

I Observation 2.1. Fix any f and any x ∈ {0, 1}n. If x ∈ Sf` and y � x then y ∈ Sf`′ for
some `′ ≤ `. Furthermore, if f(y) 6= f(x) then `′ < `.

I Theorem 1.1. (Restated) Fix f : {0, 1}n → {0, 1} and let k def= a(f). Then f can be
expressed as f = h

(
1
[
T f0
]
, . . . ,1

[
T fk−1

])
, where

(i) the functions 1
[
T f`
]
are monotone for all 0 ≤ ` ≤ k,

(ii) h : {0, 1}k → {0, 1} is PARk if f(0n) = 0 and ¬PARk if f(0n) = 1,
and PARk(x) = x1 ⊕ · · · ⊕ xk is the parity function on k variables. Conversely, for any
monotone Boolean functions m1, . . . ,mk, any Boolean function of the form h(m1, . . . ,mk) is
k-alternating.

Proof. Claim 1 follows immediately from Observation 2.1 above. The proof of 2 is by
induction on k. In the base case k = 0, we have that f is a constant function and the claim
is immediate.

For the inductive step, suppose that the claim holds for all functions f ′ that have
a(f ′) ≤ k−1. We define f ′ : {0, 1}n → {0, 1} as f ′ = f ⊕1

[
Sfk
]
. Observation 2.1 implies that

Sf
′

` = Sf` for all 0 ≤ ` ≤ k−2 and Sf
′

k−1 = Sfk−1∪S
f
k , and in particular, a(f) = k−1. Therefore

we may apply the inductive hypothesis to f ′ and express it as f ′ = h′
(
1
[
T f
′

0
]
, . . . ,1

[
T f
′

k−2
])
.

Since T f
′

` = T f` for 0 ≤ ` ≤ k−2, we may use this along with the fact that 1
[
Sfk
]

= ¬1
[
T fk−1

]
to get:

f = f ′⊕1
[
Sfk
]

= h′
(
1
[
T f
′

0
]
, . . . ,1

[
T f
′

k−2
])
⊕¬1

[
T fk−1

]
= h′

(
1
[
T f0
]
, . . . ,1

[
T fk−2

])
⊕¬1

[
T fk−1

]
and the inductive hypothesis holds (note that 0n ∈ Sfk).

The converse is easily verified by observing that any chain in {0, 1}n can induce at most
k + 1 possible vectors of values for (m1, . . . ,mk) because of their monotonicity. J

Theorem 1.1 along with Markov’s theorem immediately yields the following corollary:

I Corollary 1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT) where h is either
PART or its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

2.2 Approximation
As noted earlier, Markov’s theorem implies that every n-variable Boolean function can be
exactly computed by a circuit with (essentially) logn negations (since a(f) ≤ n for all f).
If we set a less ambitious goal of approximating Boolean functions (say, having a circuit
correctly compute f on a 1− ε fraction of all 2n inputs), can significantly fewer negations
suffice?

We first observe that every Boolean function f is ε-close (with respect to the uniform
distribution) to a function f ′ that has a(f ′) ≤ O(

√
n log 1/ε). The function f ′ is obtained

from f simply by setting f ′(x) = 0 for all inputs x that have Hamming weight outside
of [n/2− O(

√
n log 1/ε), n/2 + O(

√
n log 1/ε)]; a standard Chernoff bound implies that f

and f ′ disagree on at most ε2n inputs. Markov’s theorem then implies that the inversion
complexity I(f ′) is at most 1

2 (logn+ log log 1
ε) +O(1). Thus, every Boolean function can be

approximated to high accuracy by a circuit with only 1
2 logn+O(1) negations.

We now show that this upper bound is essentially optimal: for almost every Boolean
function, any 0.01-approximating circuit must contain at least 1

2 logn−O(1) negations. To

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 517

prove this, we recall the notion of the total influence of a Boolean function f : this is

Inf [f] =
n∑
i=1

Inf i[f], where Inf i[f] = Prx∈{0,1}n [f(x) 6= f(x⊕i)]

and x⊕i denotes x with its i-th coordinate flipped. The total influence of f is easily seen to
equal αn, where α ∈ [0, 1] is the fraction of all edges e = (x, x′) in the Boolean hypercube
that are bichromatic, i.e. have f(x) 6= f(x′). In Appendix A.1 we prove the following lemma:

I Lemma 2.2. Suppose f : {0, 1}n → {0, 1} is such that Inf [f] = Ω(n). Then a(f) = Ω(
√
n).

It is easy to show that a random function has influence n
2 (1 − o(1)) with probability

1− 2−n. Given this, Claim 2.2, together with the elementary fact that whenever f ′ is ε-close
to f then |Inf(f ′)− Inf(f)| ≤ 2εn, directly yields the following:

I Theorem 1.3. With probability 1− 2−n, any 0.01-approximator f ′ for a random function
f must have inversion complexity I(f ′) ≥ 1

2 logn−O(1).

I Remark. The results in this section (together with simple information-theoretic arguments
showing that random functions are hard to learn) imply that one cannot expect to have
a learning algorithm (even to constant accuracy) for the class Cn1

2 logn+O(1) of circuits with
1
2 logn+O(1) negations in time significantly better than 2n. As we shall see in Section 3.1,
for any fixed δ > 0 it is possible to learn Cn(1

2−δ) logn to accuracy 1− ε in time 2Õ(n1−δ)/ε.

3 Learning circuits with few negations

3.1 A learning algorithm for Cnt
We sketch the learning algorithm and analysis of Bshouty and Tamon [6]; using the results
from Section 2 our Theorem 1.4 will follow easily from their approach. Our starting point
is the simple observation that functions with good “Fourier concentration” can be learned
to high accuracy under the uniform distribution simply by estimating all of the low-degree
Fourier coefficients. This fact, established by Linial, Mansour and Nisan, is often referred to
as the “Low-Degree Algorithm:”

I Theorem 3.1 (Low-Degree Algorithm ([13])). Let C be a class of Boolean functions such
that for ε > 0 and τ = τ(ε, n),∑
|S|>τ

f̂(S)2 ≤ ε

for any f ∈ C. Then C can be learned from uniform random examples in time poly(nτ , 1/ε).

Using the fact that every monotone function f : {0, 1}n → {0, 1} has total influence
Inf(f) ≤

√
n, and the well-known Fourier expression Inf(f) =

∑
S f̂(S) · |S|2 for total

influence, a simple application of Markov’s inequality let Bshouty and Tamon show that
every monotone function f has∑
|S|>

√
n/ε

f̂(S)2 ≤ ε.

Together with Theorem 3.1, this gives their learning result for monotone functions.

APPROX/RANDOM’15

518 Learning Circuits with Few Negations

Armed with Corollary 1.2, it is straightforward to extend this to the class Cnt . Corollary 1.2
and a union bound immediately give that every f ∈ Cnt has Inf(f) ≤ O(2t)

√
n, so the Fourier

expression for influence and Markov’s inequality give that∑
|S|>O(2t)

√
n/ε

f̂(S)2 ≤ ε

for f ∈ Cnt . Theorem 1.4 follows immediately using the Low-Degree Algorithm.

An immediate question is whether this upper bound on the complexity of learning Cnt is
optimal; we give an affirmative answer in the next subsection.

3.2 Lower bounds for learning
As noted in the introduction, we prove information-theoretic lower bounds against learning
algorithms that make a limited number of membership queries. We start by establishing a
new lower bound on the number of membership queries that are required to learn monotone
functions to high accuracy, and then build on this to provide a lower bound for learning Cnt .
Our query lower bounds are essentially tight, matching the upper bounds (which hold for
learning from uniform random examples) up to logarithmic factors in the exponent.

We first state the results; the proofs are deferred to Section 3.2.1. We say that a Boolean
function f is balanced if Prx[f(x) = 0] = Prx[f(x) = 1] = 1/2.

I Theorem 3.2. There exists a class Hn of balanced n-variable monotone Boolean functions
such that for any ε ∈ [1

n1/6 , 1/2− c], c > 0, learning Hn to accuracy 1− ε requires 2Ω(√n/ε)
membership queries.

This immediately implies the following corollary, which essentially closes the gap in our
understanding of the hardness of learning monotone functions:

I Corollary 3.3. For any ε = Ω
(
1/n1/6) bounded away from 1/2, learning n-variable

monotone functions to accuracy 1− ε requires 2Θ̃(
√
n)/ε queries.

Using this class H as a building block, we obtain the following hardness of learning result
for the class of k-alternating functions:

I Theorem 3.4. For any function k : N→ N, there exists a class H(k) of balanced k = k(n)-
alternating n-variable Boolean functions such that, for any n sufficiently large and ε > 0
such that (i) 2 ≤ k < n1/14, and (ii) k7/3/n1/6 ≤ ε ≤ 1

2 − c, learning H
(k) to accuracy 1− ε

requires 2Ω(k√n/ε) membership queries.

(We note that the tradeoff between the ranges of k and ε that is captured by condition (ii)
above seems to be inherent to our approach and not a mere artifact of the analysis; see
Observation 3.16.) This theorem immediately yields the following:

I Corollary 3.5. Learning the class of k-alternating functions to accuracy 1 − ε in the
uniform-distribution membership-query model requires 2Ω(k√n/ε) membership queries, for
any k = O

(
n1/28) and ε ∈ [1/n1/12, 1

2 − c].

I Corollary 3.6. For t ≤ 1
28 logn, learning Cnt to accuracy 1− ε requires 2Ω(2t

√
n/ε) mem-

bership queries, for any ε ∈ [27t/3/n1/6, 1
2 − c].

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 519

3.2.1 Proofs
We require the following standard notion of composition for two functions f and g:

I Definition 3.7 (Composition). For f : {0, 1}m → {0, 1} and g : {0, 1}r → {0, 1}, we denote
by g ⊗ f the Boolean function on n = mr inputs defined by

(g ⊗ f)(x) def= g(f, . . . , f︸ ︷︷ ︸
r

)(x) = g(f(x1, . . . , xm), . . . , f(x(r−1)m+1, . . . , xrm))

Similarly, for any g : {0, 1}r → {0, 1} and Fm a class of Boolean functions on m variables,
we let

g ⊗Fm = { g ⊗ f : f ∈ Fm }

and g ⊗F = {g ⊗Fm}m≥1.

Overview of the arguments. Our approach is based on hardness amplification. In order to
get our lower bound against learning k-alternating functions, we (a) start from a lower bound
ruling out very high-accuracy learning of monotone functions; (b) use a suitable monotone
combining function to get an XOR-like hardness amplification, yielding a lower bound for
learning (a subclass of) monotone functions to moderate accuracy; (c) repeat this approach
on this subclass with a different (now k-alternating) combining function to obtain our final
lower bound, for learning k-alternating functions to moderate accuracy.[

high-accuracy
monotone

]
(a)

⊗
-like

−−−−−−−−→
monotone

[
moderate accuracy

monotone

]
(b)

⊗
-like

−−−−−−−−→
k-alternating

[
moderate accuracy
k-alternating

]
(c)

(1)

In more detail, in both steps (b) and (c) the idea is to take as base functions the hard
class from the previous step (respectively “monotone hard to learn to high accuracy,” and
“monotone hard to learn to moderate accuracy”), and compose them with a very noise-sensitive
function in order to amplify hardness. Care must be taken to ensure that the combining
function satisfies several necessary constraints (being monotone for (b) and k-alternating for
(c), and being as sensitive as possible to the correct regime of noise in each case).

Useful tools

We begin by recalling a few notions and results that play a crucial role in our approach.

I Definition 3.8 (Noise stability). For f : {0, 1}n → {0, 1}, the noise stability of f at
η ∈ [−1, 1] is

Stabη(f) def= 1− 2 Pr[f(x) 6= f(y)]

where x is drawn uniformly at random from {0, 1}n and y is obtained from x by independently
for each bit having Pr[yi = xi] = (1 + η)/2 (i.e., x and y are η-correlated).

I Definition 3.9 (Bias and expected bias). The bias of a Boolean function h : {0, 1}n → {0, 1}
is the quantity bias(h) def= max(Pr[h = 1] ,Pr[h = 0]), while the expected bias of h at δ is
defined as ExpBiasδ(h) def= Eρ[bias(hρ)], where ρ is a random restriction on n coordinates
where each coordinate is independently left free with probability δ and set to 0 or 1 with
same probability (1− δ)/2.

APPROX/RANDOM’15

520 Learning Circuits with Few Negations

I Fact 3.10 (Proposition 4.0.11 from [19]). For δ ∈ [0, 1/2] and f : {0, 1}n → {0, 1}, we have

1
2 + 1

2 Stab1−2δ(f) ≤ ExpBias2δ(f) ≤ 1
2 + 1

2
√

Stab1−2δ(f).

Building on Talagrand’s probabilistic construction [28] of a class of functions that are
sensitive to very small noise, Mossel and O’Donnell [18] gave the following noise stability
upper bound. (We state below a slightly generalized version of their Theorem 3, which follows
from their proof with some minor changes; see Appendix A.2 for details of these changes.)

I Theorem 3.11 (Theorem 3 of [18]). There exists an absolute constant K and an infinite
family of balanced monotone functions gr : {0, 1}r → {0, 1} such that Stab1−τ/

√
r(gr) ≤

1−Kτ holds for all sufficiently large r, as long as τ ∈ [16/
√
r, 1].

Applying Fact 3.10, it follows that for the Mossel–O’Donnell function gr on r inputs and
any τ as above, we have

1
2 ≤ ExpBiasγ(gr) ≤

1
2 + 1

2
√

1−Kτ ≤ 1− K

4 τ (2)

for γ def= τ√
r
.

We will use the above upper bound on expected bias together with the following key tool
from [7], which gives a hardness amplification result for uniform distribution learning. This
result builds on the original hardness amplification ideas of O’Donnell [19]. (We note that
the original theorem statement from [7] deals with the running time of learning algorithms,
but inspection of the proof shows that the theorem also applies to the number of membership
queries that the learning algorithms perform.)

I Theorem 3.12 (Theorem 12 of [7]). Fix g : {0, 1}r → {0, 1}, and let F be a class of m-
variable Boolean functions such that for every f ∈ F , bias(f) ≤ 1

2 + ε
8r . Let A be a uniform

distribution membership query algorithm that learns g ⊗ F to accuracy ExpBiasγ(g) + ε

using T (m, r, 1/ε, 1/γ) queries. Then there exists a uniform-distribution membership query
algorithm B that learns F to accuracy 1 − γ using O(T · poly(m, r, 1/ε, 1/γ)) membership
queries.

Hardness of learning monotone functions to high accuracy. At the bottom level, corres-
ponding to step (a) in (1), our approach relies on the following simple claim which states
that monotone functions are hard to learn to very high accuracy. (We view this claim, as
essentially folklore; as noted in the introduction it slightly sharpens a lower bound given
in [6]. A proof is given for completeness in Appendix A.3.)

I Claim 3.13 (A slice of hardness). There exists a class of balanced monotone Boolean
functions G = {Gm}m∈N and a universal constant C such that, for any constants 0 < α ≤
1/10, learning Gm to error 0 < ε ≤ α/

√
m requires at least 2Cm membership queries.

We now prove Theorem 3.2, i.e. we establish a stronger lower bound (in terms of the
range of accuracy it applies to) against learning the class of monotone functions. We do
this by amplifying the hardness result of Fact 3.13 by composing the “mildly hard” class of
functions G with a monotone function g – the Mossel–O’Donnell function of Theorem 3.11
– that is very sensitive to small noise (intuitively, the noise rate here is comparable to the
error rate from Fact 3.13).

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 521

Proof of Theorem 3.2. We will show that there exists an absolute constant α > 0 such that
for any n sufficiently large and τ ∈ [1

n1/6 , 1/2 − c], there exist m = m(n), r = r(n) (both
of which are ωn(1)) such that learning the class of (balanced) functions Hn = gr ⊗ Gm on
n = mr variables to accuracy 1− τ requires at least 2α

√
n/τ membership queries.

By contradiction, suppose we have an algorithm A which, for all m, r, τ as above, learns
the class Hn to accuracy 1− τ using T = TA(n, τ) < 2α

√
n/τ membership queries. We show

that this implies that for infinitely many values of m, one can learn Gm to error ε = .1/
√
m

with 2o(m) membership queries, in contradiction to Fact 3.13.
Fix any n large enough and τ ∈ [1

n1/6 , .1], and choose m, r satisfying mr = n and
5
K ·

τ√
r

= .1√
m
, where K is the constant from Theorem 3.11. Note that this implies m =

K
50 ·

√
n
τ ∈ [Θ(n1/2),Θ(n2/3)] so indeed both m and r are ωn(1). (Intuitively, the value .1√

m
is

the error we want to achieve to get a contradiction, while the value 5
K ·

τ√
r
is the error we

can get from Theorem 3.12.) Note that we indeed can use the Mossel–O’Donnell function
from Theorem 3.11, which requires τ > 16√

r
– for our choice of r, this is equivalent to

τ >
(

16
√
K√

50

)2/3
1

n1/6 . Finally, set ε
def= .1/

√
m.

We apply Theorem 3.12 with g
def= gr, γ = (5/K)τ/

√
r and ε = τ/4. (Note that all

functions in Gm are balanced, and thus trivially satisfy the condition that bias(f) ≤ ε
8r , and

recall that 1− γ is the accuracy the theorem guarantees against the original class Gm.) With
these parameters we have

ExpBiasγ(g) + ε ≤
Eq.(2)

1− K

4
5τ
K

+ τ

4 = 1− τ ≤ accuracy(A).

Theorem 3.12 gives that there exists a learning algorithm B learning Gm to accuracy
1 − γ ≥ 1 − ε with TB = O(T · poly(m, r, 1/τ, 1/γ)) = O(T · poly(n, 1/τ)) membership
queries, that is, TB = TA(n, τ) · poly(n, 1/τ) < 2α

√
n/τ+o(√n/τ) many queries. However, we

have 2(α+o(1))
√
n/τ = 2(α+o(1))m·

√
n

τm < 2Cm, where the inequality comes from observing that√
n

τm = 50
K (so that it suffices to pick α satisfying 50α/K < C). This contradicts Claim 3.13

and proves the theorem. J

I Remark (Improving this result). Proposition 1 of [18] gives a lower bound on the best noise
stability that can be achieved by any monotone function. If this lower bound were in fact
tight – that is, there exists a family of monotone functions {fr} such that for all γ ∈ [−1, 1],
Stab1−γ(fr) = (1− γ)(

√
2/π+o(1))

√
r – then the above lower bound could be extended to an

(almost) optimal range of τ , i.e. τ ∈ [Φ(n)/
√
n, 1

2 − c] for Φ any fixed superconstant function.

From hardness of learning monotone Boolean functions to hardness of learning
k-alternating functions. We now establish the hardness of learning k-alternating func-
tions. Hereafter we denote by H = {gr ⊗ Gm}m,r the class of “hard” monotone functions
from Theorem 3.2. Since gr is balanced and every f ∈ Gm has bias 1/2, it is easy to see that
H is a class of balanced functions.

We begin by recalling the following useful fact about the noise stability of functions that
are close to PAR:

I Fact 3.14 (e.g., from the proof of Theorem 9 in [4]). Let r ≥ 1. If f is a Boolean function
on r variables which η-approximates PARr, then for all δ ∈ [0, 1],

Stab1−2δ(f) ≤ (1− 2η)2(1− 2δ)r + 4η(1− η). (3)

APPROX/RANDOM’15

522 Learning Circuits with Few Negations

We use the above fact to define a function that is tailored to our needs: that is, a
k-alternating function that is very sensitive to noise and is defined on roughly k2 inputs.
Without the last condition, one could just use PARk, but in our context this would only let
us obtain a

√
k (rather than a k) in the exponent of the lower bound, because of the loss

in the reduction. To see why, observe that by using a combining function on k variables
instead of k2, the number of variables of the combined function gk ⊗ Gm would be only
n = km. However, to get a contradiction with the hardness of monotone functions we shall
need k

√
n/ε �

√
m/τ , where τ ≈ ε/k, as the hardness amplification lemma requires the

error to scale down with the number of combined functions.

I Definition 3.15. For any odd2 r ≥ k ≥ 1, let PAR′k,r be the symmetric Boolean function
on r inputs defined as follows: for all x ∈ {0, 1}r,

PAR′k,r(x) =


0 if |x| ≤ r−k

2

1 if |x| ≥ r+k
2

PARr(x) otherwise.

In particular, PAR′k,r is k-alternating, and agrees with PARr on the k + 1 middle layers of
the hypercube. By an additive Chernoff bound, one can show that PAR′k,r is η-close to PARr,
for η = e−k

2/2r.

Proof of Theorem 3.4. H(k)
n will be defined as the class PAR′k,r ⊗Hm for some r and m

such that n = mr (see below). It is easy to check that functions in H(k)
n are balanced

and k-alternating. We show below that for n sufficiently large, 2 ≤ k < n1/14 and ε ∈
[(1/300)(k14/n)1/6, 1

2 − c], learning H
(k)
n to accuracy 1− ε requires 2Ω(k√n/ε) membership

queries.
By contradiction, suppose we have an algorithm A learning for all n, k, ε as above the class

of k-alternating functions to accuracy 1− ε using TA(n, k, ε) < 2β
k
√
n
ε membership queries,

where β > 0 is a universal constant to be determined during the analysis. We claim that this
implies that for infinitely many values of m, one can learn Hm to some range of accuracies
with a number of membership queries contradicting the lower bound of Theorem 3.2.

Fix any n large enough, k and ε as above (which in particular impose k = O
(
n1/14)).

The constraints we impose on m, r and τ are the following:

mr = n; ExpBiasτ (PAR′k,r) + ε ≤ 1− ε; m = ωn(1); τ ≥ 1
m1/6 ; (4)

βk

√
n

ε
< α

√
m

τ
, (5)

where the constraints in (4) are for us to apply the previous theorems and lemmas, while (5)
is needed to ultimately derive a contradiction.

One can show that by taking r def=
⌊

k2

2 ln 5

⌋
≥ 1 and τ def= 100ε

r , the second constraint of (4) is
satisfied, as then Stab1−τ (PAR′k,r) ≤ 1−8ε (for the derivation, see Appendix A.4). Then, with
the first constraint of (4), we get (omitting for simplicity the floors) m def= nτ

100ε = (2 ln 5) nk2 ,

2 The above definition can be straightforwardly extended to r ≥ k ≥ 1 not necessarily odd, resulting in
a similar k-alternating perfectly balanced function PAR′

k,r that agrees with PARr on k + O(1) middle
layers of the cube and is 0 below and 1 above those layers. For the sake of simplicity we leave out the
detailed description of the other cases.

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 523

so as long as k = o(
√
n), the third constraint of (4) is met as well. With these settings,

the final constraint of (4) can be rewritten as ε ≥ 1
100

(
r7

n

)1/6
= 1

100(2 ln 5)7/6

(
k14

n

)1/6
. As

(2 ln 5)7/6 > 3, it is sufficient to have ε ≥ 1
300

(
k14

n

)1/6
, which holds because of the lower

bound on ε.
It only remains to check Constraint (5) holds:

k

√
n

ε
= 100k

√
n

τr
= 100 k√

r

√
m

τ
≤

(
100

√
2 ln 5

1− 2 ln 5/k2

) √
m

τ
≤ 300

√
2 ln 5 ·

√
m

τ
,

where the first inequality holds because as 1
r ≤

1
k2

2 ln 5−1
and the second holds because k ≥ 2.

So for the right choice of β = Ω(1), e.g. β = α/600, βk
√
n
ε < α

√
m
τ , and (5) is satisfied.

It now suffices to apply Theorem 3.12 to PAR′k,r ⊗Hm, with parameters γ = τ and ε,
on algorithm A, which has accuracy acc(A) ≥ 1 − τ ≥ ExpBiasγ(PAR′k,r) + ε. Since the
functions of H are unbiased, it follows that there exists an algorithm B learning Hm to
accuracy 1− τ , with τ > 1/2m1/6, making only

TB(m, τ) = O(TA(n, k, ε) poly(n, k, 1/ε)) = 2βk
√
n
ε (1+o(1)) < 2α

√
m
τ

membership queries, which contradicts the lower bound of Theorem 3.2. J

I Observation 3.16 (On the relation between ε and k). The tradeoff in the ranges for k and
ε appear to be inherent to this approach. Namely, it comes essentially from Constraint (4),
itself deriving from the hypotheses of Theorem 3.2. However, even getting an optimal range
in the latter would still require τ = Ω(1/

√
m), which along with r ≈ k2 and τ ≈ ε/r impose

k = O
(
n1/6) and ε = Ω

(
k3/
√
n
)
.

References
1 K. Amano and A. Maruoka. On learning monotone Boolean functions under the uniform

distribution. In International Conference on Algorithmic Learning Theory (ALT), pages
57–68, 2002.

2 K. Amano and A. Maruoka. A Superpolynomial Lower Bound for a Circuit Computing the
Clique Function with At Most (1/6) log logn Negation Gates. SIAM Journal on Computing,
35(1):201–216, 2005.

3 D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
4 E. Blais and L-Y. Tan. Approximating Boolean functions with depth-2 circuits. In Con-

ference on Computational Complexity (CCC), pages 74–85, 2013.
5 A. Blum, C. Burch, and J. Langford. On learning monotone Boolean functions. In Sym-

posium on Foundations of Computer Science (FOCS), pages 408–415, 1998.
6 N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions. Journal of

the ACM, 43(4):747–770, 1996.
7 V. Feldman, H. K. Lee, and R. A. Servedio. Lower bounds and hardness amplification for

learning shallow monotone formulas. Journal of Machine Learning Research – Proceedings
Track, 19:273–292, 2011.

8 O. Goldreich and R. Izsak. Monotone circuits: One-way functions versus pseudorandom
generators. Theory of Computing, 8(1):231–238, 2012.

9 S. Guo and I. Komargodski. Negation-limited formulas. Technical Report 22(26), Electronic
Colloquium on Computational Complexity (ECCC), 2015.

APPROX/RANDOM’15

524 Learning Circuits with Few Negations

10 S. Guo, T. Malkin, I. C. Oliveira, and A. Rosen. The power of negations in cryptography.
In Theory of Cryptography Conference (TCC), pages 36–65, 2015.

11 M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formulae and
finite automata. Journal of the ACM, 41(1):67–95, 1994.

12 A. D. Korshunov. Monotone Boolean functions. Russian Mathematical Surveys (Uspekhi
Matematicheskikh Nauk), 58(5):929–1001, 2003.

13 N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform and
learnability. Journal of the ACM, 40(3):607–620, 1993.

14 A. A. Markov. On the inversion complexity of systems of functions. Doklady Akademii
Nauk SSSR, 116:917–919, 1957. English translation in [15].

15 A. A. Markov. On the inversion complexity of a system of functions. Journal of the ACM,
5(4):331–334, October 1958.

16 H. Morizumi. Limiting negations in formulas. In International Colloquium on Automata,
Languages, and Programming (ICALP), pages 701–712, 2009.

17 H. Morizumi. Limiting negations in non-deterministic circuits. Theoretical Computer Sci-
ence, 410(38-40):3988–3994, 2009.

18 E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions. Random
Structures and Algorithms, 23(3):333–350, 2003.

19 R. O’Donnell. Computational applications of noise sensitivity. PhD thesis, MIT, June 2003.
20 R. O’Donnell and R. Servedio. Learning monotone decision trees in polynomial time. SIAM

Journal on Computing, 37(3):827–844, 2007.
21 R. O’Donnell and K. Wimmer. KKL, Kruskal-Katona, and monotone nets. SIAM Journal

on Computing, 42(6):2375–2399, 2013.
22 Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. Journal

of the ACM, 39(3):736–744, 1992.
23 A. Razborov. Lower bounds on the monotone complexity of some Boolean functions. Dok-

lady Akademii Nauk SSSR, 281:798–801, 1985. English translation in: Soviet Mathematics
Doklady 31:354–357, 1985.

24 B. Rossman. Correlation bounds against monotone NC1. In Conference on Computational
Complexity (CCC), 2015.

25 M. Santha and C. Wilson. Limiting negations in constant depth circuits. SIAM Journal
on Computing, 22(2):294–302, 1993.

26 R. Servedio. On learning monotone DNF under product distributions. Information and
Computation, 193(1):57–74, 2004.

27 S. Sung and K. Tanaka. Limiting Negations in Bounded-Depth Circuits: an Extension of
Markov’s Theorem. In International Symposium on Algorithms and Computation (ISAAC),
pages 108–116, 2003.

28 M. Talagrand. How much are increasing sets positively correlated? Combinatorica,
16(2):243–258, 1996.

A Proofs

A.1 Proof of Claim 2.2
Suppose Inf [f] ≥ αn for some α ∈ (0, 1]: this means that at least an α fraction of all edges
are bichromatic. Define the weight level k (denoted Wk) to be the set of all edges going
from a vertex of Hamming weight k to a vertex of Hamming weight k + 1 (in particular,
|Wk| = (n− k)

(
n
k

)
), and consider weight levels n/2− a

√
n, . . . , n/2 + a

√
n−1 (the “middle

levels”) for a def=
√

(1/2) ln(8/α). (We suppose without loss of generality that n/2− a
√
n is

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 525

a whole number.) Now, the fraction of all edges which do not lie in these middle levels is at
most

1
n2n−1 · 2

n
2−a
√
n−1∑

j=0
|Wk| ≤

2n
n2n−1

n
2−a
√
n−1∑

j=0

(
n

k

)
≤ 4

2n

n
2−a
√
n−1∑

j=1

(
n

k

)
≤ 4e−2a2

= α

2 .

So no matter how many of these edges are bichromatic, it must still be the case that at least
an α/2 fraction of all edges in the “middle levels” are bichromatic.

Since the ratio∣∣Wn/2
∣∣∣∣Wn/2−a
√
n

∣∣ =
n
2
(
n
n/2
)(

n
2 + a

√
n
) (

n
n/2−a

√
n

)
converges monotonically from below (when n goes to infinity) to C def= e2a2 , any two weight
levels amongst the middle ones have roughly the same number of edges, up to a multiplicative
factor C. Setting p = α/6C and q = α/6, this implies that at least a p fraction of the weight
levels in the middle levels have at least a q fraction of their edges being bichromatic. (Indeed,
otherwise we would have, letting bk denote the number of bichromatic edges in weight layer k,

α

2 ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|

︸ ︷︷ ︸
total

≤
n
2 +a
√
n−1∑

k=n
2−a
√
n

bk

≤
∑

k∈[n2−a
√
n,n2 +a

√
n−1]

bk>q|Wk|

|Wk|+
∑

k∈[n2 a
√
n,n2 +a

√
n−1]

bk≤q|Wk|

q · |Wk|

≤ p · 2a
√
n ·
∣∣Wn/2

∣∣+ q ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|

≤ p · C ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk|+ q ·
n
2 +a
√
n−1∑

k=n
2−a
√
n

|Wk| .

So α
2 · total ≤ p · C · total + q · .total, which gives α

2 ≤
α

6C · C + α
6 = α

3 , a contradiction.)
Let S be this collection of at least 2a

√
np weight levels (from the middle ones) that each

have at least a q fraction of edges being bichromatic, and write pi to denote the fraction of
bichromatic edges in Wi, so that for each i ∈ S it holds that pi ≥ q. Consider a random
chain from 0n to 1n. The marginal distribution according to which an edge is drawn from
any given fixed weight level i is uniform on Wi, so by linearity, the expected number of
bichromatic edges in a random chain is at least

∑
i∈S pi ≥ 2a

√
npq = Ω(

√
n), and hence

some chain must have that many bichromatic edges. J

A.2 Derivation of Theorem 3.11 using Theorem 3 of [18]
The original theorem is stated for τ = 1, with the upper bound being 1− Ω(1). However,
the proof of [18] goes through for our purposes until the very end, where they set ε def= 1√

r

and need to show that

e−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)

= Ω(1).

APPROX/RANDOM’15

526 Learning Circuits with Few Negations

More precisely, the proof goes overall as follows: for some realization of the Talagrand
function on r variables gr, we want (for some absolute constant K) that

1−Kτ ≥ Stab1− τ√
r
(gr) = 1− 2 Pr

[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
.

That is, one needs to show Pr
[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
≥ K

2 τ ; and in turn, it is sufficient
to prove that for g a random Talagrand function on r variables,

Eg

[
Pr
[
g ◦N1− τ√

r
(x) 6= g(x)

]]
≥ K

2 τ.

This is where we slightly adapt the [18] proof. Where they set a parameter ε to be equal to
1/
√
r and analyze Eg[Pr[g ◦N1−2ε(x) 6= g(x)]], we set for our purposes ε def= τ

2
√
r
. The rest

of the argument goes through until the very end, where it only remains to show that

ae−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)
≥ K

2 τ (6)

(a being a small constant resulting from the various conditionings in their proof), or equi-
valently, that (1 − ε + 2

√
ε/r)

√
r ≤ 1 − e2K

2a τ . But the left-hand side can be rewritten
as

(1− ε+ 2
√
ε/r)

√
r = e

√
r ln(1−ε+2

√
ε/r) = e

√
r ln(1−τ/2

√
r+
√

2τ/r3/4)

= e

√
r ln
(

1− τ
2
√
r

(
1− 2

√
2√

r1/2τ

))
≤ e
−
√
r· τ2
√
r

(
1− 2

√
2√

r1/2τ

)
(as τ

2
√
r

(
1− 2

√
2√

r1/2τ

)
< 1)

= e
− τ2

(
1− 2

√
2√

r1/2τ

)
≤ e−

τ
2 (1− 1√

2
) (as τ > 16√

r
)

≤ e− τ7 ≤ 1− τ

8 ≤ 1− e2K

2a τ.

(first as τ < 1, then for a suitable choice of K)

J

A.3 Proof of Fact 3.13
We give the proof for m even; by standard techniques, it extends easily to the odd case.
For any m ∈ 2N, define Cm as the class of functions f generated as follows: let R =
{ x ∈ {0, 1}m : |x| = m/2 }, and partition R in |R|/2 pairs of elements (x`, x̄`). For all
x ∈ {0, 1}m,

f(x) =


0 if |x| < m/2
r` if x ∈ R and x = x`

1− r` if x ∈ R and x = x̄`

1 if |x| > m/2

where the |R| /2 bits r` are chosen independently and uniformly at random. Clearly, f is
balanced, and we have

|R| =
(
m

m/2

)
∼

m→∞

√
2
π
· 2m√

m

def= γ2m.

E. Blais, C. L. Canonne, I. C. Oliveira, R. A. Servedio, and L.-Y. Tan 527

Suppose we have a learning algorithm A for Cm making q < 2Cm membership queries.
Fix 0 < α ≤ 1, and ε = α/

√
m; to achieve error at most ε overall, A must in particular

achieve error at most ε
γ =

√
π
2α on R. But after making q queries, there are still at least

t = γ2m/2− 2Cm > 0.99 |R| points in R (for m big enough) A has not queried, and hence
with values chosen uniformly at random; on each of these points, A is wrong with probability
exactly half, and in particular

Pr
[
error ≤ ε

γ

]
< Pr[error ≤ 2α] = Pr

[
t∑
i=1

Xi ≤ 2α |R|
]

≤ Pr
[

t∑
i=1

Xi ≤
200
99 αt

]

≤ e−
(1− 400

99 α)2t
2 = o(1)

with an additive Chernoff bound. This means that with high probability over the choice of
the target concept, A will fail to learn it to accuracy 1− ε. J

A.4 Derivation of the bound Stab1−τ (PAR′k,r) ≤ 1− 8ε

By setting r as stated we get that r ≤ k2/ ln(1/ε) and the distance between PAR′k,r and
PARr becomes η = e−k

2/2r ≤ 1/5. Since we aim at having ExpBiasτ (PAR′k,r) ≤ 1 − 2ε,
it is sufficient to have

√
Stab1−τ (PAR′k,r) ≤ 1 − 4ε; which would in turn be implied by

Stab1−τ (PAR′k,r) ≤ 1− 8ε.
By Fact 3.14, it is sufficient to show that (1− 2η)2(1− τ)r + 4η(1− η) ≤ 1− 8ε; note

that since ε < 1/100 and by our choice of τ ,

(1− 2η)2(1− τ)r + 4η(1− η) ≤ (1− 2η)2

1 + 100ε + 4η(1− η) ≤ (1− 2η)2(1− 50ε) + 4η(1− η)

≤ (1− 4η + 4η2)(1− 50ε) + 4η(1− η)
= 1− 4η − 50ε+ 200ηε+ 4η2 − 200εη2 + 4η − 4η2

= 1− 50ε+ 200εη(1− η) ≤ 1− 50ε+ 32ε = 1− 18ε
≤ 1− 8ε.

J

APPROX/RANDOM’15

	Introduction
	Beyond monotonicity: Inversion complexity, alternations, and Markov's theorem
	Our results

	Structural facts about computing and approximating functions with low inversion complexity
	An extension of Markov's theorem
	Approximation

	Learning circuits with few negations
	A learning algorithm for C(n,t)
	Lower bounds for learning
	Proofs

	Proofs
	Proof of Claim 2.2
	Derivation of Theorem 3.11 using Theorem 3 of MO03
	Proof of Fact 3.13
	Derivation of the bound on the stability of the approximated parity

