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Abstract

We prove two new results about the randomized query complexity of composed functions.
First, we show that the randomized composition conjecture is false: there are families of partial
Boolean functions f and g such that \mathrm{R}(f \circ g)\ll \mathrm{R}(f)\mathrm{R}(g). In fact, we show that the left hand
side can be polynomially smaller than the right hand side (though in our construction, both
sides are polylogarithmic in the input size of f).

Second, we show that for all f and g, \mathrm{R}(f \circ g) = \Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)\mathrm{R}(g)), where \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)
is a measure describing the cost of computing f on noisy oracle inputs. We show that this
composition theorem is the strongest possible of its type: for any measure M(\cdot ) satisfying
\mathrm{R}(f \circ g) = \Omega (M(f)\mathrm{R}(g)) for all f and g, it must hold that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (M(f)) for all
f . We also give a clean characterization of the measure \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f): it satisfies \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) =
\Theta (\mathrm{R}(f \circ GapMajn)/\mathrm{R}(GapMajn)), where n is the input size of f and GapMajn is the\surd 
n-gap majority function on n bits.
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1 Introduction

In any computational model, one may ask the following basic question: is computing a function g
on n independent inputs roughly n times as hard as computing g on a single input? If so, a natural
followup question arises: how hard is computing some function f : \{ 0, 1\} n \rightarrow \{ 0, 1\} of the value of g
on n inputs? Can this be characterized in terms of the complexity of the function f?

Query complexity is one of the simplest settings in which one can study these joint computation
questions. In query complexity, a natural conjecture is that for any such functions f and g, the cost
of computing f on the value of g on n inputs is roughly the cost of computing f times the cost of
computing g. Indeed, using f \circ g to denote the composition of f with n copies of g, it is known
that the deterministic query complexity (also known as the decision tree complexity) of composed
functions satisfies \mathrm{D}(f \circ g) = \mathrm{D}(f)\mathrm{D}(g) [Tal13; Mon14]. It is also known that the quantum query
complexity (in the bounded-error setting) of composed functions satisfies \mathrm{Q}(f \circ g) = \Theta (\mathrm{Q}(f)\mathrm{Q}(g))
[Rei11; LMR+11; Kim13].

However, despite significant interest, the situation for randomized query complexity is not well
understood, and it is currently unknown whether \mathrm{R}(f \circ g) = \widetilde \Theta (\mathrm{R}(f)\mathrm{R}(g)) holds for all Boolean
functions f and g. It is known that the upper bound of \mathrm{R}(f \circ g) = O(\mathrm{R}(f)\mathrm{R}(g) \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{R}(f)) holds.
This follows from running an algorithm for f on the outside, and then using an algorithm for g to
answer each query made by the algorithm for f . (The log factor in the bound is due to the need to
amplify the success probability of the algorithm for g so that it has small error.) The randomized
composition conjecture in query complexity posits that there is a lower bound that matches this
upper bound up to logarithmic factors; this conjecture is the focus of the current work.

Main Question. Do all Boolean functions f and g satisfy \mathrm{R}(f \circ g) = \Omega 
\bigl( 
\mathrm{R}(f)\mathrm{R}(g)

\bigr) 
?

Note that there are actually two different versions of this question, depending on whether f and
g are allowed to be partial functions. A partial function is a function f : S \rightarrow \{ 0, 1\} where S is a
subset of \{ 0, 1\} n, and a randomized algorithm computing it is only required to be correct on the
domain of f . (Effectively, the input string is promised to be inside this domain.) When composing
partial functions f and g, we get a new partial function f \circ g, whose domain is the set of strings for
which the computation of f and of each copy of g are all well-defined. Since partial functions are
a generalization of total Boolean functions, it is possible that the composition conjecture holds for
total functions but not for partial functions. In this work, we will mainly focus on the more general
partial function setting; when we do not mention anything about f or g, they should be assumed to
be partial Boolean functions.

1.1 Previous work

Direct sum and product theorems. Direct sum theorems and direct product theorems study
the complexity of Id \circ g, where g is an arbitrary Boolean function but Id : \{ 0, 1\} n \rightarrow \{ 0, 1\} n is the
identity function. These are not directly comparable to composition theorems, but they are of a
similar flavor.

Jain, Klauck, and Santha [JKS10] showed that randomized query complexity satisfies a direct
sum theorem. Drucker [Dru12] showed that randomized query complexity also satisfies a direct
product theorem, which means that Id \circ g cannot be solved too quickly even with small success
probability. More recently, Blais and Brody [BB19] proved a strong direct sum theorem, showing
that computing n copies of g can be even harder for randomized query complexity than n times the
cost of computing g (due to the need for amplification).
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Composition theorems for other complexity measures. Several composition theorems are
known for measures that lower bound \mathrm{R}(f); as such, these theorems can be used to lower bound
\mathrm{R}(f \circ g) in terms of some smaller measure of f and g.

First, though it is not normally phrased this way, the composition theorem for quantum query
complexity [Rei11; LMR+11] can be viewed as a composition theorem for a measure which lower
bounds \mathrm{R}(f), since \mathrm{Q}(f) \leq \mathrm{R}(f) for all f . Interestingly, as a lower bound technique for \mathrm{R}(f), \mathrm{Q}(f)
turns out to be incomparable to the other lower bounds on randomized query complexity for which
composition is known, meaning that this composition theorem can sometimes be stronger than
everything we know how to do using classical techniques.

Tal [Tal13] and independently Gilmer, Saks, and Srinivasan [GSS16] studied the composition
behavior of simple measures like sensitivity, block sensitivity, and fractional block sensitivity. The
behavior turns out to be somewhat complicated, but is reasonably well characterized in these works.

Göös and Jayram [GJ16] studied the composition behavior of conical junta degree, also known as
approximate non-negative degree. This measure is a powerful lower bound technique for randomized
algorithms and seems to be equal to \mathrm{R}(f) for all but the most artificial functions; however, Göös
and Jayram were only able to prove a composition theorem for a variant of conical junta degree,
and the variant appears to be weaker in some cases (or at least harder to use).

Ben-David and Kothari [BK18] showed a composition theorem for a measure they defined called
randomized sabotage complexity, denoted \mathrm{R}\mathrm{S}(f). They showed that this measure is larger than
fractional block sensitivity, and incomparable to quantum query complexity and conical junta degree.
It is also nearly quadratically related to \mathrm{R}(f) for total functions.

Composition theorems with a loss in g. There are also composition theorems are known that
lower bound \mathrm{R}(f \circ g) in terms of \mathrm{R}(f) and some smaller measure of g.

Ben-David and Kothari [BK18] also showed that \mathrm{R}(f \circ g) = \Omega (\mathrm{R}(f)\mathrm{R}\mathrm{S}(g)), for the randomized
sabotage complexity measure \mathrm{R}\mathrm{S}(g) mentioned above. Anshu et al. [AGJ+18] showed that \mathrm{R}(f \circ g) =
\Omega (\mathrm{R}(f)\mathrm{R}1/2 - n - 4(g)), where \mathrm{R}1/2 - n - 4(g) is the randomized query complexity of g to bias n - 4. These
two results can also be used to give composition theorems of the form \mathrm{R}(f\circ h\circ g) = \Omega (\mathrm{R}(f)\mathrm{R}(h)\mathrm{R}(g)),
where f and g are arbitrary Boolean functions but h is a fixed small gadget designed to break up
any “collusion” between f and g. [BK18] proved such a theorem when h is the index function, while
[AGJ+18] proved it when h is the parity function of size O(\mathrm{l}\mathrm{o}\mathrm{g} n).

Finally, Gavinsky, Lee, Santha, and Sanyal [GLSS19] showed that \mathrm{R}(f \circ g) = \Omega (\mathrm{R}(f)\chi (g)), where
\chi (g) is a measure they define. They showed that \chi (g) = \Omega (\mathrm{R}\mathrm{S}(g)) and that \chi (g) = \Omega (

\sqrt{} 
\mathrm{R}(g)) (even

for partial functions g), which means their theorem also shows \mathrm{R}(f \circ g) = \Omega (\mathrm{R}(f)
\sqrt{} 

\mathrm{R}(g)).

Composition theorems with a loss in f . There have been very few composition theorems
of the form \mathrm{R}(f \circ g) = \Omega (M(f)\mathrm{R}(g)) for some measure M(f). Göös, Jayram, Pitassi, and Wat-
son [GJPW18] showed that \mathrm{R}(ANDn \circ g) = \Omega (n\mathrm{R}(g)), which can be generalized to \mathrm{R}(f \circ g) =
\Omega (\mathrm{s}(f)\mathrm{R}(g)), where \mathrm{s}(f) denotes the sensitivity of f .

Extremely recently, in work concurrent with this one, Bassilakis, Drucker, Göös, Hu, Ma, and
Tan [BDG+20] showed that \mathrm{R}(f \circ g) = \Omega (\mathrm{f}\mathrm{b}\mathrm{s}(f)\mathrm{R}(g)), where \mathrm{f}\mathrm{b}\mathrm{s}(f) is the fractional block sensitivity
of f . (This result also follows from our independent work in this paper.)

A relational counterexample to composition. Gavinsky, Lee, Santha, and Sanyal [GLSS19]
showed that the randomized composition conjecture is false when f is allowed to be a relation.
Relations are generalizations of partial functions, in which f has non-Boolean output alphabet and
there can be multiple allowed outputs for each input string. The authors exhibited a family of
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relations fn and a family of partial functions gn such that \mathrm{R}(fn) = \Theta (
\surd 
n), \mathrm{R}(gn) = \Theta (n), but

\mathrm{R}(fn \circ gn) = \Theta (n)\ll n3/2.
This counterexample of Gavinsky, Lee, Santha, and Sanyal does not directly answer the ran-

domized composition conjecture (which usually refers to Boolean functions only), but it does place
restrictions on the types of tools which might prove it true, since it appears that most or all of the
composition theorems mentioned above do not use the fact that f has Boolean outputs and apply
equally well when f is a relation—meaning those techniques cannot be used to prove the composition
conjecture true without major new ideas.

1.2 Our results

Our first result shows that the randomized composition conjecture is false for partial functions.

Theorem 1. There is a family of partial Boolean functions fn and a family of partial Boolean
functions gn such that \mathrm{R}(fn)\rightarrow \infty and \mathrm{R}(gn)\rightarrow \infty as n\rightarrow \infty , but

\mathrm{R}(fn \circ gn) = O
\Bigl( 
\mathrm{R}(fn)

2/3\mathrm{R}(gn)
2/3 \mathrm{l}\mathrm{o}\mathrm{g}2/3\mathrm{R}(fn)

\Bigr) 
.

In this counterexample, \mathrm{R}(f \circ g) is polynomially smaller than what it was conjectured to be in
the randomized composition conjecture. However, this counterexample actually uses functions f
and g for which \mathrm{R}(f) and \mathrm{R}(g) are logarithmic in the input size of f . Therefore, the following slight
weakening of the original randomized composition conjecture is still viable.

Conjecture 2. For all partial Boolean functions f and g,

\mathrm{R}(f \circ g) = \Omega 

\biggl( 
\mathrm{R}(f)\mathrm{R}(g)

\mathrm{l}\mathrm{o}\mathrm{g} n

\biggr) 
,

where n is the input size of f .

Hence, even for partial functions, the composition story is far from complete. This is in contrast
to the setting in which f is a relation, where in the counterexample of [GLSS19], the query complexity
\mathrm{R}(f \circ g) is smaller than \mathrm{R}(f)\mathrm{R}(g) by a polynomial factor even relative to the input size.

Our second contribution is a new composition theorem for randomized algorithms with a loss
only in terms of f .

Theorem 3. For all partial functions f and g,

\mathrm{R}(f \circ g) = \Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)\mathrm{R}(g)).

Here \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) is a measure we introduce, which is defined as the cost of computing f when
given noisy oracle access to the input bits; for a full definition, see Definition 19. As it turns out,
\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) has a very natural interpretation, as the following theorem shows.

Theorem 4. For all partial functions f , we have

\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Theta 

\biggl( 
\mathrm{R}(f \circ GapMajn)

n

\biggr) 
,

where n is the input size of f and GapMajn is the majority function on n bits with the promise that
the Hamming weight of the input is either \lceil n2 +

\surd 
n\rceil or \lfloor n2  - 

\surd 
n\rfloor . Note that \mathrm{R}(GapMajn) = \Theta (n).
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In other words, \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) characterizes the cost of computing f when the inputs to f are given
as
\surd 
n-gap majority instances (divided by n, so that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) \leq \mathrm{R}(f)). This means that our

composition theorem reduces the randomized composition problem on arbitrary f and g to the
randomized composition problem of f with GapMajn.

Corollary 5. For all partial functions f and g, we have

\mathrm{R}(f \circ g) = \Omega 

\biggl( 
\mathrm{R}(f \circ GapMajn)
\mathrm{R}(GapMajn)

\cdot \mathrm{R}(g)
\biggr) 
,

where n is the input size of f .

These results hold even when f is a relation. We also note that the counterexamples to composi-
tion theorems—the one for partial functions in Theorem 1 and the relational one in [GLSS19]—use
the same function GapMaj as the inner function g (or close variants of it). Therefore, there
is a strong sense in which g = GapMaj function is the only interesting case for studying the
randomized composition behavior of \mathrm{R}(f \circ g).

Next, we observe that our composition theorem is the strongest possible theorem of the form
\mathrm{R}(f \circ g) = \Omega (M(f)\mathrm{R}(g)) for any complexity measure M of f . Formally, we have the following.

Lemma 6. Let M(\cdot ) be any positive-real-valued measure of Boolean functions. Suppose that for all
(possibly partial) Boolean functions f and g, we have \mathrm{R}(f \circ g) = \Omega (M(f)\mathrm{R}(g)). Then for all f , we
have \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (M(f)).

Proof. By Theorem 4, we have

n \cdot \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega 
\bigl( 
\mathrm{R}(f \circ GapMajn)

\bigr) 
,

where n in the input size of f . Now, by our assumption on M(\cdot ), taking g = GapMajn we obtain

\mathrm{R}(f \circ GapMajn) = \Omega 
\bigl( 
M(f)\mathrm{R}(GapMajn)

\bigr) 
= \Omega 

\bigl( 
M(f) \cdot n

\bigr) 
.

Hence \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (M(f)), as desired.

The natural next step is to study the measure \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \mathrm{R}(f \circ GapMajn)/n. We observe
in Lemma 38 that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (\mathrm{f}\mathrm{b}\mathrm{s}(f)). However, we believe that a much stronger lower bound
should be possible. The following conjecture is equivalent to Conjecture 2.

Conjecture 7 (Equivalent to Conjecture 2). For all (possibly partial) Boolean functions f ,

\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega 

\biggl( 
\mathrm{R}(f)

\mathrm{l}\mathrm{o}\mathrm{g} n

\biggr) 
.

The equivalence of the two conjectures follows from Theorem 3 in one direction, and from
Lemma 6 in the other direction (taking M(f) = \mathrm{R}(f)/ \mathrm{l}\mathrm{o}\mathrm{g} n).

One major barrier for proving Conjecture 7 is that it is false for relations. Indeed, the family of
relations f from [GLSS19] has \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = O(1) and \mathrm{R}(f) = \Omega (

\surd 
n). Any lower bound M(\cdot ) for

\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(\cdot ) must therefore either be specific to functions (and not work for relations), or else must
satisfy M(f) = O(1) for that family of relations, even though \mathrm{R}(f) = \Omega (

\surd 
n) (which means M(f)

is a poor lower bound on \mathrm{R}(f), at least for some relations).
We are able to overcome this “relational barrier” for proving \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) lower bounds in the setting

of non-adaptive algorithms. Let \mathrm{R}na(f) denote the non-adaptive randomized query complexity of f
and let \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) denote the non-adaptive version of \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f). Then for the family of relations
f from [GLSS19], it is still the case that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) = O(1) and \mathrm{R}na(f) = \Omega (

\surd 
n). Despite this

relational barrier, we have the following theorem for the non-adaptive setting.
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Theorem 8. For all (possibly partial) Boolean functions f , we have \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) = \Theta (\mathrm{R}na(f)).

Since Theorem 8 is false for relations, its proof necessarily “notices” whether f is a relation or a
partial function. Such proofs are unusual in query complexity. We hope that the techniques we used
in the proof of Theorem 8 will assist future work in settling the relationship between \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) and
\mathrm{R}(f) (perhaps resolving Conjecture 7).

1.3 Our techniques

1.3.1 Main idea for the counterexample

The main idea for the counterexample to composition is to take g = GapMajm and to construct
a function f that only requires some of its bits to be computed to bias 1/

\surd 
m instead of exactly.

Achieving bias 1/
\surd 
m will be disproportionately cheap for an input to f \circ g compared to an input

to f .
This is the same principle used for the relational counterexample of [GLSS19]. There, the

authors took f to be the relational problem of taking an input x \in \{ 0, 1\} n and returning an output
y \in \{ 0, 1\} n with the property that | x  - y| \leq n/2  - 

\surd 
n. This can be done using either

\surd 
n exact

queries to x, or using n queries to x with bias 1/
\surd 
n each. When f is composed with g and n = m,

it’s not hard to verify that \mathrm{R}(f \circ g) = O(n), even though \mathrm{R}(f) = \Omega (
\surd 
n) and \mathrm{R}(g) = \Omega (m) = \Omega (n).

To convert f into a partial Boolean function, we use the indexing trick. We let the first m bits of
f represent a string x, and we want to force an algorithm to find a string y that’s within Hamming
weight m/2 - 

\surd 
m of x. To do so, we can try adding an array of length 2m to the input of f , with

entries indexed by y. We’ll fill the array with \ast on positions indexed by strings y that are far from
x. On positions corresponding to strings y within m/2 - 

\surd 
m of x, we’ll put either all 0s or all 1s,

and we’ll require the algorithm to output 0 in the former case and 1 in the latter case (promised
one of the two cases hold).

The above construction doesn’t quite work, because a randomized algorithm can cheat: instead
of finding a string y close to x, it can simply search the array for a non-\ast bit and output that bit.
Since a constant fraction of the Boolean hypercube is within m/2  - 

\surd 
m of x, this strategy will

succeed after a constant number of queries. To fix this, all we need to do is increase the gap from\surd 
m to 10

\surd 
m \mathrm{l}\mathrm{o}\mathrm{g}m, so that y is required to be within m/2  - 10

\surd 
m \mathrm{l}\mathrm{o}\mathrm{g}m of x. Now the non-\ast 

positions in the array will fill only a 1/m\Omega (1) fraction of the array, and a randomized algorithm has
no hope of finding one of those positions with a small number of random guesses. The input size of f
will be n = m+2m. Then we have \mathrm{R}(f) = \Theta (

\surd 
m \mathrm{l}\mathrm{o}\mathrm{g}m)), \mathrm{R}(g) = \Theta (m), but \mathrm{R}(f \circ g) = \Theta (m \mathrm{l}\mathrm{o}\mathrm{g}m)

as we can solve f \circ g by querying each of the first m copies of g O(\mathrm{l}\mathrm{o}\mathrm{g}m) times each, getting bias
\Omega (
\sqrt{} 
(\mathrm{l}\mathrm{o}\mathrm{g}m)/m) for each of the m bits of x, which provides a good string y with high probability.

1.3.2 Main idea for the composition theorem

The main idea for proving the composition theorem \mathrm{R}(f \circ g) = \Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)\mathrm{R}(g)) is to try to turn
an algorithm for f \circ g into an algorithm for f . This is the standard approach for most composition
theorems, and the main question becomes how to solve f when we only have an algorithm A which
makes queries to an nm-length input for f \circ g. When the algorithm queries bit j inside copy i of g,
and we only have an n-bit input x to f , what do we query?

One solution would be to fix hard distributions \mu 0 and \mu 1 for g, and then, when A makes a
query to bit j inside copy i of g, we can query xi, sample an m-bit string from \mu xi , and then return
the j-th bit of that string. However, this uses a lot of queries: in the worst case, one query to x
would be needed for each query A makes, giving only the upper bound \mathrm{R}(f) \leq \mathrm{R}(f \circ g) instead of
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something closer to \mathrm{R}(f) \leq \mathrm{R}(f \circ g)/\mathrm{R}(g). The goal is to simulate the behavior of A while avoiding
making queries to x as much as possible.

One insight (also used in previous work) is that if bit j is queried inside copy i of g, we only need
to query xi from the real input x if \mu 0 and \mu 1 disagree on the j-th bit with substantial probability.
In [GLSS19], the approach was to first try to generate the answer j from \mu 0 and \mu 1, and see if they
happen to agree; this way, querying the real input xi is only needed in case they disagree.

We do something slightly different: we assume we have access to a (very) noisy oracle for xi,
and use calls to the oracle to generate bit j from \mu xi without actually finding out xi. In effect,
this lets us use the squared-Hellinger distance between the marginal distributions \mu 0| j and \mu 1| j as
the cost of generating the sample, instead of using the total variation distance between \mu 0| j and
\mu 1| j . That is, we charge a cost for the noisy oracle calls in a special way, which ensures that the
total cost of the noisy oracle calls will be proportional to the squared-Hellinger distance between the
transcript of A when run on \mu 0 and when run on \mu 1. In other words, the cost our \mathrm{R}(f) algorithm
pays for simulating A will be proportional to how much A solved the copies of g, as tracked by the
Hellinger distance of the transcript of A (i.e. its set of queries and query answers) on \mu 0 vs. \mu 1. It
turns out this way of tracking the progress of A in solving g is tight, at least for the appropriate
choice of hard distributions \mu 0 and \mu 1 for g. Therefore, this will give us an algorithm for f that has
only \mathrm{R}(f \circ g)/\mathrm{R}(g) cost, though this algorithm for f will require noisy oracles for the bits of the
input—that is to say, it will be a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) algorithm instead of an \mathrm{R}(f) algorithm.

One wrinkle is that the hard distribution produced by Yao’s minimax theorem is not sufficient
to give the hardness guarantee we will need from \mu 0 and \mu 1. Roughly speaking, we will need \mu 0 and
\mu 1 to be such that distinguishing them with squared-Hellinger distance \epsilon requires at least \Omega (\epsilon \mathrm{R}(g))
queries, uniformly across all choices of \epsilon . To get such a hard distribution, we use our companion
paper [BB20]. The concurrent work of [BDG+20] also gives a sufficiently strong hard distribution
for g (though it is phrased somewhat differently).

1.3.3 Noisy oracle model

The noisy oracle model we will use is the following. There is a hidden bit b \in \{ 0, 1\} known to the
oracle. The oracle will accept queries with any parameter \gamma \in [0, 1], and will return a bit \~b that has
bias \gamma towards b—that is, a bit from \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}

\bigl( 1 - ( - 1)b\gamma 
2

\bigr) 
(independently sampled for each query

call). This oracle can be called any number of times with possibly different parameters, but each
call with parameter \gamma costs \gamma 2. (The cost \gamma 2 is a natural choice, as it would take O(1/\gamma 2) bits of
bias \gamma to determine the bit with constant error.)

The measure \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) is defined as the cost of computing f (to worst-case bounded error) using
noisy oracle access to each bit in the input of x. That is, instead of receiving query access to the
n-bit string x, we now have access to n noisy oracles, one for each bit xi of x. We can call each
oracle with any parameter \gamma of our choice, at the cost of \gamma 2 per such call. The goal is to compute
f to bounded error using minimum expected cost (measured in the worst case over inputs x). We
note that by using \gamma = 1 each time, this reverts to the usual query complexity of f , meaning that
\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) \leq \mathrm{R}(f).

The key to our composition theorem lies in using such a noisy oracle for a bit xi to generate a
sample from a distribution \mu xi | j (distribution \mu xi marginalized to bit j) without learning xi. More
generally, suppose we have two distributions, p0 and p1, and we wish to sample from one of them, but
we don’t know which one. The choice of which distribution to sample from depends on a hidden bit
b, and we have noisy oracle access to b. Suppose we know that p0 and p1 are close, say \mathrm{h}2(p0, p1) = \epsilon .
How many queries to this noisy oracle do we need to make in order to generate this sample?

We show that using such noisy oracle calls, we can return a sample from pb with an expected cost
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of O(\mathrm{h}2(p0, p1)). When p0 and p1 are close, this is a much lower cost than the \Omega (1) cost of extracting
b. In other words, when the distributions are close, we can return a sample from pb (without any
error) without learning the value of the bit b! This is the key insight that allows our composition
result to work.

1.3.4 Main idea for characterizing \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)

In order to show that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Theta (\mathrm{R}(f \circ GapMajn)/n), we first note that the upper bound
follows from our composition theorem: that is, \mathrm{R}(f \circ GapMajn) = \Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)\mathrm{R}(GapMajn)),
and \mathrm{R}(GapMajn) = \Theta (n). For the lower bound direction, we need to convert a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)
algorithm (which makes noisy oracle calls to the input bits, with cost \gamma 2 for a noisy oracle call with
parameter \gamma ) into an algorithm for \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f \circ GapMajn) where each query costs 1/n. Recalling
that GapMajn is the majority function with the promise that the Hamming weight of the input
is n/2\pm \lfloor 

\surd 
n\rfloor , it’s not hard to see that a single random query to a GapMajn gadget (with cost

1/n each) is the same thing as a noisy oracle query with \gamma \approx 1/
\surd 
n. Also, querying all n bits in a

GapMajn (with cost 1 in total) is the same thing as a noisy oracle query with \gamma = 1.
To finish the argument, all we have to show is that a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) algorithm can always be assumed

to make only queries with \gamma = 1/
\surd 
n or \gamma = 1. Now, it is well-known that an oracle with bias \gamma can

be amplified to an oracle with bias \gamma \prime > \gamma by calling it O(\gamma \prime 2/\gamma 2) times and taking the majority of
the answers. Since oracle calls with parameter \gamma cost us \gamma 2, this fact ensures that we only need to
make noisy oracle calls with parameter either \gamma = \^\gamma or \gamma = 1, where \^\gamma is extremely small – smaller
than anything used by an optimal (or at least near-optiomal) \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) algorithm. This is because
for any desired bias level larger than \^\gamma , we could simply amplify the \^\gamma calls.

Hence it only remains to show how to simulate noisy oracle queries with an arbitrarily small
parameter \^\gamma using noisy oracle queries with parameter 1/

\surd 
n. For this, we consider a random walk

on a line that starts at 0 and flips a \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}
\bigl( 1 - ( - 1)b\^\gamma 

2

\bigr) 
coin when deciding whether step forwards

or backwards. Consider making this walk starting at 0, walking until either k or  - k is reached, and
then stopping (where k is some fixed integer). Note that the probability that neither k or  - k is ever
reached after infinitely many steps is 0. We then make the following key observation: the probability
distribution over the sequence steps of this walk, conditioned on reaching k before  - k, is the same
whether b = 0 or b = 1. Therefore, it is possible to generate the full walk by generating the sequence
of multiples of k the walk will reach (in a way that depends on b), and then completely separately –
and independently of b – generating the sequence of steps between one multiple and the next, up to
negation.

To simulate a bias \^\gamma oracle with a bias 1/
\surd 
n oracle, we can use latter to generate the sequence

of multiples of k described above, with k = O(1/(
\surd 
n\^\gamma )). We generate this sequence one at a time.

For each one, we can then generate \ell calls to the bias \^\gamma oracle, where \ell is the (random) number of
steps the random walk takes to go from one multiple of k to the next. This simulation is perfect: is
produces the distribution of any number of calls to the \^\gamma -bias oracle. It also turns out to use the
right number of noisy oracle queries in the long run. The only catch is that if the algorithm makes
only one noisy oracle call with bias \^\gamma , this still requires one call to the oracle of bias 1/

\surd 
n, at a cost

of 1/n instead of 1/\^\gamma 2. Since there are n total bits, this means the simulation can suffer an additive
cost of 1. To complete the argument, we then show that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (1) for every non-constant
Boolean function f .
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1.3.5 Main idea for bypassing the relational barrier in the non-adaptive setting

The trick for showing \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) = \Theta (\mathrm{R}na(f)) for partial functions is to use an information-
theoretic characterization of this statement. First, using a Yao-style minimax theorem, we can
assume we are working against a hard distribution \mu for \mathrm{R}na(f). Then we consider a non-adaptive
randomized algorithm that uses noisy oracle queries (that is, a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) algorithm) that solves f
against \mu . By some simple modifications and reductions, we can assume that this algorithm simply
makes one noisy query to each bit of the input, with bias parameter 1/

\surd 
n. In other words, if X is

the random variable for a string sampled from \mu , and if Y is the random variable we get by flipping
each bit of X independently with probability (1  - 1/

\surd 
n)/2, then we can assume a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)

algorithm just has access to the string Y and tries to compute f(X) using Y . Our reductions change
the length of the string (by duplicating bits of the input), and the cost of this noisy randomized
algorithm will roughly be | X| /n, where | X| is the length of the string X and n is the length of the
original string.

What we wish to show is that such a noisy non-adaptive randomized algorithm (which computes
f(X) using Y ) can be converted into a regular non-adaptive randomized algorithm which computes
f(X) by querying only around | X| /n bits of X. To do so, we use a theorem of Samorodnitsky
[Sam16; PW17], which states that the erasure channel with parameter \rho 2 – which deletes each bit
of X with probability 1 - \rho 2 – preserves more information about any function f(X) than the noisy
channel with parameter \rho (which flips each bit of X with probability (1 - \rho )/2). Hence, if f(X) can
be computed from Y , it can also be computed from the string Z which is formed by deleting each
bit of X with probability 1 - 1/n. Since Z reveals only | X| /n bits on expectation, this can be used
to define a non-adaptive randomized algorithm whose cost is at most \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f), and which still
succeeds in computing f against \mu to bounded error. This shows \mathrm{R}na(f) = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)).

We note that the step where we used the fact that f is a partial function is the step where we
said that if Z gives information about f(X), seeing Z can be used to compute f(X) to bounded
error. This statement holds when f(X) is a Boolean-valued random variable, but it has no good
analogue in the relational setting (and indeed, we know that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) does not equal \mathrm{R}na(f)
for relations).

2 Preliminaries and definitions

2.1 Query complexity

We introduce some basic concepts in query complexity. For a survey, see [BW02]. Fractional block
sensitivity can be found in [Aar08; KT16].

Partial Boolean functions. In this work, we will refer to partial Boolean functions, which are
functions f : S \rightarrow \{ 0, 1\} where S \subseteq \{ 0, 1\} n and n is a positive integer. For a partial function f , the
term promise refers to its domain S, which we also denote by \mathrm{D}\mathrm{o}\mathrm{m}(f). If \mathrm{D}\mathrm{o}\mathrm{m}(f) = \{ 0, 1\} n, we say
f is a total function.

Composition. For partial Boolean functions f and g on n and m bits respectively, we define
their composition, denoted f \circ g, as the Boolean function on nm bits with the following properties.
\mathrm{D}\mathrm{o}\mathrm{m}(f \circ g) will contain the set of nm-bit strings which are concatenations of n different m-bit
strings in \mathrm{D}\mathrm{o}\mathrm{m}(g), say x1, x2, . . . , xn, where the tuple (x1, x2, . . . , xn) must have the property that
the string g(x1)g(x2) . . . g(xn) is in \mathrm{D}\mathrm{o}\mathrm{m}(f). The value of f \circ g on such a string x1x2 . . . xn is then
defined as f(g(x1)g(x2) . . . g(xn)).
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Partial assignments. A partial assignment is a string in \{ 0, 1, \ast \} n representing partial knowledge
of a string in \{ 0, 1\} n. We say two partial assignments w and z are consistent if they agree on the
non-\ast bits, that is, for every i \in [n] we have either wi = \ast or zi = \ast or wi = zi (we use [n] to denote
\{ 1, 2, . . . , n\} ).

Decision trees. A decision tree D on n bits is a rooted binary tree whose leaves are labeled by
\{ 0, 1\} and whose internal nodes are labeled by [n]. We do not allow two internal nodes of a decision
tree to have the same label if one is a descendant of the other. We interpret a decision tree D as a
deterministic algorithm which takes as input a string x, starts at the root, and at each internal node
with label i, the algorithm queries xi and then goes left down the tree if xi = 0 and right if xi = 1.
When this algorithm reaches a leaf, it outputs its label. We denote by \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(D,x) the number of
queries D makes when run on x, and by \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(D) the height of the tree D. We denote the output of
D on input x by D(x). We say D computes Boolean function f if D(x) = f(x) for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f).

Randomized decision trees. A randomized decision tree R on n bits is a probability distribution
over deterministic decision trees on n bits. We denote by \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R, x) the expectation of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(D,x)
over decision trees D sampled from R. If \mu is a distribution over \{ 0, 1\} n, we further denote by
\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu ) the expectation of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R, x) over x sampled from \mu . We denote by \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R) the maximum
of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R, x) over x \in \{ 0, 1\} n, and by \mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}(R) the maximum of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(D) over D in the support
of R. Further, we let R(x) denote the random variable D(x) with D sampled from R. We say R
computes f to error \epsilon \in [0, 1/2] if \mathrm{P}\mathrm{r}[R(x) = f(x)] \geq 1 - \epsilon for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f).

Randomized query complexity. The randomized query complexity of a Boolean function f to
error \epsilon , denoted \mathrm{R}\epsilon (f), is the minimum height \mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}(R) of a randomized decision tree computing
f to error \epsilon . The expectation version of the randomized query complexity of f , denoted \mathrm{R}\epsilon (f), is
the minimum value of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R) of a randomized decision tree computing f to error \epsilon . When \epsilon = 1/3,
we omit it and write \mathrm{R}(f) and \mathrm{R}(f). We note that randomized query complexity can be amplified
by repeating the algorithm a few times and taking the majority vote of the answers; for this reason,
the constant 1/3 is arbitrary and any other constant in (0, 1/2) could work for the definition. Note
that in the constant error regime, R(f) = \Theta (\mathrm{R}(f)), since we can cut off paths of a R(f) algorithm
that run too long and use Markov’s inequality to argue that we only suffer a constant error penalty
for this.

Block sensitivity. Let f be a Boolean function and let x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). A sensitive block of f at
x is a subset B \subseteq [n] such that xB \in \mathrm{D}\mathrm{o}\mathrm{m}(f) and f(xB) \not = f(x), where xB denotes the string x
with bits in B flipped (i.e. xBi = xi for i /\in B and xBi = 1 - xi for i \in B). The block sensitivity of
f at x, denoted \mathrm{b}\mathrm{s}x(f), is the maximum number of disjoint sensitive blocks of f at x. The block
sensitivity of f , denoted \mathrm{b}\mathrm{s}(f), is the maximum value of \mathrm{b}\mathrm{s}x(f) over x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). We note that
\mathrm{R}(f) = \Omega (\mathrm{b}\mathrm{s}(f)), since if B1, . . . , Bk are disjoint sensitive blocks of f at x, then a randomized
algorithm must make \Omega (k) queries to determine whether the input is x or xBj for some j \in [k].

Fractional block sensitivity. Fix a Boolean function f and an input x \in \mathrm{D}\mathrm{o}\mathrm{m}(f), and let \scrB 
be the set of all sensitive blocks of f at x. We consider weighting schemes assigning non-negative
weights wB to blocks B \in \scrB . We say such a scheme is feasible if for each i \in [n], the sum of wB over
all blocks B \in \scrB containing i is at most 1. The fractional block sensitivity of f at x, denoted \mathrm{f}\mathrm{b}\mathrm{s}x(f),
is the maximum total weight in such a feasible weighting scheme. The fractional block sensitivity of
f , denoted \mathrm{f}\mathrm{b}\mathrm{s}(f), is the maximum of \mathrm{f}\mathrm{b}\mathrm{s}x(f) over all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). We note that \mathrm{R}(f) = \Omega (\mathrm{f}\mathrm{b}\mathrm{s}(f)).
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To see this, let R be a randomized algorithm solving f let x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) be an input, and for i \in [n]
let pi be the probability that R queries bit i when run on x. If, for any sensitive block B, we have\sum 

i\in B pi \ll 1, then R does not distinguish x from xB with constant probability, which means R fails
to compute f to bounded error (since f(x) \not = f(xB)). So we have

\sum 
i\in B pi \geq \Omega (1) for all B. Then

\mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}(R) \geq 
\sum 
i\in [n]

pi \geq 
\sum 
i\in [n]

pi
\sum 

B\in \scrB :i\in B
wB =

\sum 
B\in \scrB 

wB

\sum 
i\in B

pi = \Omega 

\Biggl( \sum 
B\in \scrB 

wB

\Biggr) 
= \Omega (\mathrm{f}\mathrm{b}\mathrm{s}x(f)).

Relations. A relation f is a subset of \{ 0, 1\} n \times \Sigma for some finite alphabet \Sigma . When computing
a relation f , we only require that an algorithm A given input x outputs some \sigma \in \Sigma satisfying
(x, \sigma ) \in f . In other words, each input may have many valid outputs. It is not hard to generalize the
definitions of \mathrm{D}(f) and \mathrm{R}(f) to include relations: the decision trees need leaves labeled by \Sigma , but
otherwise everything works the same (though one catch is that amplification no longer works, which
means \mathrm{R}\epsilon (f) becomes a different measure for different values of \epsilon ). Note that relations generalize
partial functions, because instead of restricting the inputs to a promise set S \subseteq \{ 0, 1\} n, we can
simply allow all possible outputs for every x /\in S. With this in mind, it is not hard to see that
composition f \circ g is well-defined if f is a relation, so long as g remains a (possibly partial) Boolean
function. In general, we will define measures for Boolean functions and later wish to apply them to
relations; this will usually work without too much trouble.

2.2 Distance measures for distributions

In this work, we will only consider finite-support distributions and finite-support random variables.
For a distribution \mu , we will use \mu A to denote the conditional distribution of \mu conditioned on event
A. If \mu is a distribution over \{ 0, 1\} n and z is a partial assignment, we will also use \mu z to denote
the distribution \mu conditioned on the string sampled from \mu agreeing with the partial assignment
z. If \mu is a distribution over \{ 0, 1\} n and j \in [n] is an index, we will use \mu | j to denote the marginal
distribution of \mu on the bit j (the distribution we get by sampling x from \mu and returning xj).

The following distance measures will be useful. All logarithms are base 2.

Definition 9 (Distance measures). For probability distributions \mu 0 and \mu 1 over a finite support S,
define the squared-Hellinger, symmetrized chi-squared, Jensen-Shannon, and total variation distances
respectively as follows:

\mathrm{h}2(\mu 0, \mu 1) :=
1

2

\sum 
x\in S

(
\sqrt{} 

\mu 0[x] - 
\sqrt{} 

\mu 1[x])
2

\mathrm{S}2(\mu 0, \mu 1) :=
1

2

\sum 
x\in S

(\mu 0[x] - \mu 1[x])
2

\mu 0[x] + \mu 1[x]

\mathrm{J}\mathrm{S}(\mu 0, \mu 1) :=
1

2

\sum 
x\in S

\mu 0[x] \mathrm{l}\mathrm{o}\mathrm{g}
2\mu 0[x]

\mu 0[x] + \mu 1[x]
+ \mu 1[x] \mathrm{l}\mathrm{o}\mathrm{g}

2\mu 1[x]

\mu 0[x] + \mu 1[x]

\Delta (\mu 0, \mu 1) :=
1

2

\sum 
x\in S
| \mu 0[x] - \mu 1[x]| .

We will need a few basic claims regarding the properties of various distance measures between
probability distributions. The first one relates these probability distributions to each other. This is
known in the literature, though the citations are hard to trace down; some parts of this inequality
chain follow from [Tøp00], some parts from [MCAL17], and for others we cannot find a good citation.
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In any case, a proof of the complete chain is provided in the appendix of our companion manuscript
[BB20].

Claim 10 (Relationship of distance measures). For probability distributions \mu 0 and \mu 1,

\mathrm{h}2(\mu 0, \mu 1) \leq \mathrm{J}\mathrm{S}(\mu 0, \mu 1) \leq \mathrm{S}2(\mu 0, \mu 1) \leq 2 \mathrm{h}2(\mu 0, \mu 1).

We also have \Delta 2(\mu 0, \mu 1) \leq \mathrm{S}2(\mu 0, \mu 1) \leq \Delta (\mu 0, \mu 1).

Since the distance measures \mathrm{h}2, \mathrm{S}2, and \mathrm{J}\mathrm{S} are equivalent up to constant factors, one might
wonder why we need all three. It turns out that the squared-Hellinger distance is mathematically the
nicest (e.g. it tensorizes and behaves nicely under disjoint mixtures), the Jensen-Shannon distance
has an information-theoretic interpretation that allows us to use tools from information theory,
and the symmetrized chi-squared distance \mathrm{S}2 is the one that most naturally captures the cost of
outputting a sample from \mu b given noisy oracle access to the bit b \in \{ 0, 1\} (see Lemma 28).

2.2.1 Properties of the squared-Hellinger distance

Claim 11 (Hellinger tensorization). Fix distributions \mu 0 and \mu 1 with finite support, and let \mu \otimes k
0

denote the distribution where k independent samples from \mu 0 are returned (with \mu \otimes k
1 defined similarly).

Then
\mathrm{h}2
\Bigl( 
\mu \otimes k
0 , \mu \otimes k

1

\Bigr) 
= 1 - 

\bigl( 
1 - \mathrm{h}2(\mu 0, \mu 1)

\bigr) k
.

Proof. From the definition of \mathrm{h}2(\cdot , \cdot ), it is not hard to see that \mathrm{h}2(\mu 0, \mu 1) = 1  - F (\mu 0, \mu 1), with
F (\mu 0, \mu 1) denoting the fidelity

\sum 
x

\sqrt{} 
\mu 0[x]\mu 1[x] between \mu 0 and \mu 1. The claim that F (\mu \otimes k

0 , \mu \otimes k
1 ) =

F (\mu 0, \mu 1)
k is easy to see, as it is simply the claim\sum 

x1

\sum 
x2

\cdot \cdot \cdot 
\sum 
xk

\sqrt{} 
\mu 0[x1] . . . \mu 0[xk] \cdot \mu 1[x1] . . . \mu 1[xk] =

\Biggl( \sum 
x

\sqrt{} 
\mu 0[x]\mu 1[x]

\Biggr) k

.

Claim 12 (Hellinger interpretation). For distributions \mu 0 and \mu 1, let k be the minimum number of
independent samples from \mu b necessary to be able to deduce b with error at most 1/3. Then

k = \Theta 

\biggl( 
1

\mathrm{h}2(\mu 0, \mu 1)

\biggr) 
,

with the constants in the big-\Theta notation being universal.

Proof. This minimum k is the minimum k such that \mu \otimes k
0 and \mu \otimes k

1 can be distinguished with constant
error; it is well-known that this is the same as saying \Delta (\mu \otimes k

0 , \mu \otimes k
1 ) is at least a constant. By Claim 10,

this is the same as saying \mathrm{h}2(\mu \otimes k
0 , \mu \otimes k

1 ) is at least a constant. By Claim 11, this is the same as
saying 1 - (1 - \mathrm{h}2(\mu 0, \mu 1))

k is at least a constant. The function 1 - (1 - x)k behaves like kx when
k is small compared to 1/x, so the minimum such k must be \Theta (1/ \mathrm{h}2(\mu 0, \mu 1)).

Claim 13 (Hellinger of disjoint mixtures). Let pa and qa be families of distributions, with a ranging
over a finite set S. Suppose that for each a, b \in S with a \not = b, it holds that the support Ua of pa and
qa is disjoint from the support Ub of pb and qb. Let \mu be a distribution over S. Let p\mu denote the
distribution that samples a\leftarrow \mu and then returns a sample from pa, and let q\mu be defined similarly.
Then

\mathrm{h}2(p\mu , q\mu ) = \BbbE a\sim \mu [\mathrm{h}
2(pa, qa)].

Proof. As in the proof of Claim 11, it suffices to prove that the fidelity satisfies F (p\mu , q\mu ) =
\BbbE a\sim \mu [F (pa, qa)]. This is clear, as it is simply the claim\sum 

a\in S

\sum 
x\in Ua

\sqrt{} 
\mu [a]pa[x]\mu [a]qa[x] =

\sum 
a\in S

\mu [a]
\sum 
x\in Ua

\sqrt{} 
pa[x]qa[x].
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2.2.2 Properties of the Jensen-Shannon distance

Here we will need some standard notation from information theory. For random variables X and
Y with finite supports, we write H(X) :=  - 

\sum 
x \mathrm{P}\mathrm{r}[X = x] \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{P}\mathrm{r}[X = x] for the entropy of X, and

I(X;Y ) := H(X) +H(Y ) - H(X,Y ) for the mutual information between X and Y . If Z is another
random variable, we will write I(X;Y | Z) :=

\sum 
z[\mathrm{P}\mathrm{r}(Z = z) \cdot I(XZ=z;Y Z=z)] for the conditional

mutual information, where we use the notation XZ=z to denote the random variable X conditioned
on the event Z = z. We note that I(X;Y ) = I(Y ;X) and I(X;Y | Z) = I(Y ;X| Z).

The chain rule for mutual information is well-known.

Claim 14 (Chain rule for mutual information). For discrete random variables X, Y , and Z, we
have

I(X;Y | Z) = I(X,Z;Y ) - I(Z;Y ).

We now use information theory to characterize the Jensen-Shannon distance \mathrm{J}\mathrm{S}.

Claim 15 (Jensen-Shannon interpretation). For finite-support probability distributions \mu 0 and \mu 1,

\mathrm{J}\mathrm{S}(\mu 0, \mu 1) = I(X;\mu X)

where X is a \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(1/2) random variable.

Proof. Let \mu = (\mu 0 + \mu 1)/2. We have

I(X;\mu X) = H(X)+H(\mu X) - H(X\mu X) = 1+
\sum 
x

\mu [x] \mathrm{l}\mathrm{o}\mathrm{g}
1

\mu [x]
 - 1

2

\sum 
x

\mu 0[x] \mathrm{l}\mathrm{o}\mathrm{g}
2

\mu 0[x]
+\mu 1[x] \mathrm{l}\mathrm{o}\mathrm{g}

2

\mu 1[x]

= 1 +
1

2

\sum 
x

\mu 0[x] \mathrm{l}\mathrm{o}\mathrm{g}
\mu 0[x]

\mu 0[x] + \mu 1[x]
+ \mu 1[x] \mathrm{l}\mathrm{o}\mathrm{g}

\mu 1[x]

\mu 0[x] + \mu 1[x]
.

This last line equals the definition of \mathrm{J}\mathrm{S}(\mu 0, \mu 1) by using 1 = (1/2)
\sum 

x \mu 0[x] + \mu 1[x].

We will also need to understand I(Z;\mu Z) when Z is a Bernoulli distribution with parameter not
quite equal to 1/2.

Claim 16 (Information of imperfect coins). Let Y1 and Y2 be random variables drawn from dis-
tributions \mu 0 and \mu 1, respectively. Let X be a \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(1/2) random variable, and let Z be a
\mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}((1 + \gamma )/2) be a Bernoulli random variable with bias  - 1 \leq \gamma \leq 1. Then

I(Z;YZ) \geq (1 - | \gamma | )I(X;YX) = (1 - | \gamma | ) \mathrm{J}\mathrm{S}(p0, p1).

Proof. Consider the case where \gamma \geq 0. Let B \sim \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(\gamma ) and

Z \sim 

\Biggl\{ 
1 if B = 1

\mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(12) otherwise.

Then Z \sim \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(1+\gamma 
2 ). Using the fact that B and YZ are independent conditioned on Z, the

chain rule, and the non-negativity of conditional mutual information, we obtain

I(Z;YZ) = I(B,Z;YZ) = I(B;YZ) + I(Z;YZ | B) \geq I(Z;YZ | B).

Then
I(Z;YZ | B) = (1 - \gamma )I(Z;YZ | B = 0) = (1 - \gamma )I(X;YX).

The case where \gamma < 0 is obtained by a symmetric argument.
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2.3 Noisy oracles and the definition of \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)

We use the following sequence of definitions to define \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f).

Definition 17 (Noisy oracles). A noisy oracle to a bit b \in \{ 0, 1\} is an oracle that takes a parameter
\gamma in the range  - 1 \leq \gamma \leq 1 and outputs a random bit a \in \{ 0, 1\} that satisfies \mathrm{P}\mathrm{r}[a = b] = 1+\gamma 

2 . We
write NoisyOracleb(\gamma ) to denote a call to the noisy oracle for bit b with parameter \gamma . Each
call to a noisy oracle returns an independent random variable. The cost of a query to a noisy oracle
with parameter \gamma is defined to be \gamma 2.

Note that the user of the noisy oracle is allowed to choose the bias parameter \gamma , and smaller \gamma 
comes with smaller cost.

Definition 18 (Noisy oracle algorithms). A noisy oracle decision tree D on n bits is a binary tree
with internal nodes labeled by pairs (i, \gamma ) with i \in [n] and \gamma \in [0, 1], and leaves labeled by \{ 0, 1\} .
Unlike for regular decision trees, we do not forbid descendants from having the same label as ancestors.
We only allow finite decision trees.

A noisy oracle randomized algorithm R on n bits is a finite-support probability distribution over
noisy oracle decision trees on n bits. For x \in \{ 0, 1\} n, we let R(x) be the random variable representing
the output of R on x, defined as the result of sampling a decision tree D from R and walking down the
tree to a leaf, where at each internal node labeled (i, \gamma ) we call the noisy oracle for xi with parameter
\gamma and go to the left child if the output is 0 and to the right child if the output is 1. The cost of such
a path to a leaf is the sum of \gamma 2 for parameters \gamma in the path, and \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R, x) denotes the expected
cost of running R on x.

We say that R computes Boolean function f to error \epsilon if \mathrm{P}\mathrm{r}[R(x) = f(x)] \geq 1  - \epsilon for all
x \in \mathrm{D}\mathrm{o}\mathrm{m}(f).

Definition 19 (Noisy randomized query complexity). The \epsilon -error noisy randomized query complex-
ity of a (possibly partial) Boolean function f , denoted \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f), is the infimum expected worst-case
cost of a noisy oracle randomized algorithm that computes f to error \epsilon . In other words, the cost
is measured in the worst case against inputs x \in \mathrm{D}\mathrm{o}\mathrm{m}(f), but on expectation against the internal
randomness of the algorithm and against the randomness of the oracle answers.

When \epsilon = 1/3, we omit it and write We write \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f).

We note that the set of noisy oracle randomized algorithms on n bits is not compact, so the
infimum in the definition of \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f) need not be attained. However, this won’t bother us too
much, as there is always some algorithm attaining (say) cost 2 \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f) for computing f to
error \epsilon , and we will not care about constant factors. We also note that noisy oracle randomized
algorithms can be amplified as usual, which means that the constant 1/3 is arbitrary. Further, by
cutting off paths that cost too much and using Markov’s inequality, it’s not hard to see that there
is always an algorithm computing f to bounded error using noisy oracles whose worst-case cost is
O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)) even in the absolute worst case (getting maximally unlucky with oracle answers and
internal randomness).

The following well-known lemma will be very convenient for analyzing low-bias oracles. For
completeness, we prove it in Appendix A.

Lemma 20 (Small bias amplification). Let \gamma \in [ - 1/3, 1/3] be nonzero, and let k be an odd positive
integer which is at most 1/\gamma 2. Let X be the Boolean-valued random variable we get by generating
k independent bits from \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}((1 + \gamma )/2) and setting X to their majority vote. Then X has
distribution \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}((1 + \gamma \prime )/2), where \gamma \prime \in [ - 1, 1] has the same sign as \gamma and

(1/3)
\surd 
k| \gamma | \leq | \gamma \prime | \leq 3

\surd 
k| \gamma | .
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2.4 Transcripts, Hellinger distinguishing cost, and \mathrm{s}\mathrm{f}\mathrm{R}(g)

To get our composition theorem to work, we will need to start with very hard 0- and 1-distributions
for g. We will prove our lower bound in a way that clarifies the dependence on the hardness of
these distributions: the lower bound will be in terms of the Hellinger distinguishing cost of these
distributions, which we define below. We will then cite our companion manuscript [BB20] to ensure
that there exist hard distributions for g whose Hellinger distinguishing cost is \Omega (\mathrm{R}(g)).

Definition 21 (Transcript). Let D be a decision tree on n bits, and let x \in \{ 0, 1\} n. The transcript
of D when run on x, denoted \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,x), is the sequence of pairs (i1, xi1), (i2, xi2), . . . , (iT , xiT )
consisting of all queries it \in [n] that D makes and all answers xit \in \{ 0, 1\} that D receives to its
queries, until a leaf is reached.

The transcript of D on a distribution \mu of inputs is the random variable which takes value
\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,x) when x is sampled from \mu .

Furthermore, if R is a randomized decision tree and \mu is a distribution over \{ 0, 1\} n, we define
the transcript of R when run on \mu , denoted \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu ), to be the random variable which evaluates to
the pair (D, \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,x)) when D is the decision tree sampled from R and x is the input sampled from
\mu . In other words, the transcript writes down both the queries seen and the value of the internal
randomness of the algorithm.

Definition 22 (Hellinger distinguishing cost). Let n \in \BbbN and let \mu 0 and \mu 1 be distributions over
\{ 0, 1\} n. The Hellinger distinguishing cost of \mu 0 and \mu 1 is

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(\mu 0, \mu 1) := \mathrm{m}\mathrm{i}\mathrm{n}
R

\mathrm{m}\mathrm{i}\mathrm{n}\{ \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu 0), \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu 1)\} 
\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu 1))

,

where the minimum is taken over all randomized decision trees R and we interpret x/0 = \infty for
every x \geq 0 in the minimum.

Informally, the Hellinger distinguishing cost measures the number of queries a randomized
algorithm must make in order to ensure it behaves differently on \mu 0 and \mu 1. We allow algorithms
to behave only a little differently on \mu 0 and \mu 1 if their cost is low enough.

Next, we will define the “Shaltiel free” randomized query complexity of g as the maximum
Hellinger distinguishing cost between 0- and 1-distributions of g. We name this measure \mathrm{s}\mathrm{f}\mathrm{R}(g)
after Shaltiel [Sha03] who showed that some distributions for a Boolean function g may be hard to
compute to bounded error without being sufficiently difficult in other ways (e.g. they may be trivial
to solve to small bias).

Definition 23 (Shaltiel-free randomized query complexity). Let g be a (possibly partial) function.
The Shaltiel-free randomized query complexity of g, denoted \mathrm{s}\mathrm{f}\mathrm{R}(g), is the maximum over all distri-
butions \mu 0 and \mu 1 supported on g - 1(0) and g - 1(1), respectively, of the Hellinger distinguishing cost
of \mu 0 and \mu 1. In other words,

\mathrm{s}\mathrm{f}\mathrm{R}(g) := \mathrm{m}\mathrm{a}\mathrm{x}
\mu 0 : \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu 0)\subseteq g - 1(0)
\mu 1 : \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\mu 1)\subseteq g - 1(1)

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(\mu 0, \mu 1).

If g is constant, define \mathrm{s}\mathrm{f}\mathrm{R}(g) to be 0.

The result we need from our companion manuscript [BB20] can then be phrased as follows.

Theorem 24. For all (possibly partial) Boolean functions g, \mathrm{s}\mathrm{f}\mathrm{R}(g) = \Omega (\mathrm{R}(g)).
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3 Counterexample to perfect composition

To define the partial functions used to prove Theorem 1, we will use f(x) = \ast to denote that
x /\in \mathrm{D}\mathrm{o}\mathrm{m}(f).

Definition 25. Define GapMajm : \{ 0, 1\} m \rightarrow \{ 0, 1\} to be the gap majority function

GapMajm(x) =

\left\{     
1 if | x| = \lceil m2 + 2

\surd 
m\rceil 

0 if | x| = \lfloor m2  - 2
\surd 
m\rfloor 

\ast otherwise.

Note that this is simply the majority function with a Hamming weight promise which restricts
the input to two Hamming levels O(

\surd 
m) apart.

Lemma 26. The randomized query complexity of the gap majority function on m bits is

R(GapMajm) = \Theta (m).

The proof of this lemma is a standard argument, but we repeat it here for completeness.

Proof. The upper bound follows by querying all the bits of the input. For the lower bound, let
\mu be the uniform distribution on the domain of GapMajm. Suppose there was an algorithm R
that solved GapMajm to error 1/3 using only m/1000 queries. Then by convexity, there is some
deterministic decision tree D in the support of R that solves GapMajm to bounded error against
inputs from \mu . The height of D is still at most m/1000.

Now, since \mu is symmetric under permuting the input bits, the order in which D queries the
inputs doesn’t matter; we can assume it reads them from left to right. Indeed, we can even assume
that D reads the first k = m/1000 bits of the input x in one batch, and then gives the output.
Further, it is not hard to see that D maximizes its probability of success by outputting the majority
of the k bits it sees. Assume for simplicity that k is odd. Then the success probability of D is the
same on 0- and 1-inputs from \mu , and equals the probability that, when a string of length m and
Hamming weight \lceil m/2 +

\surd 
m\rceil is selected at random, its first k bits have Hamming weight at least

k/2.
The k bits are selected from the m bit string of that Hamming weight without replacement.

However, if they were selected with replacement, the probability of seeing at least k/2 ones out of
the k bits would only increase, so it suffices to upper bound the probability of seeing k/2 or more
ones in a string of length k when each bit is sampled independently from \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(1/2 + 1/

\surd 
m).

This is precisely what we get by amplifying bias 2/
\surd 
m using m/1000 repetitions, which is bias at

most 1/5 < 1/3 (and hence error greater than 1/3) by Lemma 20. This gives a contradiction.

We will take the inner function g to be GapMajm in our counterexample. This is also essentially
the same inner function as used in the relational counterexample of [GLSS19]. In that construction,
the outer relation took an m bit string x as input and accepted as output any string y that has
Hamming distance within m/2 - 

\surd 
m of x. This relation requires \Theta (

\surd 
m) queries to solve to bounded

error using a randomized algorithm, but f \circ g can be computed using only O(m) queries instead of
m3/2.

Our construction is motivated by this approach, but is somewhat different as we need f to be a
partial function. Let ApproxIndex : \{ 0, 1\} k \times \{ 0, 1, 2\} 2k \rightarrow \{ 0, 1, \ast \} be the partial function on
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n = k + 2k-dimensional inputs defined by

ApproxIndex(a, x) =

\left\{     
xa if xb = xa \in \{ 0, 1\} for all b that satisfy | b - a| \leq k

2  - 2
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k

and xb = 2 for all other b,
\ast otherwise.

In other words, ApproxIndex takes input strings that have two parts: the index part and the
array part. The promise is that in the array, all positions within k/2 - 2

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k of the index have

the same Boolean value, and all positions far from the index contain the value 2. Essentially, the
goal is to find an approximation of the index.

Note that ApproxIndex has input alphabet of size 3. We can easily convert this into a
function with input alphabet \{ 0, 1\} by using binary representation, which only changes the input
size and the complexity of the function by a constant factor. Hence we will treat ApproxIndex
as a partial Boolean function. This will be our outer function f . We now show the following lemma.

Lemma 27. The randomized query complexity of the approximate address function on n = k + 2k

bits is
R(ApproxIndex) = \Theta (

\sqrt{} 
k \mathrm{l}\mathrm{o}\mathrm{g} k) = \Theta (

\sqrt{} 
\mathrm{l}\mathrm{o}\mathrm{g} n \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} n).

Proof. The upper bound is obtained by the simple algorithm that obtains an approximate address
b by querying and copying the first 8

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k bits of a and setting the remaining bits of b uniformly

at random, then queries xb and returns that value. The distance | b - a| between the approximate
and actual addresses is a random variable with binomial distribution distribution with parameters
N = k  - 8

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k and p = 1

2 so standard tail bounds imply that the algorithm has bounded error.
For the lower bound, we describe a hard distribution. Let \mu be the distribution over valid inputs

to ApproxIndex which first picks a \in \{ 0, 1\} k uniformly at random, then picks a bit z \in \{ 0, 1\} 
uniformly at random, and fills the array with z in positions within k/2 - 2

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k of a and with 2

in positions further from a. That is, when the distribution picks the pair (a, z), it generates a valid
input whose index part is a and whose function value is z.

Suppose there was a randomized algorithm R which solved ApproxIndex to bounded error
using only

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k queries. Then R also solves ApproxIndex against inputs from \mu . By

convexity, there is some deterministic decision tree D in the support of R which still computes
ApproxIndex correctly (to bounded error) against \mu , with height at most

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k.

Consider the deterministic algorithm D\prime which runs D, except whenever D queries inside the
array part of the input, D\prime does not make that query and just pretends the answer was 2. (Whenever
D queries inside the index part of the input, D\prime does implement that query correctly.) Then D\prime 

uses at most as many queries as D does, and never queries inside the array part of the input. Note
that against distribution \mu , the success probability of D\prime must be exactly 1/2, regardless of how its
leaves are labeled, because \mu generates its index (the only part D\prime queries) independently from the
function value z. So we know D\prime fails to compute ApproxIndex to bounded error against \mu .
Since D succeeds in computing ApproxIndex to bounded error against D\prime , this means that D
and D\prime output different answers when run on \mu with constant probability.

Since D and D\prime behave differently on \mu with constant probability, it means that D has constant
probability of querying a non-2 position of the array (since in all other cases, D\prime behaves the same
as D). This also means that if we run D\prime and look at the set S of array queries it faked the answer
to (returning 2 instead of making a true query to the array), then the probability that S contains a
non-2 position of the array is at least a constant.

To rephrase: we now have an algorithm D\prime that looks at at most
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k positions of a random

string a of length k, and returns a set S of at most
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k strings of length k that has a constant
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probability of being within k/2 - 2
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k of a. By picking a string from S at random, we can even

get an algorithm that looks at
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k positions of a and returns a string b that has probability at

least 1/k of being within k/2  - 2
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k of a. This means that of the k  - 

\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k positions the

algorithm did not look at, it guessed at least k/2 +
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k of them correctly with probability at

least 1/k. But since a is a uniformly random string, the chance of this happening can be bounded
by the Chernoff bound: it is at most 1/k2, giving the desired contradiction.

From here, the proof of Theorem 1 is obtained by giving an upper bound on the randomized query
complexity of the composed function ApproxIndex \circ GapMaj\mathrm{l}\mathrm{o}\mathrm{g}n, with the ApproxIndex
on n bits (i.e. k = O(\mathrm{l}\mathrm{o}\mathrm{g} n)). If a tight composition theorem held, the randomized query complexity
of this function would be \Omega (\mathrm{l}\mathrm{o}\mathrm{g}3/2 n

\surd 
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} n). However, there is an O(\mathrm{l}\mathrm{o}\mathrm{g} n \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} n) randomized

query algorithm for this composed function: the randomized algorithm can first query O(\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}n)
bits from each of the first k copies of GapMaj\mathrm{l}\mathrm{o}\mathrm{g}n; since this gives it bias O(

\surd 
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} n/

\surd 
\mathrm{l}\mathrm{o}\mathrm{g} n)

(i.e. O(
\surd 
\mathrm{l}\mathrm{o}\mathrm{g} k/

\surd 
k)) towards the right answer for each bit of a (from Lemma 20), the string of k

such bits will (with high probability) be such that | b - a| \leq k/2 - 2
\surd 
k \mathrm{l}\mathrm{o}\mathrm{g} k. Then the randomized

algorithm can query xb by using \mathrm{l}\mathrm{o}\mathrm{g} n queries to the appropriate copy of GapMaj\mathrm{l}\mathrm{o}\mathrm{g}n, computing
it exactly. This is a total of only O(\mathrm{l}\mathrm{o}\mathrm{g} n \cdot \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g} n) queries instead of \Omega (\mathrm{l}\mathrm{o}\mathrm{g}3/2 n

\surd 
\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}n).

4 Simulating oracles

The heart of the proof of Theorem 3 is the oracle simulation problem that we describe below.

Oracle simulation problem. Fix any two (publicly known) distributions \mu 0 and \mu 1 over \{ 0, 1\} n.
There is a (true) oracle \scrO that knows the value of some bit b \in \{ 0, 1\} , samples a string x\leftarrow \mu b, and
then provides (noiseless) query access to the bits in x. (I.e., on query i \in [n], the oracle returns the
value xi.) In the oracle simulation problem, we do not know b, but we wish to simulate the behavior
of \scrO . Our only resource is a noisy oracle for b as in Definition 17. Given access to such a noisy
oracle for b, our goal is to simulate \scrO , even in the setting where queries arrive in a stream and we
don’t know what future queries might be or even when they stop, while minimizing our query cost
to the noisy oracle.

Note that we can always solve the oracle simulation problem by querying b with certainty; that
is, we can feed in \gamma = 1 into the noisy oracle for b, extracting the correct value of b with probability
1. Afterwards, we can clearly use the value of b to match the behavior of \scrO by generating a sample
x\leftarrow \mu b and using it to answer queries. The cost of this trivial protocol is 1 (since we pay \gamma 2 when
we go to the noisy oracle with parameter \gamma ). Our goal will be to improve this to a cost that depends
on the types of queries made and on the distributions \mu 0 and \mu 1, but that in general can be much
less than 1.

4.1 Simulating a single oracle query

We first show in this section that the oracle simulation problem can be solved efficiently in the
special case where we only have to simulate the true oracle \scrO for a single query.

Lemma 28. For any pair (\mu 0, \mu 1) of distributions over \{ 0, 1\} n, there is a protocol for the oracle
simulation problem such that for any single query i \in [n], the expected cost of the protocol simulating
i is at most

2 \mathrm{S}2(\mu 0| i, \mu 1| i)
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(here \mu b| i denotes the marginal distribution of \mu b onto the bit at index i), and the output of the
protocol has exactly the same distribution as the output returned by the true oracle on the same
query.

Algorithm 1: SingleBitSim(\mu 0, \mu 1, i)
a\leftarrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}c\in \{ 0,1\} \{ \mu 0| i(c) + \mu 1| i(c)\} ;
p0 \leftarrow \mu 0| i(a);
p1 \leftarrow \mu 1| i(a);
if \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(p0 + p1) = 1 then

if NoisyOracleb

\Bigl( 
p0 - p1
p0+p1

\Bigr) 
then

return a;
return 1 - a;

Proof. The SingleBitSim algorithm described in Algorithm 1 returns a if and only if the random
variable drawn from the \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(p0 + p1) distribution is 1 and the NoisyOracle call to b also
returns 1, so

\mathrm{P}\mathrm{r}[SingleBitSim returns a] = (p0 + p1)

\biggl( 
1

2
+ ( - 1)b p0  - p1

2(p0 + p1)

\biggr) 
=

p0 + p1
2

+ ( - 1)b p0  - p1
2

= pb,

which is also exactly the probability that the true oracle \scrO returns a.
The cost of the algorithm is 0 with probability 1  - (p0 + p1) and (p0 - p1

p0+p1
)2 otherwise so the

expected cost is

(p0 + p1)

\biggl( 
p0  - p1
p0 + p1

\biggr) 2

=
(p0  - p1)

2

p0 + p1
=

(\mu 0| i(1) - \mu 1| i(1))2

\mu 0| i(1) + \mu 1| i(1)
\leq 2 \mathrm{S}2(\mu 0| i, \mu 1| i).

4.2 Simulating multiple queries to the oracle

We build on the SingleBitSim algorithm to obtain a protocol that simulates any sequence of
queries to the true oracle. Let us use z \in \{ 0, 1, \ast \} n to denote a partial assignment to a variable
x \in \{ 0, 1\} n; with each coordinate j \in [n] for which zj = \ast corresponding to the bits that have not
yet been assigned. And for a partial assignment z and a distribution \mu on \{ 0, 1\} n, we write \mu z to
denote the conditional distribution of \mu conditioned on z being a partial assignment to the sample
x drawn from the distribution.

The general OracleSim protocol processes each received query using SingleBitSim, as
described in Algorithm 2. The strategy is to keep calling SingleBitSim to answer all queries
until we see that the expected total cost of the queries we received exceeds 1; at that point, we
switch strategies to the trivial protocol, extracting b with certainty and using it to answer all further
queries.

Lemma 29. For any pair (\mu 0, \mu 1) of distributions over \{ 0, 1\} n and any sequence of queries, the
distribution of the answers to the queries returned by the OracleSim protocol is identical to the
distribution of answers returned by the true oracle on the same sequence of queries.
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Algorithm 2: OracleSim(\mu 0, \mu 1)
z \leftarrow \ast n;
c\leftarrow 0;
for each query i \in [n] received do

zi \leftarrow SingleBitSim(\mu z
0, \mu 

z
1, i);

Answer the query with zi;

c\leftarrow c+ \mathrm{h}2(\mu z
0| i, \mu z

1| i);
if c > 1 then

break;

/* If the expected cost of noisy queries exceeds 1, query the value of b
directly to complete the simulation. */

b\leftarrow NoisyOracleb(1);
for each query i \in [n] received do

zi \leftarrow \mu z
b | i;

Answer the query with zi;

Proof. This immediately follows from the fact that SingleBitSim answers individual queries
with the same distribution as the true oracle.

In particular, Lemma 29 implies that the behaviour of randomized algorithms does not change
when access to the true oracle is replaced with usage of the OracleSim protocol instead.

We now want to bound expected cost of the OracleSim protocol on randomized decision
trees. To do so, we must first introduce a bit more notation and establish some preliminary results.
For any transcript \tau = \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,x) of a deterministic decision tree D on some input x and any index
t \leq | \tau | , we let \tau <t denote the part (i1, xi1), . . . , (it - 1, xt - 1) of the transcript representing the first
t - 1 queries. That is, \tau <t is a partial assignment of size t - 1.

Definition 30 (Distinguishing distributions). For any bias \eta \in (0, 1), we say that a transcript \tau 
\eta -distinguishes two distributions \mu 0 and \mu 1 if there is an index t \leq | \tau | for which a random variable
X \sim \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(12) satisfies \bigm| \bigm| \BbbE [X\tau <t ] - 1

2

\bigm| \bigm| \geq \eta 
2

where X\tau <t is the random variable X conditioned on \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)<t = \tau <t.

In other words, we say a transcript \tau distinguishes two distributions if at any point during the
run of \tau , the partial assignment seen up to that point is much more likely under one of \mu 0 or \mu 1 than
under the other. We use the following bound on the probability of seeing a distinguishing transcript
\tau when running an algorithm on the mixture of \mu 0 and \mu 1.

Lemma 31. There exists a constant \eta \in (0, 1) such that for every deterministic decision tree D and
every pair of distributions \mu 0, \mu 1 on inputs, when X \sim \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}(12) then

\mathrm{P}\mathrm{r}
\tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)

[\tau \eta -distinguishes \mu 0, \mu 1] = O
\bigl( 
\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1))

\bigr) 
.

Proof. Let \rho denote the probability that a transcript \tau drawn from \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X) \eta -distinguishes
the distributions \mu 0 and \mu 1. We show that O(1/\rho ) transcripts sampled independently from the
distribution \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu b) suffice to determine the value b with bounded error. The lemma then
follows from Claim 12.
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The algorithm for determining b given these transcripts will be Bayesian: it will start with an
even prior on b = 0 and b = 1, and then process each sample in turn – and within each sample, each
query of the transcript in turn – and update its belief using Bayes’ rule. At each point in time, we
keep track of the log odds ratio of the current posterior distribution. That is, if the belief of the
algorithm is probability p that b = 1 and probability 1 - p that b = 0, the log odds ratio is defined
as \mathrm{l}\mathrm{o}\mathrm{g}(p/(1 - p)). If at any point in the algorithm, the absolute value of the log odds ratio exceeds
(1/2) \mathrm{l}\mathrm{o}\mathrm{g}((1+ \eta )/(1 - \eta )), the algorithm terminates and returns 1 if its log odds ratio is positive and
0 if its log odds ratio is negative. If the algorithm reaches the end of all samples without terminating
in this way, it outputs arbitrarily. In other words, the algorithm reads all the queries of all the
transcripts sequentially, and if ever it reaches very high confidence of the value of b, it outputs that
value (and terminates), but otherwise it guesses randomly when it reaches the end.

To analyze this algorithm, we observe that the log odds ratio updates additively: if the prior
probability that b = 1 was p, and an event A was observed, the posterior probability that b = 1
is \mathrm{P}\mathrm{r}[b = 1| A] = \mathrm{P}\mathrm{r}[A| b = 1] \cdot p/\mathrm{P}\mathrm{r}[A] and the posterior probability that b = 0 is Pr[A| b =
0] \cdot (1  - p)/\mathrm{P}\mathrm{r}[A], so their ratio is p/(1  - p) times \mathrm{P}\mathrm{r}[A| b = 1]/\mathrm{P}\mathrm{r}[A| b = 0]. It follows that the
posterior log odds ratio is equal to the prior log odds ratio plus \mathrm{l}\mathrm{o}\mathrm{g}(\mathrm{P}\mathrm{r}[A| b = 1]/\mathrm{P}\mathrm{r}[A| b = 0]).

Now, if \tau \eta -distinguishes \mu 0 and \mu 1 and if t is such that X\tau <t has bias at least \eta , it means
that for this \tau , if we were to see t  - 1 queries starting from an even prior (0 log odds ratio), we
would arrive at bias at least \eta , meaning the absolute value of the log odds ratio would be at least
\mathrm{l}\mathrm{o}\mathrm{g}((1+\eta )/(1 - \eta )). Note that this is enough to exceed the ratio and terminate the algorithm, unless
the initial log odds ratio (before starting reading this transcript \tau ) was not 0. But the only way
for the total log odds ratio not to exceed 1

2 \mathrm{l}\mathrm{o}\mathrm{g}((1 + \eta )/(1 - \eta )) in absolute value would be for it to
start at at least 1

2 \mathrm{l}\mathrm{o}\mathrm{g}((1 + \eta )/(1 - \eta )) in absolute value—in which case the algorithm would have
terminated before reading \tau ! We conclude that reading a transcript that \eta -distinguishes \mu 0 and \mu 1

always causes a termination of this algorithm.
Since we sample O(1/\rho ) transcripts, the probability that we do not see any \tau that \eta -distinguishes

\mu 0 and \mu 1 is (1  - \rho )1/\rho = e - \Omega (1), which we can make an arbitrarily small constant by picking the
right constant in the big-O. This means the algorithm always terminates before reaching the end
except with small probability (say, 0.01), so it rarely needs to guess.

It remains to argue that when the algorithm terminates, it is usually correct in its output. Let’s
suppose b = 0 (the b = 1 case is analogous). When the algorithm terminates and gives an incorrect
output, consider everything it saw up to that point – this is some sequence of transcripts plus some
sequence of queries that are part of the transcript causing the termination. If this sequence is s,
then the log odds ratio after observing s must be at least 1

2 \mathrm{l}\mathrm{o}\mathrm{g}((1 + \eta )/(1 - \eta )), meaning the odds
ratio must be at least

\sqrt{} 
(1 + \eta )/(1 - \eta ). In other words, if the probability of seeing such an s when

b = 0 is ps, then the probability of seeing this same s when b = 1 is at least ps
\sqrt{} 
(1 + \eta )/(1 - \eta ).

The probability that the algorithm terminates and gives an incorrect output when b = 0 is the sum
of all such ps; but then the probability of observing one of those s when b = 1 is that sum times\sqrt{} 
(1 + \eta )/(1 - \eta ). Since this must be at most 1, we conclude that the probability the algorithm

terminates and errs when b = 0 is at most
\sqrt{} 
(1 - \eta )/(1 + \eta ). By picking \eta correctly, we can get the

probability of error to be at most 1/3 (and the b = 1 case is similar).
By Claim 12, we conclude that \rho = O(h2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)), as desired.

We are now ready to bound the expected cost of the oracle simulation protocol.

Lemma 32. For any pair (\mu 0, \mu 1) of distributions over \{ 0, 1\} n, and any randomized decision tree
R, the expected cost of the OracleSim protocol is at most

O
\bigl( 
\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu 1))

\bigr) 
.
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Proof. Note first that \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu ) is a disjoint mixture of distributions of the form \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu ) for
deterministic decision trees D, since our definition of the transcript of randomized decision trees
includes a copy of the sampled tree D itself. By Claim 13, it therefore suffices to show that the
expected cost of OracleSim on any deterministic decision tree D is

O
\bigl( 
\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1))

\bigr) 
.

We can represent the expected cost of OracleSim on D as

\BbbE \tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu b)[\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau )],

where b is the true value of the unknown oracle bit and where \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau ) is defined as the expected
cost of OracleSim conditioned on \tau being the resulting transcript at the end. This is the correct
expression for the expected cost because we know OracleSim will generate transcripts \tau from
the same distribution \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu b) that the true oracle generates them from.

We will use only two properties of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau ). The first property is that for all \tau and b \in \{ 0, 1\} ,

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau ) \leq 5

| \tau | \sum 
t=1

\mathrm{h}2
\bigl( 
\mu \tau <t
0 | \tau t , \mu 

\tau <t
1 | \tau t

\bigr) 
. (1)

Here we use \mu \tau <t
0 | \tau t to denote the conditional distribution of \mu 0 conditioned on the partial assignment

\tau <t, marginalized to the position queried in the t-th entry of \tau . To see that this property holds,
recall that Lemma 28 (combined with Claim 10) provides an upper bound of 4 \mathrm{h}2

\bigl( 
\mu \tau <t
0 | \tau t , \mu 

\tau <t
1 | \tau t

\bigr) 
on the cost of query t of D conditioned on \tau <t being seen previously, unless query t causes a cutoff
which forces a cost of 1. By the definition of OracleSim, this cutoff only happens if the sum\sum t - 1

i=1 \mathrm{h}
2
\bigl( 
\mu 
\tau <i
0 | \tau i , \mu 

\tau <i
1 | \tau i

\bigr) 
(which is stored in variable c) exceeds 1; in this case, the cutoff only causes

the sum over t of 4 \mathrm{h}2
\bigl( 
\mu \tau <t
0 | \tau t , \mu 

\tau <t
1 | \tau t

\bigr) 
to increase by at most a factor of 5/4, since before the cutoff

it must already have been at least 4.
The second property we will need is that for all \tau and b,

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau ) \leq 10. (2)

This follows from the first property by noticing that if a cutoff is reached, no further queries are
made, and the variable c can at most exceed its cutoff 1 by 1 (since \mathrm{h}2 is always bounded above by
1).

Our goal is to upper bound the expected cost of OracleSim, which we know can be writ-
ten \BbbE \tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu b)[\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau )], by O(\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1))). We start by noting that the latter
expression can be lower bounded using Claim 10 and Claim 15:

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) \geq 1
2 \mathrm{J}\mathrm{S}(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) =

1
2I(X; \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)).

Using the chain rule for mutual information and the definition of conditional information, we then
obtain

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) \geq 1
2

n\sum 
t=1

I(X; \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)t | \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)<t)

= 1
2

n\sum 
t=1

\BbbE \tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)[I(X
\tau <t ; \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)\tau <t

t )],
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where as usual we use \tau <t to denote the transcript \tau cut off before query t (meaning that the sequence
(i1, xi1), (i2, xi2), . . . in the transcript gets truncated after (it - 1, xit - 1)), and \tau t to denote query t of
the transcript (meaning the single pair (it, xit) in position t of the sequence). We can exchange the
sum and the expectation and we can also replace n by | \tau | as the information of the transcript is
always 0 after the transcript ends. Doing so yields

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) \geq 1
2\BbbE \tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu )

\left[  | \tau | \sum 
t=1

I(X\tau <t ; \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)\tau <t
t )

\right]  ,

where we are using \mu to denote \mu X = (1/2)(\mu 0 + \mu 1).
Let S1 denote the set of transcripts \tau that do not \eta -distinguish \mu 0 and \mu 1, and S2 be the other

transcripts (that do \eta -distinguish \mu 0 and \mu 1) for the value of \eta guaranteed to exist by Lemma 31.
We write \tau \sim S1 to mean \tau sampled from the conditional distribution \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu ) conditioned on
\tau \in S1, and similarly for \tau \sim S2. Then

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0) \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) \geq 1
2 \mathrm{P}\mathrm{r}[\tau \in S1] \cdot \BbbE \tau \sim S1

\left[  | \tau | \sum 
t=1

I(X\tau <t ; \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu X)\tau <t
t )

\right]  
\geq 1 - \eta 

2
\mathrm{P}\mathrm{r}[\tau \in S1] \cdot \BbbE \tau \sim S1

\left[  | \tau | \sum 
t=1

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0)
\tau <t
t , \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)

\tau <t
t )

\right]  ,

where the first line follows by removing the part of the expectation over S2 (which is non-negative),
and the second line follows from Claim 16 (converting a biased coin into an unbiased coin with
(1 - \eta ) loss) together with Claim 10 (converting \mathrm{J}\mathrm{S} distance to \mathrm{h}2).

Now, observe that each term of the sum is exactly \mathrm{h}2(\mu \tau <t
0 | \tau t , \mu 

\tau <t
1 | \tau t). Hence by 1, we have

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0) \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) = \Omega (\mathrm{P}\mathrm{r}[\tau \in S1] \cdot \BbbE \tau \sim S1 [\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau )]) .

We now write

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0) \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) = \Omega 
\bigl( 
\BbbE \tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu )[\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau )] - \mathrm{P}\mathrm{r}[\tau \in S2] \cdot \BbbE \tau \sim S2 [\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau )]

\bigr) 
= \Omega 

\bigl( 
\BbbE \tau \sim \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu )[\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}b(\tau )]

\bigr) 
 - O(\mathrm{P}\mathrm{r}[\tau \in S2]),

where we used 2 in the last line. Finally, since \mu = (\mu 0 + \mu 1)/2, the expectation of a nonegative
random variable against \mu b is at most twice the expectation of that variable against \mu . We have
thus obtained that the expected cost OracleSim is bounded above by

O
\bigl( 
\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1)) + \mathrm{P}\mathrm{r}[\tau \in S2]

\bigr) 
,

and the desired bound O
\bigl( 
\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(D,\mu 1))

\bigr) 
follows from Lemma 31.

5 The composition theorem

5.1 The proof

Equipped with Lemma 29 and Lemma 32, we are ready for the proof of Theorem 3. In fact, we
prove a slightly stronger version of the theorem: we show that the hard distribution for f \circ g can be
assumed to take the form of a distribution of f composed with a distribution of g. Start with the
following definitions.
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Definition 33. Let \mu 0 and \mu 1 be distributions over \{ 0, 1\} m, and let y \in \{ 0, 1\} n. Then define
\mu y :=

\bigotimes n
i=1 \mu yi , which is a distribution over \Sigma nm. If \nu is a distribution over \{ 0, 1\} n, define \nu \circ (\mu 0, \mu 1)

to be the distribution which samples y \leftarrow \nu and then returns a sample from \mu y.

Definition 34. Let g be a (possibly partial) Boolean function from a subset of \{ 0, 1\} m to \{ 0, 1\} ,
and let f be a function or relation from a subset of \{ 0, 1\} n to \Sigma O (a finite alphabet). Then define
\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(f, g) to be the maximum, over distributions \mu 0 and \mu 1 on 0-inputs and 1-inputs of g, of the
complexity of solving f on distributions of the form \mu y for y \in \mathrm{D}\mathrm{o}\mathrm{m}(f). In other words,

\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(f, g) = \mathrm{m}\mathrm{a}\mathrm{x}
\mu 0,\mu 1

\mathrm{m}\mathrm{i}\mathrm{n}
R

\mathrm{m}\mathrm{a}\mathrm{x}
y

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu y),

where R is a randomized algorithm that is required to compute f(y) with bounded error against
all input distributions of the form \mu y, and where \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu y) is the expected number of queries R
makes against distribution \mu y. We will further write \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g) when we need to specify the error
parameter.

We note that \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(f, g) satisfies a minimax theorem with respect to the minimization over R
and the maximization over y. Hence, we can define it as the maximum randomized query complexity
of a hard distribution for f\circ g which has the form \nu \circ (\mu 0, \mu 1), with \nu a distribution over\mathrm{D}\mathrm{o}\mathrm{m}(f) and \mu b

being distributions over g - 1(b) for b \in \{ 0, 1\} . It is also clear that\mathrm{R}\epsilon (f\circ g) \geq \mathrm{R}\epsilon (f\circ g) \geq \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g),
where \mathrm{R}(f) denotes the expected randomized query complexity of f (against worst-case inputs).

The following theorem implies Theorem 3 when combined with Theorem 24.

Theorem 35. Let f be a partial function or relation on n bits, with Boolean input alphabet and
finite output alphabet \Sigma O. Let g be a partial Boolean function on m bits. Let \epsilon \in (0, 1/2). Then

\mathrm{R}\epsilon (f \circ g) \geq \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g) = \Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f) \cdot \mathrm{s}\mathrm{f}\mathrm{R}(g)) .

Proof. Only the second part needs proof (\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(f, g) is by definition at most \mathrm{R}(f \circ g)). The idea
of the proof is to convert an algorithm for f \circ g into an algorithm for f that acts on a noisy oracle,
thereby upper bounding \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) in terms of \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(f \circ g). To do so, we will use the OracleSim
protocol n times to simulate an oracle for each g-input. Recall that OracleSim allows us to
pretend to have a sample x from distribution \mu b without knowing b (so long as we have access to a
noisy oracle for b). We will use this protocol to run the algorithm for f \circ g without actually having
the n input strings to the copies of g; instead, we will only have noisy oracles for the n bits to which
the copies of g evaluate. This will define a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) algorithm.

Let \mu 0 and \mu 1 be hard distributions for \mathrm{s}\mathrm{f}\mathrm{R}(g), so that their support is over g - 1(0) and g - 1(1),
respectively, and every randomized decision tree R satisfies

\mathrm{m}\mathrm{i}\mathrm{n}\{ \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu 0), \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R,\mu 1)\} \geq \mathrm{s}\mathrm{f}\mathrm{R}(g) \cdot \mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(R,\mu 1)). (3)

Next, consider a randomized algorithm A which solves f \circ g to error \epsilon against distributions \mu y

for y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) using at most \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f \circ g) expected queries. We will use algorithm A to define
an algorithm B which solves f when it accesses the input to f with a noisy oracle. The algorithm B
works as follows. Given noisy-oracle query access to an input string y of length n, the algorithm B
creates n instances of the OracleSim protocol. It instantiates each of those protocols using the
distributions \mu 0, and \mu 1. Call these protocol instances \Pi 1,\Pi 2, . . . ,\Pi n. The algorithm B also hooks
up each \Pi i with the noisy oracle for yi. Finally, with these protocols all set up, the algorithm B will
simulate the algorithm A, and whenever A makes an input to bit number j inside the ith copy of
g the algorithm B will feed in query j into \Pi i and then return to A whatever alphabet symbol \Pi i

returns. When A terminates, the algorithm B outputs the output of A.
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We analyze the correctness of B on an arbitrary input y \in \mathrm{D}\mathrm{o}\mathrm{m}(f). We know that A correctly
solves f \circ g on \mu y to error \epsilon . By Lemma 29, the protocols \Pi i act the same as the true oracles. So
the error of B is also at most \epsilon .

Next, we wish to show that the expected cost of the queries B makes on an arbitrary input y is
at most O(\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g)/ \mathrm{s}\mathrm{f}\mathrm{R}(g)). To start, we note that the simulation of A that B runs makes at
most \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g) queries in expectation. Now, for each i, let Ai

y be the algorithm A restricted to
make queries only in the i-th input to g, with all other inputs generated artificially from their fake
oracles; that is, Ai

y is a algorithm acting on only m bits, which sets up n - 1 fake oracles and runs
A on the fake oracles with the true input in place of the i-th oracle. Then the expected number of
queries A makes against \mu y is

\sum n
i=1 \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(A

i
y, \mu yi), so this sum is at most \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g).

We wish to bound the cost of B, which is the expected number of queries all the protocols \Pi i

make to the noisy oracles. By Lemma 32, the expected cost of the noisy queries to the noisy oracle
for yi made by the protocol \Pi i when implementing A is at most C \mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(Ai

y, \mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(A
i
y, \mu 1))

for some constant C, so the total cost of B on \mu y is at most C
\sum n

i=1 \mathrm{h}
2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(Ai

y, \mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(A
i
y, \mu 1)).

Furthermore, by (3), for every i we have

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(Ai
y, \mu yi) \geq \mathrm{s}\mathrm{f}\mathrm{R}(g) \mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(Ai

y, \mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(A
i
y, \mu 1))

and so the expected cost of B is bounded above by

C

n\sum 
i=1

\mathrm{h}2(\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(Ai
y, \mu 0), \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}(A

i
y, \mu 1)) \leq C

1

\mathrm{s}\mathrm{f}\mathrm{R}(g)

n\sum 
i=1

\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(Ai
y, \mu yi) \leq C

\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g)

\mathrm{s}\mathrm{f}\mathrm{R}(g)
.

This shows that
\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f) \leq C

\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}\epsilon (f, g)

\mathrm{s}\mathrm{f}\mathrm{R}(g)
,

as desired.

5.2 Further discussion

Our phrasing of the composition theorem in terms of \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(f, g) highlights the fact that our
composition theorem is distributional : it constructs a hard distribution for f \circ g using a hard
distribution for f and a hard distribution for g. This is not unique to our work; most composition
theorems in the literature seem to be distributional in this way, though this is not usually emphasized.

One interesting thing about distributional composition theorems is that they are not obvious even
when the outer function is trivial. For example, consider the function Trivn, a promise problem on
n bits whose domain is \{ 0n, 1n\} and which maps 0n \rightarrow 0 and 1n \rightarrow 1. We have \mathrm{R}(Trivn) = 1. It
is also immediately clear that \mathrm{R}(Trivn \circ g) = \Omega (\mathrm{R}(g)), because if we give each copy of g the same
input x, computing Trivn \circ g is equivalent to computing g on x. However, this lower bound on
\mathrm{R}(Trivn \circ g) is not distributional! That is to say, the hard distribution implicit in this argument
for Trivn \circ g does not have the form of a hard distribution for Trivn composed with a hard
distribution for g.

Indeed, the question of proving a distributional composition theorem for Trivn \circ g (that is,
the problem of lower bounding \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(Trivn, g)) is what is called the correlated copies problem
in the concurrent work of [BDG+20]. They prove \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(Trivn, g) = \Omega (\mathrm{R}(g)). This is also
matched by our independent composition theorem above, since we show \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{R}(Trivn, g) =
\Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(Trivn)\mathrm{R}(g)) and since \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(Trivn) = \Omega (1) (see Lemma 37).
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6 Characterizing \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)

In this section we characterize \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) as \mathrm{R}(f \circ GapMajn)/n. We also show that in the
non-adaptive setting, \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) and \mathrm{R}(f) are equal up to constant factors.

6.1 Warm-up lemmas

To start, we show that a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) algorithm can always be assumed to use only two bias parameter
settings: either bias 1 or an extremely small bias.

Lemma 36. For any (possibly partial) Boolean function f , there is a randomized algorithm for f
on noisy oracles which has worst-case expected cost O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)), but which only queries its noisy
oracles with parameter either \gamma = 1 or \gamma = \^\gamma (for a single value of \^\gamma > 0 that may depend on f).

Proof. Let A be a noisy oracle algorithm for f with cost at most 2 \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f). Recall that noisy
oracle algorithms are finite probability distributions over finite decision trees, so there are finitely
possible queries to a noisy oracle that A can ever make. Out of those finitely many possible queries,
let \^\gamma be the smallest nonzero bias parameter that A ever uses. We now construct a noisy oracle
algorithm B that only makes queries with bias parameter \gamma = \^\gamma or \gamma = 1.

The algorithm B works by simulating A. If A makes a query to a noisy oracle with parameter
\gamma \in [1/3, 1], the algorithm B simulates this query by using parameter \gamma = 1 instead, and then
artificially adding exactly the right amount of noise to match the behavior of A. The cost B incurs
in making such a query is 1, but the cost that A incurred was at least 1/9, so this is only a factor
of 9 larger. This covers all queries A makes with parameter \gamma \geq 1/3.

If A makes a query with parameter \gamma \in [\^\gamma , 1/3), the algorithm B will make O(\gamma 2/\^\gamma 2) queries
with parameter \^\gamma and take their majority vote. By Lemma 20, this will provide B with a bit \~b that
has bias greater than \gamma towards the true value of the input bit. The algorithm B will then add
additional noise to \~b in order to decrease its bias to precisely \gamma , matching the behavior of A. The
cost incurred by B in this simulation is O(\gamma 2/\^\gamma 2) \cdot \^\gamma 2, which is O(\gamma 2), matching the cost incurred
by A up to a constant factor.

We note that the above lemma also works when f is a relation, and also works for \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f)
for any error parameter \epsilon .

Our next lemma shows that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) is always at least \Omega (1) when f is non-trivial; in particular,
if the input has a sensitive block, a \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) algorithm must make queries of cost \Omega (1) within that
block.

Lemma 37. Let x, y \in \{ 0, 1\} n be strings which differ on the block B \subseteq [n]. Then any noisy oracle
algorithm A which distinguishes x from y with bounded error must, when run on either x or y, make
queries inside B of total expected cost \Omega (1).

In particular, if f is a (possibly partial) Boolean function that is not constant, then \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) =
\Omega (1). This also applies to relations f that have two inputs x, y with disjoint allowed output sets.

Proof. If f is not constant, there exist some x, y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) with f(x) \not = f(y). Any algorithm which
computes f can therefore be used to distinguish x from y with bounded error. Let B \subseteq [n] be the
set of indices i for which xi \not = yi. Then note that any noisy oracle calls to noisy oracles for bits
outside of B do not help in distinguishing x from y. This reduces the second part of the lemma to
the first part.

Suppose we had a noisy oracle algorithm distinguishing x and y to bounded error. Now, up to
possible negation, a noisy oracle call to the i-th bit is equivalent to a noisy oracle call to the j-th
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bit, since either xi = xj and yi = yj , or else xi = 1 - xj and yi = 1 - yj . This means that all noisy
oracle calls may as well be made to a single bit i \in B.

By Lemma 36, we may assume that a noisy oracle algorithm distinguishing x from y makes only
noisy oracle queries with parameter \^\gamma or 1. Let A be such an algorithm, and we assume that A
only ever queries a single bit of the input. If A ever uses noisy oracle query with parameter 1, it
has distinguished x from y with certainty, so we can halt it there without any loss in our success
probability. Next, we can use Lemma 20 to replace the noisy oracle calls with parameter 1 with
O(1/\^\gamma 2) noisy oracle calls of parameter \^\gamma ; doing so decreases the success probability of A by at most
a small additive constant, and changes the cost of A by at most a constant factor.

We’ve reduced to the case where A only makes noisy oracle queries to a single bit of the input,
all with the same parameter \^\gamma . Let T0 be the expected number of such calls A makes when run
on x and let T1 be the expected number of such calls it makes when run on y, so that its expected
cost is T0\^\gamma 

2 and T1\^\gamma 
2 respectively. Assume without loss of generality that T1 \geq T0. We can cut

off the algorithm A if it ever makes more than 10T0 noisy oracle queries, and have A declare that
the input was y; this does not decrease the success probability of A on input y. Also, on input x,
a cutoff happens with probability at most 1/10 (by Markov’s inequality), so this modification it
changes the success probability of A by at most 1/10 on input x. Hence this modified algorithm
still distinguishes x from y to bounded error.

Finally, we can replace A with a non-adaptive algorithm A\prime which makes 10T0 queries to the
oracle with bias \^\gamma all in one batch, and then uses those query answers to simulate a run of A (feeding
them to A as A requests them). At the end, A\prime outputs what A outputs. Then since A distinguishes
x from y with constant probability, so does A\prime , which means that A\prime can be used to take 10T0 bits
of bias \^\gamma and amplify them to a bit of constant bias. However, it should be clear that the best way
to take 10T0 bits of bias \^\gamma and output a single bit with maximal bias is to output the majority of
those bits (this is because if we start with prior 1/2 on whether the bits are biased towards 0 or 1,
the posterior after seeing the 10T0 bits will lean towards the majority of the bits). So the existence
of A\prime ensures we can take 10T0 bits with bias \^\gamma , and their majority will have constant bias.

Finally, by Lemma 20, this means that 10T0 = \Omega (1/\^\gamma 2), which means that the cost of A is \Omega (1),
as desired.

Finally, we prove the following simple lower bound on \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f).

Lemma 38. Let f be a (possibly partial) Boolean function. Then \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (\mathrm{f}\mathrm{b}\mathrm{s}(f)).

Proof. Fix input x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) and sensitive block B \subseteq [n] for f at x. Note that by Lemma 37, any
noisy oracle algorithm A computing f must, on input x, make queries inside B of total expected
cost at least \Omega (1). For each bit i of x, let pi be the total expected cost A makes to the oracle for xi
when run on x. Then we have

\sum 
i\in B pi = \Omega (1) for every sensitive block B for x.

Now suppose A achieves worst-case expected cost O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)), let x be such that \mathrm{f}\mathrm{b}\mathrm{s}x(f) =
\mathrm{f}\mathrm{b}\mathrm{s}(f), and let \{ wB\} be a feasible weighting scheme over sensitive blocks B such that

\sum 
B wB =

\mathrm{f}\mathrm{b}\mathrm{s}x(f). Then for some constant C,

C \cdot \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) \geq 
n\sum 

i=1

pi \geq 
n\sum 

i=1

pi
\sum 

B:i\in B
wB =

\sum 
B

wB

\sum 
i\in B

pi = \Omega 

\Biggl( \sum 
B

wB

\Biggr) 
= \Omega (\mathrm{f}\mathrm{b}\mathrm{s}(f)).

6.2 Characterization in terms of composition with gap majority

We now tackle the task of proving \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Theta (\mathrm{R}(f \circ GapMajn)/n). The core of the proof will
be the following theorem, which states that \^\gamma in Lemma 36 can be taken to be 1/

\surd 
n without loss

of generality.
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Theorem 39. Let f be a (possibly partial) Boolean function on n bits. Then there is a noisy oracle
algorithm for A of worst-case expected cost O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)) which uses only noisy oracle queries with
parameter \gamma = 1/

\surd 
n or \gamma = 1.

This also holds when f is a relation, so long as there are two inputs x, y that have dijoint allowed
output sets.

Proof. By Lemma 36, there is a noisy oracle algorithm A for f of worst-case expected cost at most
O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)) which uses only noisy oracle queries with bias 1 or \^\gamma . We will simulate A with a noisy
oracle algorithm B which uses only parameters 1 or 1/

\surd 
n.

Clearly, we can simulate the bias 1 calls of A with bias 1 calls in B, so we only need to worry
about simulating the parameter \^\gamma calls. If \^\gamma \geq 1/

\surd 
n, we can use multiple noisy oracle calls with

parameter 1/
\surd 
n to simulate one call with parameter \^\gamma using Lemma 20, just like we did in the

proof of Lemma 36. So the only remaining case is where \^\gamma < 1/
\surd 
n. We can also assume f is not

constant, as the theorem is easy when f is constant. For convenience, we will write \gamma in place of \^\gamma 
from now on, and we will let \delta = 1/

\surd 
n > \gamma .

The idea is to use a single call of bias \delta to generate a large number of independent bits of
bias \gamma each. The number of bits generated by one call will itself be random, but we would like its
expectation to be \Omega (\delta 2/\gamma 2).

To achieve this, we note that the sequence of independent bits that a bias-\gamma oracle should return
can be viewed as a random walk on a line, where each 1 bit walks forward and each 0 bit walks
backwards. Let t = \lfloor \delta /5\gamma \rfloor , and imagine placing a mark on the line every t steps in both directions;
that is, positions 0, t, - t, 2t, - 2t, 3t, - 3t, . . . will all be marked. Note that if the random walk is
currently at one marked point at for some integer a, then with probability 1, it will eventually reach
either (a - 1)t or (a+ 1)t. We generate sequences of steps in batches: starting from position at, we
generate bits until either position (a+ 1)t or (a - 1)t is reached.

To generate such a batch of bits, we first generate a single bit of from the noisy oracle of bias \delta ,
and add a small amount of noise to it to decrease its bias to \delta \prime (to be chosen later). If this bit comes
out 0, we generate a sequence of bits of bias \gamma conditioned on this sequence reaching (a - 1)t before
it reaches (a+ 1)t; alternatively, if the bit is 1, we generate a sequence of bits of bias \gamma conditioned
on this sequence reaching (a+ 1)t before it reaches (a - 1)t.

The first crucial observation is that the distributions of these sequences are the same whether
the bias \gamma is in the 0 direction or the 1 direction; that is, conditioned on reaching (a+ 1)t before
reaching (a - 1)t, the probability of each sequence of steps is identical in the case where the bias is
\gamma and in the case where the bias is  - \gamma . To see this, pick any such sequence of steps; say there are w
steps forward and z steps back, with w  - z = t. The probability of exactly this sequence occurring
is exactly \biggl( 

1 + \gamma 

2

\biggr) w \biggl( 1 - \gamma 

2

\biggr) z

=

\biggl( 
1 - \gamma 2

4

\biggr) z \biggl( 
1 + \gamma 

2

\biggr) t

if the bias is \gamma , and exactly \biggl( 
1 - \gamma 2

4

\biggr) z \biggl( 
1 - \gamma 

2

\biggr) t

if the bias is  - \gamma . Hence the ratio between the probability under bias \gamma and under bias  - \gamma is always

R :=
\Bigl( 
1+\gamma 
1 - \gamma 

\Bigr) t
, which is independent of the sequence of steps. In other words, for every sequence

of steps that ends up at (a+ 1)t, that sequence is exactly R times more likely when the bias is \gamma 
compared to when it is  - \gamma . This means that when we condition on some subset of sequences that
all reach (a+ 1)t, the conditional probability will be the same regardless of whether the bias is \gamma or
 - \gamma .
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Now, what is the probability of reaching (a+ 1)t before reaching (a - 1)t? If this probability is
p when the bias is  - \gamma , then it is R \cdot p when the bias is \gamma . By symmetry, the probability of reaching
(a  - 1)t before (a + 1)t will be R \cdot p when the bias is  - \gamma and p when the bias is \gamma . Since the
probability of never reaching either of (a - 1)t or (a+ 1)t is 0, we must therefore have p+Rp = 1,
or p = 1/(R+ 1). That is, the probability of reaching the threshold in the direction the bias points
towards is R/(R+1), and the probability of reaching the threshold in the other direction is 1/(R+1),

where R =
\Bigl( 
1+\gamma 
1 - \gamma 

\Bigr) t
.

We pick \delta \prime so that the probability of a single bit of bias \delta \prime being correct is exactly R/(R + 1),
and the probability the bit is wrong is 1/(R + 1). To do so, we set (1  - \delta \prime )/2 = 1/(1 + R), or
\delta \prime = (R - 1)/(R+ 1). It next will be useful to place some bounds on R.

It is not hard to check using elementary calculus that (1+2\gamma /(1 - \gamma ))t \geq 1+2\gamma t holds whenever
t \geq 1 and \gamma \in (0, 1). We therefore have R \geq 1 + 2\gamma t. Note that t = \lfloor \delta /5\gamma \rfloor > \delta /5\gamma  - 1 and that
\delta /\gamma > 10; this means t > \delta /10\gamma , so R \geq 1 + \delta /5.

In the other direction, note that

\mathrm{l}\mathrm{n}R = t(\mathrm{l}\mathrm{n}(1 + \gamma ) - \mathrm{l}\mathrm{n}(1 - \gamma )) = 2t(\gamma + \gamma 3/3 + \gamma 5/5 + . . . ) \leq 2t\gamma /(1 - \gamma 2)).

Using \gamma < 1/10, we have \mathrm{l}\mathrm{n}R < (5/2)t\gamma , or R \leq e(5/2)t\gamma . Note that for all x \in [0, 1/2], we have

ex \leq 1 + 2x.

Since t \leq \delta /5\gamma , we have (5/2)t\gamma < \delta /2 \leq 1/2, so we have R \leq e(5/2)t\gamma \leq e\delta /2 \leq 1 + \delta . Hence
(R - 1)/(R+ 1) = 1 - 2/(R+ 1) is at least 1 - 2/(2 + \delta /5) = 1 - 1/(1 + \delta /10) \geq \delta /5 and at most
1 - 2/(2 + \delta ) = 1 - 1/(1 + \delta /2) \leq \delta /2. Thus our choice of \delta \prime is smaller than \delta but within a constant
factor of \delta , so we can easily convert from a bit of bias \delta to a bit of bias \delta \prime by adding noise.

In summary, we can generate a random walk of bias \gamma by first generating the sequence of marked
spots (i.e. multiples of t) that this sequence visits as a random walk of bias \delta \prime , and then generating
the sequence of steps that get from a given multiple of t to the subsequent one from the conditional
distribution (which turns out to be the same distribution regardless of whether the bias is \gamma or  - \gamma ).
This reproduces the correct distribution over random walks except for probability mass of 0 (in the
cases where the random walk “gets stuck” between at and (a+ 1)t forever), and probability mass 0
does not matter to us as our algorithm is finite.

The above is a valid way of simulating noisy oracle calls to bias \gamma using noisy oracle calls to bias
\delta > \gamma . What remains is to analyze the cost of this procedure. Note that the expected number of
steps of bias \gamma taken from at until either (a - 1)t or (a+ 1)t is reached is (by [Fel57], section XIV.3,
page 317) exactly

t

\gamma 

\biggl( 
1 - 2(1 - \gamma )t

(1 + \gamma )t  - (1 - \gamma )t

(1 + \gamma )2t  - (1 - \gamma )2t

\biggr) 
.

We now lower bound this. Note that (1 + \gamma )2t  - (1 - \gamma )2t \geq 4\gamma t, and that

(1 + \gamma )t  - (1 - \gamma )t = 2(

\biggl( 
t

1

\biggr) 
\gamma +

\biggl( 
t

3

\biggr) 
\gamma 3 + . . . ) \leq 2(\gamma t+ \gamma 3t3 + . . . ) \leq 2\gamma t/(1 - \gamma 2t2).

Also, (1 - \gamma )t \leq 1 - \gamma t. Hence the expectation is at least

t

\gamma 

\biggl( 
1 - 1 - \gamma t

1 - \gamma 2t2

\biggr) 
=

t2

1 + \gamma t
\geq t2

1 + \delta /5
\geq \delta 2

120\gamma 2
.

In other words, for each call to the oracle of bias \delta (which costs us \delta 2), we expect to generate at
least \delta 2/120\gamma 2 random bits of bias \gamma (which cost the old algorithm \gamma 2 each). This is exactly what
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we need, except for two issues: first, we only generate this many bits on expectation; sometimes we
generate less. We have to do the analysis carefully to account for this. Second, to generate a single
bit of bias \gamma still requires us to query the noisy oracle with bias \delta and pay the full \delta 2; in other words,
we do not necessarily have the ability to amortize this cost. This can happen once per bit.

To analyze the total expected cost, we start by generating one bit of bias \delta for each of the n
input positions, and using those bits to initiate random walks that reach t or  - t. The cost of this
initiation phase is n\delta 2 = 1 (since \delta = 1/

\surd 
n). Thereafter, we only query the noisy oracle of bias

\delta when necessary, that is, when we run out of the artificially-generated \gamma -biased bits. The total
expected cost of this procedure is the sum of the expected cost for each of the n input positions, so
we analyze the cost of a single input position.

For such a position, what happens is that a walk of bias \gamma is generated, and then cut off in a way
that can depend on the walk so far as well as on independent randomness. We know the expected
number of steps before cutting off is Ti (where

\sum 
i Ti = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)/\gamma 2)), and we wish to bound

the expected number of bits of bias \delta we must generate to simulate this sequence – which means
we must bound the expected number of times the walk crossed a point which is a multiple of t (not
counting the same multiple of t if it occurs twice in a row). But each time we reach a multiple of t,
it is effectively as if we start back at 0.

In other words, let X be the random variable for the number of steps it takes to reach t or  - t
starting at 0 (with bias \gamma ). We know that \BbbE [X] = \mu , where \mu \geq \delta 2/120\gamma 2. We play the following
game: we add up independent copies of X, which we label X1, X2, . . . , and we stop adding them by
some stopping rule L where L is a random variable that can depend on X1, X2, . . . , XL - 1 (but not
on Xt for t \geq L). We know that \BbbE [

\sum L
\ell =1X\ell ] \leq Ti, and we wish to upper bound \BbbE [L] by Ti/\mu . This

is what’s known as Wald’s equation, which can be shown as follows (using It to denote the indicator
random variable with It = 0 if t > L and It = 1 otherwise):

\BbbE 

\Biggl[ 
L\sum 

t=1

Xt

\Biggr] 
= \BbbE 

\Biggl[ \infty \sum 
t=1

XtIt

\Biggr] 
=

\infty \sum 
t=1

\BbbE [XtIt] =

\infty \sum 
t=1

\mathrm{P}\mathrm{r}[It = 1]\BbbE [Xt| It = 1] =

\infty \sum 
t=1

\mathrm{P}\mathrm{r}[L \geq t]\BbbE [Xt] = \mu \BbbE [L].

This line crucially uses the fact that \BbbE [Xt| L \geq t] = \BbbE [Xt], which holds because L depends only
on X1, X2, . . . , XL - 1 but not on XL. Thus we have Ti \geq \BbbE [L]\mu , or \BbbE [L] \leq Ti/\mu . Hence the
expected number of queries to the \delta -biased oracle is Ti/\mu , and summing over all i, it is at most
O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)/\gamma 2\mu ) = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)/\delta 2).

The final cost of the algorithm is therefore O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)) + 1. Since \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Omega (1), this is
O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)), as desired.

We now prove Theorem 4, showing that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = \Theta (\mathrm{R}(f \circ GapMajn)/n) for every (possibly
partial) Boolean functions f , where n is the input size of f . We note that this theorem also holds
for relations: we have

\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}\epsilon (f) = \Theta (\mathrm{R}\epsilon (f \circ GapMajn)/n)

for any constant \epsilon 1 and for any relation f that has two inputs x, y with disjoint allowed output sets.
In one direction, this follows via Theorem 3: we have

\mathrm{R}(f \circ GapMajn) = \Omega (\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)\mathrm{R}(GapMajn)),

and \mathrm{R}(GapMajn) = \Omega (n) by Lemma 26. Hence \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) = O(\mathrm{R}(f \circ GapMajn)/n), even for
relations f (since Theorem 3 holds for relations).

1recall that relations cannot be amplified, so \epsilon matters.
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In the other direction, fix a function or relation f . By Theorem 39, there is some noisy oracle
algorithm A with worst-case expected cost O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)) that computes f using only noisy oracle
calls with parameter 1 or 1/

\surd 
n. We can easily turn this into an algorithm for f \circ GapMajn

whose cost is O(n) times larger: a noisy oracle call with parameter 1 to a bit xi of the input to f
will be implemented by querying the entire GapMajn gadget at that position, incurring a cost
of n instead of 1. On the other hand, a noisy oracle call with parameter 1/

\surd 
n to bit xi will be

implemented by querying a single, random bit of the corresponding GapMajn input. This will
incur cost 1 instead of cost 1/n. Note that the bias of a single query to the GapMajn input might
be slightly different than 1/

\surd 
n due to rounding. If it’s slightly larger, we can simply add noise to

get bias exactly 1/
\surd 
n. If it’s slightly smaller, we can query several bits independently at random in

order to amplify the bias slightly, reducing to the case where the bias is slightly larger than 1/
\surd 
n.

This costs only a constant factor overhead. We conclude that A can be converted to an algorithm
solving \mathrm{R}(f \circ GapMajn) which makes O(n \cdot \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)) queries, as desired.

6.3 The non-adaptive case

We now turn to the non-adaptive setting, in order to show that in that setting, \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f) becomes
equal to \mathrm{R}(f).

Definitions

First, we properly define the non-adaptive complexity measures \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) and \mathrm{R}na(f). To start,
a deterministic non-adaptive algorithm is a subset S \subseteq [n] together with a map \alpha : \{ 0, 1\} S \rightarrow \{ 0, 1\} ;
when we apply such an algorithm (S, \alpha ) to an input x \in \{ 0, 1\} n, the output will be \alpha (xS), where
xS denotes the string x restricted to the positions in S \subseteq [n]. The cost of (S, \alpha ) will be | S| .

A randomized non-adaptive algorithm will then simply be a probability distribution over deter-
ministic non-adaptive algorithms, and for such a randomized algorithm R we will let \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R) be the
expectation of | S| and we will let \mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}(R) be the maximum value of | S| for (S, \alpha ) in the support
of R. We let R(x) denote the random variable which takes value \alpha (xS) when (S, \alpha ) is sampled from
R, and we will say R computes f to worst-case error \epsilon if \mathrm{P}\mathrm{r}[R(x) \not = f(x)] \leq \epsilon for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f).
Then \mathrm{R}na

\epsilon (f) will be the minimum height of a non-adaptive randomized algorithm computing f ,
and \mathrm{R}na

\epsilon (f) will be the minimum worst-case cost of such an algorithm. As usual, we omit \epsilon when it
equals 1/3, and we note that \mathrm{R}na(f) = \Theta (\mathrm{R}na(f)) due to Markov’s inequality.

A \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) algorithm will also be a probability distribution over pairs (S, \alpha ), but this time S
will contain a multiset of noisy queries instead of a set of queries. The multiset S will contain pairs
(i, \gamma ) where i \in [n] and \gamma \in (0, 1]; each such pair represents a query to the noisy oracle for xi with
parameter \gamma . We will require the multiset S to be finite, and we will also require the probability
distribution over pairs (S, \alpha ) to have finite support. A single query (i, \gamma ) will have cost \gamma 2, the
cost of S will be the sum of the costs of its elements, and the cost of a noisy algorithm will be
the expected cost of S for over pairs (S, \alpha ) sampled from the algorithm. The output of such an
algorithm R on input x, denoted R(x), will be the random variable corresponding to sampling (S, \alpha )
from R, making noisy queries to x as specified by S, and applying the Boolean function \alpha to the
result of those queries. We say R computes f to error \epsilon if \mathrm{P}\mathrm{r}[R(x) \not = f(x)] \leq \epsilon for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f).
We define \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na

\epsilon (f) to be the infimum of \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}(R) over noisy non-adaptive algorithms R which
compute f to error \epsilon ; when \epsilon = 1/3, we omit it.

32



Some simplifications

We observe that we can simplify \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) substantially. First, we can remove pairs (S, \alpha ) from
the domain of a noisy non-adaptive algorithm R if the cost of S is larger than 10 times the cost
of R; using Markov’s inequality, this only changes the error of R by an additive 1/10, and we can
amplify this back to error 1/3. This means the worst-case and expected versions of \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)
are equivalent up to constant factors. Second, we can add an additional query to each bit with bias
1/
\surd 
n; this only increases the cost of the algorithm by an additive n \cdot (1/

\surd 
n)2 = 1. We observe

that by Lemma 37 we have \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) = \Omega (1), so this increase by an additive 1 is only a constant
factor increase. Next, inside each multiset S of queries, we can combine all the queries to bit i into
a single noisy query with a larger bias parameter, so that the algorithm only makes at most one
noisy query to each bit i; furthermore, for each i, the bias parameter will be at least 1/

\surd 
n.

Finally, using arguments from Lemma 36, we can assume the noisy non-adaptive algorithm
queries each bit with bias parameter either 1/

\surd 
n or 1. If the total cost of this noisy non-adaptive

algorithm is T , then it makes at most T exact queries (with bias 1) and at most nT noisy queries with
parameter 1/

\surd 
n. Hence we can split S into A and B, where A \subseteq [n] is a set of size T representing

exact queries and B is a multiset of elements from [n] of size nT representing noisy queries (with
bias 1/

\surd 
n). In other words, \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) is (up to constant factors) the minimum positive integer

T such that there is a probability distribution R over (A,B, \alpha ) with | A| = T and | B| = nT which
computes f to error 1/3, where the output R(x) is generated by sampling (A,B, \alpha ), querying the
T bits in A, making noisy queries of bias 1/

\surd 
n to the nT bits in B, feeding the results to \alpha , and

returning the bit \alpha returns.

Switching to the distributional setting

In order to prove Theorem 8, which states that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) = \mathrm{R}na(f) for partial Boolean functions,
we start with the following minimax lemma for non-adaptive algorithms.

Lemma 40. Let f be a (possibly partial) Boolean function. Then there is a distribution \mu over
\mathrm{D}\mathrm{o}\mathrm{m}(f) such that any randomized non-adaptive algorithm R with \mathrm{h}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}(R) < \mathrm{R}na

\epsilon (f) must make
average error greater than \epsilon when run on inputs from \mu .

Proof. This follows from a standard minimax argument dualizing across the error. That is, let \scrR 
be the set of all randomized non-adaptive algorithms with height less than \mathrm{R}na

\epsilon (f), and let \Delta be
the set of all probability distributions over \mathrm{D}\mathrm{o}\mathrm{m}(f). Then a standard minimax theorem gives

\mathrm{m}\mathrm{i}\mathrm{n}
R\in \scrR 

\mathrm{m}\mathrm{a}\mathrm{x}
\mu \in \Delta 

\mathrm{P}\mathrm{r}
x\sim \mu 

[R(x) \not = f(x)] = \mathrm{m}\mathrm{a}\mathrm{x}
\mu \in \Delta 

\mathrm{m}\mathrm{i}\mathrm{n}
R\in \scrR 

\mathrm{P}\mathrm{r}
x\sim \mu 

[R(x) \not = f(x)],

since \mathrm{P}\mathrm{r}x\sim \mu [R(x) \not = f(x)] is bilinear as a function of \mu and of R. The left hand side is the worst-case
error of randomized non-adaptive algorithms of height less than \mathrm{R}na

\epsilon (f), which must be strictly
greater than \epsilon . The right hand side then provides a distribution \mu which is hard for all randomized
algorithms of small height.

We use this minimax lemma to switch to the distributional setting. That is, we consider a noisy
non-adaptive algorithm R that succeeds in the worst case, and show that for any fixed distribution
\mu , we can convert R into a non-noisy non-adaptive algorithm R\prime which has similar cost to R and
computes f to bounded error against \mu . Taking \mu to be the hard distribution from Lemma 40 will
then give \mathrm{R}na(f) = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}(f)).
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Defining a clean algorithm from a noisy one

Let R be a noisy non-adaptive algorithm which makes T exact queries and nT noisy queries, with
T = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)), and computes f to error 1/1000. Since R computes f to error 1/1000 in
the worst case, it also computes f to error 1/1000 against inputs from \mu ; this means there is some
deterministic (A,B, \alpha ) in the support of R which also computes f to error at most 1/1000 against
\mu .

We will now define a non-adaptive randomized algorithm R\prime as follows: R\prime queries all the bits in
A, and in addition queries each bit in the multiset B with probability 1/n (sampled independently).
Then R\prime computes the posterior distribution \mu \prime defined by starting with prior \mu and doing a Bayesian
update on the bits R\prime has seen; if \mu \prime has more probability mass on 1-inputs than 0-inputs of f , R\prime 

then outputs 1, otherwise R\prime outputs 0.
It’s easy to see that R\prime is a non-adaptive randomized algorithm with expected number of queries

equal to | A| + | B| /n = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)). It remains to show that R\prime computes f against \mu to small
error, say 1/10; then we can remove from the support of R\prime the query sets that are larger than 10
times the expectation, and get a randomized algorithm R\prime \prime which uses O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)) worst-case
queries and still makes error at most 1/10 + 1/10 < 1/3 against \mu . By the definition of \mu , this
implies that \mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) = \Omega (\mathrm{R}na(f)), as desired.

Rephrasing the error analysis in terms of noisy channels

To analyze the error that R\prime makes against \mu , we first make the following modification to the strings
under consideration. For each x \in \mathrm{D}\mathrm{o}\mathrm{m}(f), we define the string \^x as the string of length mT + nT
whose first mT bits are the bits of x from A copied m times each, and whose next nT bits are the
bits of x from the multiset B (this will require duplicating bits of x and rearranging them). Since
A \cup B contains all bits of x at least once, the resulting string \^x uniquely determines the original
string x (but has many of its bits duplicated multiple times). We can therefore modify the function
f to get \^f such that \^f(\^x) = f(x), and modify \mu to get \^\mu over the modified strings. Note that each
non-adaptive randomized algorithm on the original strings x can be modified to work on the strings
\^x, and vice versa. This also works for noisy randomized algorithms. The parameter m will be chosen
to be much larger than n.

We wish to argue that R\prime has high success probability, using the fact that R has good success
probability. We note that since R succeeds with good probability, we can compute \^f against \^\mu simply
by making one noisy query to each bit of the input \^x, with parameter 1/

\surd 
n each. In other words, if

X is the random variable with probability distribution \^\mu , let N\gamma (\cdot ) denote the noisy channel where
each bit of the string gets flipped with independent probability (1  - \gamma )/2. Then we can compute
\^f(X) by observing only Y = N1/

\surd 
n(X). To do so, we first compute the bits in A using Y : for each

bit in A, we receive m noisy versions of it sampled independently with bias 1/
\surd 
n each. Taking a

majority vote of these noisy versions, and assuming m is much larger than n, we get an estimate
for each bit in A which has error probability as small as we’d like. Afterwards, we use these bits
in A, combined with the noisy bits in B, and apply \alpha to get an estimate of f(x) = \^f(X). The
original error probability of \alpha (against \mu ) was 1/1000; by picking m large enough, we can get this
new protocol to have error probability at most 1/999. In other words, we have a function \beta such
that \mathrm{P}\mathrm{r}[\beta (Y ) \not = \^f(X)] \leq 1/999, where Y = N1/

\surd 
n(X).

Switching from error probability to relative entropy

This gave us a noisy channel way to express the success probability of R. We now express the
success probability of R\prime in terms of an erasure channel. That is, let E\gamma (X) denote the channel that
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replaces each bit of X with \ast except with independent probability \gamma . Consider the string E1/n(X).
This string erases each bit of X with probability 1  - 1/n, and keeps it with probability 1/n. For
each bit that was originally in A, there are m copies of this bit in X, so the probability that all the
copies get erased can be made arbitrarily small (by picking m large enough). On the other hand,
each bit that was originally in the multiset B is only kept with probability 1/n. Hence the string
Z = E1/n(X) has distribution arbitrarily close to the distribution of queries made by R\prime against \mu \prime .
Therefore, it suffices to prove that \mathrm{P}\mathrm{r}[\beta \prime (Z) \not = \^f(X)] < 1/11 where \beta \prime is the function that selects
the best Bayesian guess for \^f(X) given observation Z = E1/n(X).

We now use the following lemma to rephrase our goal in information-theoretic terms.

Lemma 41. For any random variables X and Y on supports \scrX and \scrY respectively, and for any
functions f : \scrX \rightarrow \{ 0, 1\} and \beta : \scrY \rightarrow \{ 0, 1\} , we have

H(f(X) | Y ) \leq h
\bigl( 
\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y )]

\bigr) 
.

Moreover, for all such X, Y , and f , there exists a function \beta such that

2\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y )] \leq H(f(X) | Y ),

where h is the binary entropy function. In particular, \beta can be chosen to be the Bayesian posterior
function for guessing f(X) using Y .

The upper bound is a special case of Fano’s inequality, and the lower bound was established by
Hellman and Raviv [HR70]. We include the (easy) proof of the lemma for completeness.

Proof. Using Jensen’s inequality,

H(f(X) | Y ) = \BbbE 
y

\bigl[ 
h(\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y ) | Y = y])

\bigr] 
\leq h

\bigl( 
\BbbE 
y
[\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y ) | Y = y]]

\bigr) 
= h

\bigl( 
\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y )]

\bigr) 
.

In the other direction, using the fact that 2x \leq h(x) for each 0 \leq x \leq 1
2 , we have

2\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y )] = \BbbE 
y

\bigl[ 
2\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y ) | Y = y]

\bigr] 
\leq \BbbE 

y

\bigl[ 
h(\mathrm{P}\mathrm{r}[f(X) \not = \beta (Y ) | Y = y])

\bigr] 
= \BbbE 

y

\bigl[ 
h(\mathrm{P}\mathrm{r}[f(X) = 1 | Y = y])

\bigr] 
= H(f(X) | Y ).

Note that in the second line, we used \mathrm{P}\mathrm{r}[f(X) \not = \beta (Y ) | Y = y] \leq 1/2, which follows from our choice
of \beta .

Using this lemma, we get that H( \^f(X) | Y ) \leq h(1/999) \leq 1/87 where Y = N1/
\surd 
n(X), and we

wish to show that H( \^f(X) | Z) \leq 1/22, where Z = E1/n(X). In particular, it suffices to show that
H( \^f(X) | Z) \leq H( \^f(X) | Y ).
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Appealing to a theorem of Samorodnitsky

To finish the proof, all we need is a special case of an inequality of Samorodnitsky [Sam16] established
by Polyanskiy and Wu [PW17]. (See Appendix B for more details.)

Theorem 42 (Samorodnitsky [Sam16; PW17]). For any function f : \{ 0, 1\} n \rightarrow \{ 0, 1, \ast \} , any
distribution \mu on f - 1(0) \cup f - 1(1), and any 0 \leq \rho \leq 1, variables X \sim \mu , Y \sim N\rho (X), and
Z \sim E\rho 2(X) satisfy

H(f(X) | Y ) \geq H(f(X) | Z).

This theorem says that adding noise (leaving bias \rho ) to X preserves more information than
erasing (leaving the bit untouched with probability \rho 2). It is exactly what we need to complete
the proof, showing that \mathrm{R}na(f) = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)) for all partial functions f . (The other direction,
\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f) \leq \mathrm{R}na(f), follows directly from the definitions.)

As previously noted, this result \mathrm{R}na(f) = O(\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{R}na(f)) is false when f is a relation. The
step that fails is the step where we switched from error probability to relative entropy, in Lemma 41;
this step has no clear analogue for relations.
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A Amplifying small biases

In this appendix, we prove Lemma 20, which we restate below.

Lemma 20 (Small bias amplification). Let \gamma \in [ - 1/3, 1/3] be nonzero, and let k be an odd positive
integer which is at most 1/\gamma 2. Let X be the Boolean-valued random variable we get by generating
k independent bits from \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}((1 + \gamma )/2) and setting X to their majority vote. Then X has
distribution \mathrm{B}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{i}((1 + \gamma \prime )/2), where \gamma \prime \in [ - 1, 1] has the same sign as \gamma and

(1/3)
\surd 
k| \gamma | \leq | \gamma \prime | \leq 3

\surd 
k| \gamma | .

To prove this lemma, we will require bounds on the mean absolute deviation of the binomial
distribution with parameter p = 1/2. Recall that the mean absolute deviation is the expectation of
| X  - \BbbE [X]| , where X is a random variable (which for us will have a binomial distribution).

Lemma 43. The mean absolute deviation Mk of the binomial distribution with parameters k and
1/2 (where k is an odd integer) satisfies\sqrt{} 

k

2\pi 
\leq Mk \leq 

\sqrt{} 
k

2\pi 

\biggl( 
1 +

1

k

\biggr) 
.

Proof. A closed form expression for the mean absolute deviation of the binomial distribution with
parameters 1/2 and k (where k is odd) is known (see, for example, [DZ91]):

Mk = 2 - k

\biggl( 
k + 1

2

\biggr) \biggl( 
k

(k  - 1)/2

\biggr) 
.

To prove the result, we only need to bound the binomial coefficient above sufficiently accurately. We
know that \biggl( 

k

(k  - 1)/2

\biggr) 
= rk

\sqrt{} 
2

\pi k
2k,

where rk is an error term close to 1. To prove the desired bounds, we need only show that rk \geq 
k/(k + 1) and rk \leq 1.

From [Sta01] (Corollary 2.4, setting n = 1, m = k, p = (k  - 1)/2), we get

rk = \alpha k

\biggl( 
1 +

1

k2  - 1

\biggr) k/2\biggl( 
1 - 1

k + 1

\biggr) 
,

where \alpha k satisfies

e1/12k - 1/(6k - 6) - 1/(6k+6) < \alpha k < e1/12k - 1/(6k - 5) - 1/(6k+7).

Note that using k \geq 3, we get \alpha k > e - 7/24k > e - 1/3k, and for all k \geq 7 (as well as checking k = 3, 5
by hand) we get \alpha k < e - 1/4k. Using ex/(1+x) < 1 + x, we get the lower bound

rk > e - 7/24ke1/2ke - 1/k = e - 19/24k > 1 - 19/24k > 1 - 5/6k = 1 - 1/(k + k/5) \geq 1 - 1/(k + 1)

assuming k \geq 5. For k = 3, we can calculate r3 and check it is larger than 3/4, so rk > k/(k + 1)
for all k \geq 3.

For the upper bound, we use k \geq 3 to get

rk < e - 1/4e9/16ke - 3/4k = e - 7/16k < 1.

Finally, the case k = 1 can be verified directly, as Mk = 1/2 in that case.
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Next, we note that it is clear \gamma \prime and \gamma have the same sign, and that the cases \gamma > 0 and \gamma < 0
are symmetric. For this reason, we can restrict to the \gamma > 0 case without loss of generality. We note
that \gamma \prime is the probability of X = 1 minus the probability of X = 0, so we have

\gamma \prime =
k\sum 

i=(k+1)/2

\biggl( 
k

i

\biggr) \biggl( 
1 + \gamma 

2

\biggr) i\biggl( 1 - \gamma 

2

\biggr) k - i

 - 
(k - 1)/2\sum 

i=0

\biggl( 
k

i

\biggr) \biggl( 
1 + \gamma 

2

\biggr) i\biggl( 1 - \gamma 

2

\biggr) k - i

=

(k - 1)/2\sum 
i=0

\biggl( 
k

i

\biggr) \Biggl[ \biggl( 
1 + \gamma 

2

\biggr) k - i\biggl( 1 - \gamma 

2

\biggr) i

 - 
\biggl( 
1 + \gamma 

2

\biggr) i\biggl( 1 - \gamma 

2

\biggr) k - i
\Biggr] 

= 2 - k

(k - 1)/2\sum 
i=0

\biggl( 
k

i

\biggr) 
(1 - \gamma 2)i[(1 + \gamma )k - 2i  - (1 - \gamma )k - 2i].

A.1 The lower bound

Note that (1 + \gamma )x  - (1  - \gamma )x \geq 2\gamma x for all \gamma \in [0, 1/3] and all positive integer x. To see this,
observe that they are equal when \gamma = 0, and the derivative of the left hand side (with respect to \gamma )
is x(1+\gamma )x - 1+x(1 - \gamma )x - 1, which we just need to show is larger than 2x for positive integer x. This
clearly holds for x = 1 and x = 2, so suppose x \geq 3. It suffices to show (1+\gamma )x - 1 - 1 \geq 1 - (1 - \gamma )x - 1.
The two sides are equal at \gamma = 0, and when \gamma > 0, the derivative of the left is larger than that of
the right. Hence the inequality holds.

Together with (1 - \gamma 2)i \geq (1 - \gamma 2)k/2 \geq 1 - k\gamma 2/2, this gives us

\gamma \prime \geq 21 - k(1 - k\gamma 2/2)\gamma 

(k - 1)/2\sum 
i=0

\biggl( 
k

i

\biggr) 
(k  - 2i) = 2\gamma Mk(1 - k\gamma 2/2).

Using Mk \geq 
\sqrt{} 

k/2\pi , we get

\gamma \prime \geq 
\sqrt{} 

2

\pi 

\surd 
k\gamma (1 - \gamma 2k/2).

Finally, since k \leq 1/\gamma 2, we get

\gamma \prime \geq 1\surd 
2\pi 

\surd 
k\gamma \geq 1

3

\surd 
k\gamma .

A.2 The upper bound

We have for any real number a between 0 and (k  - 1)/2,

\gamma \prime \leq 2 - k
a\sum 

i=0

\biggl( 
k

i

\biggr) 
(1 - \gamma 2)i[(1+\gamma )k - 2i - (1 - \gamma )k - 2i]+2 - k

(k - 1)/2\sum 
i=a

\biggl( 
k

i

\biggr) 
(1 - \gamma 2)i[(1+\gamma )k - 2i - (1 - \gamma )k - 2i],

where if a is not an integer the former sum ends at its floor and the latter starts at its ceiling. We
upper bound these two sums separately (and choose a later). Denote the first sum by S1 and the
second by S2.

For S1 we omit the (1 - \gamma )k - 2i term and simplify, writing

S1 \leq 
a\sum 

i=0

\biggl( 
k

i

\biggr) \biggl( 
1 - \gamma 

2

\biggr) i\biggl( 1 + \gamma 

2

\biggr) k - i

.
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This is the probability that a Binomial random variable with parameters (1 - \gamma )/2 and k is at most
a. Using the Chernoff bound, we get

S1 \leq e - ((1 - \gamma )k - 2a)2/2.

To upper bound S2, we bound (1 - \gamma 2)i by 1, and we write

(1 + \gamma )k - 2i  - (1 - \gamma )k - 2i =

(k - 1)/2 - i\sum 
\ell =0

\biggl( 
k  - 2i

2\ell + 1

\biggr) 
2\gamma 2\ell +1 \leq 2\gamma (k  - 2i)

(k - 1)/2 - i\sum 
\ell =0

(\gamma (k  - 2i))2\ell 

(2\ell + 1)!

\leq 2\gamma (k  - 2i)

(k - 1)/2 - i\sum 
\ell =0

(\gamma (k  - 2i))2\ell 

\ell ! 6\ell 
\leq 2\gamma (k  - 2i)e\gamma 

2(k - 2i)2/6.

Hence we have

S2 \leq 2\gamma e\gamma 
2(k - 2a)2/621 - k

(k - 1)/2\sum 
i=a

\biggl( 
k

i

\biggr) \biggl( 
k

2
 - i

\biggr) 
.

Note that

21 - k

(k - 1)/2\sum 
i=a

\biggl( 
k

i

\biggr) \biggl( 
k

2
 - i

\biggr) 
\leq 21 - k

(k - 1)/2\sum 
i=0

\biggl( 
k

i

\biggr) \biggl( 
k

2
 - i

\biggr) 
= Mk \leq 

\sqrt{} 
k

2\pi 

\biggl( 
1 +

1

k

\biggr) 
\leq (3/5)

\surd 
k

for k \geq 3. Thus, for k \geq 3, we have

\gamma \prime = S1 + S2 \leq e - ((1 - \gamma )k - 2a)2/2 + (6/5)\gamma 
\surd 
ke\gamma 

2(k - 2a)2/6.

Recall that a was arbitrary. Picking a = (1  - \gamma )k/2  - 
\sqrt{} 
(1/2) \mathrm{l}\mathrm{n}(1/\gamma ) will cause the first term

above to be equal to \gamma . The second term to become (6/5)
\surd 
k\gamma times e\gamma 

2(\gamma k+
\surd 

2 \mathrm{l}\mathrm{n}(1/\gamma ))2/6. Using
(y+z)2 \leq 2y2+2z2, this last part is at most e(\gamma 4k2+2\gamma 2 \mathrm{l}\mathrm{n}(1/\gamma ))/3. Using \gamma 4k2 \leq 1 and 2\gamma 2 \mathrm{l}\mathrm{n}(1/\gamma ))/3 \leq 
(2 \mathrm{l}\mathrm{n} 3)/27, this expression evaluates to at most 1.6, and we get

\gamma \prime \leq \gamma + 2
\surd 
k\gamma \leq 3

\surd 
k\gamma .

B On Samorodnitsky’s theorem

Theorem 42 as stated in Section 6.3 is not found explicitly in [Sam16] but it follows directly from
the following variant of the theorem as established by Polyanskiy and Wu [PW17].

Theorem 44 (Theorem 20 in [PW17]). Consider the Bayesian network

U \rightarrow Xn \rightarrow Y n,

where PY n| Xn =
\prod n

i=1 PYi| Xi
is a memoryless channel with \eta i := \eta \mathrm{K}\mathrm{L}(PYi| Xi

). Then we have

I(U ;Y n) \leq I(U ;XS | S) = I(U ;XS , S),

where S \bot \bot (U,Xn, Y n) is a random subset of [n] generated by independently sampling each element
i with probability \eta i.

For completeness, we show how Theorem 44 implies Theorem 42, restated below.
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Theorem 42 (Samorodnitsky [Sam16; PW17]). For any function f : \{ 0, 1\} n \rightarrow \{ 0, 1, \ast \} , any
distribution \mu on f - 1(0) \cup f - 1(1), and any 0 \leq \rho \leq 1, variables X \sim \mu , Y \sim N\rho (X), and
Z \sim E\rho 2(X) satisfy

H(f(X) | Y ) \geq H(f(X) | Z).

Proof. Fix any partial function f : \{ 0, 1\} n \rightarrow \{ 0, 1, \ast \} , any distributions \mu 0 on f - 1(0) and \mu 1 on
f - 1(1), and parameter p \in [0, 1]. Let \mu = p\mu 0 + (1 - p)\mu 1.

Define U to be the random variable on \{ 0, 1\} for which \mathrm{P}\mathrm{r}[U = 0] = p. Define X to be a random
variable drawn from \mu U . And define Y = N\rho (X) to be the random variable obtained by applying the
noise operator independently to each coordinate of X \in \{ 0, 1\} n. Then U,X, Y satisfy the conditions
of Theorem 44 and the identity U = f(X), so

I(f(X);Y ) \leq I(f(X);XS | S) = I(f(X);Z)

when Z is obtained from X by erasing each coordinate of X independently with probability 1 - \rho 2.
Thus,

H(f(X) | Y ) = H(f(X)) - I(f(X);Y ) \geq H(f(X)) - I(f(X);Z) = H(f(X) | Z).
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