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Abstract

For any c ≥ 2, a c-strong coloring of the hypergraph G is an assignment of colors to the vertices of G
such that for every edge e of G, the vertices of e are colored by at least min{c, |e|} distinct colors. The
hypergraph G is t-intersecting if every two edges of G have at least t vertices in common.

A natural variant of a question of Erdős and Lovász is: for fixed c ≥ 2 and t ≥ 1, what is the minimum
number of colors that is sufficient to c-strong color any t-intersecting hypergraphs? The purpose of this
note is to describe some open problems related to this question.

AMS subject classifications. 05C15, 05D40

1 Introduction

The problem of coloring graphs and hypergraphs has a long and rich history (see, e.g., [5, 7, 8, 9]). In
the case of graphs, the notion of vertex coloring has a single natural definition: an assignment of labels to
the vertices of a graph is a proper coloring if the endpoints of any edge in the graph are assigned distinct
labels. For hypergraphs, however, there exist different natural definitions of vertex coloring. The most
common definition, also called weak coloring, is an assignment of colors to the vertices such that no edge is
monochromatic. Another common definition, called strong coloring, is an assignment of colors to the vertices
such that all the vertices contained in an edge have distinct colors.

There is a more general notion of hypergraph vertex coloring that encompasses both the weak and strong
coloring definitions. We call this notion semi-strong coloring.

Definition 1 (Semi-strong coloring). For a fixed c ≥ 2, a c-strong coloring of the hypergraph G is an
assignment of colors to its vertices such that each edge e of G covers vertices with at least min{c, |e|} distinct
colors. The c-strong chromatic number of G, denoted χ(G, c), is the minimum number of colors required to
c-strong color G.

The definition of weak coloring corresponds to that of 2-strong coloring, and the definition of strong
coloring is equivalent to ∞-strong coloring.1

The main focus of this note is the semi-strong coloring of intersecting hypergraphs. A hypergraph is
t-intersecting if the intersection of any two of its edges contains at least t vertices. The set of edges of a t-
intersecting hypergraph is often referred to as a t-intersecting family. Our goal is to determine the minimum
number of colors that are sufficient to c-strong color any t-intersecting hypergraph.
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Definition 2 (Chromatic number of intersecting hypergraphs). Given two integers c ≥ 2 and t ≥ 0, the
c-strong chromatic number of t-intersecting hypergraphs, denoted χ(t, c), is the minimum number of colors
which suffices to c-strong color any t-intersecting hypergraph.

With this notation, our goal can be restated as follows: determine χ(t, c) for every t ≥ 0 and every c ≥ 2.
In their seminal paper, Erdős and Lovász [5] observed that the case where c = 2 is completely resolved by
simple arguments. Specifically, χ(0, 2) is unbounded, χ(1, 2) = 3, and χ(t, 2) = 2 for every t ≥ 2. (See also
exercise 13.33 in [8].) In the rest of this note, we focus on the case where c > 2.

A first step toward establishing the value of χ(t, c) for all t ≥ 0 and c > 2 is to determine when this value
is finite and when it is unbounded. As we show in the next sections, χ(t, c) is finite whenever t ≥ c and it is
unbounded whenever t ≤ c− 2. This leaves the case where t = c− 1.

Problem 1. Determine whether χ(c− 1, c) is finite or not for every c > 2.

Following the online publication of this note, Chung [3] showed that χ(2, 3) ≤ 21 and, independently, an
anonymous referee showed that χ(2, 3) ≤ 7. These results show that χ(2, 3) is finite; Problem 1 currently
remains open for all c > 3.

In Section 2, we show that for every t ≥ c ≥ 2, we have the lower bound χ(t, c) ≥ 2(c − 1). It seems
reasonable to believe that this lower bound is tight. The best upper bound for the same chromatic numbers,
however, is far from tight. We thus have the following open problem.

Problem 2. Determine whether χ(c, c) = 2(c− 1) for every c > 2.

For any t′ > t, the inequality χ(t′, c) ≤ χ(t, c) follows immediately from the observation that t′-intersecting
hypergraphs are also t-intersecting. A positive answer to Problem 2 would therefore immediately imply that
χ(t, c) = 2(c− 1) for every t ≥ c. It might be easier to first determine whether χ(t, c) = 2(c− 1) for values of
t that are much greater than c. But even the problem of determining whether the limit of χ(t, c) as t→∞
equals 2(c− 1) is open.

Problem 3. For every c > 2, determine whether limt→∞ χ(t, c) = 2(c− 1).

Following the presentation of this problem, Alon [1] showed that when t ≥ 2c2, we have χ(t, c) ≤ 2c− 1.
This bound is obtained by showing that for any t-intersecting hypergraph, a random (2c− 1)-coloring of the
hypergraph is c-strong with positive probability.

For the last problem we return to the chromatic number χ(c − 1, c). If it is finite, can we determine its
exact value? In Section 2, we show that χ(c− 1, c) ≥ 2c− 1. The final problem asks whether this bound is
tight.

Problem 4. For every c > 2, determine whether χ(c− 1, c) = 2c− 1.

In the rest of this note, we present some results on the chromatic numbers of intersecting hypergraphs.
Section 2 establishes lower bounds on the values of χ(t, c) for every t ≥ 0. Section 3 introduces the proba-
bilistic argument for obtaining upper bounds on χ(t, c) when t ≥ c− 1.

2 General lower bounds

As we have mentioned in the introduction, the trivial observation that (t+ 1)-intersecting hypergraphs are
also t-intersecting implies that the c-strong chromatic number of t-intersecting hypergraphs is non-increasing
in t. In other words, for any c ≥ 2 and any t ≥ 0, we have χ(t + 1, c) ≤ χ(t, c). The following proposition
shows that the semi-strong chromatic number of intersecting hypergraphs satisfies a different monotonicity
property when we increase both t and c.

Proposition 1. For any c ≥ 2 and any t ≥ 0, we have χ(t+ 1, c+ 1) ≥ χ(t, c) + 1.
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Proof. Let G be a t-intersecting hypergraph with c-strong chromatic number χ(G, c) = χ(t, c). Define G′

to be the (t+ 1)-intersecting hypergraph obtained by adding a new vertex v and including it in each of the
edges of G. Since χ(t+1, c+1) ≥ χ(G′, c+1), it suffices to show that χ(G′, c+1) ≥ χ(G, c)+1 = χ(t, c)+1.

Consider any (c + 1)-strong coloring of G′ that uses ` colors. For each edge e ∪ {v} of G′, this coloring
must assign at least min{c+ 1, |e|+ 1} distinct colors to the vertices covered by this edge. This implies that
the vertices in the edge e (without the new vertex v) must be colored by min{c, |e|} distinct colors that are
all different from the color assigned to v. Since this is true for any edge e of G, we obtain a c-strong coloring
of G with `− 1 colors by arbitrarily recoloring any vertex of G that received the same color as v. Therefore,
χ(G′, c+ 1) ≥ χ(G, c) + 1, as we wanted to show.

Proposition 1 immediately implies that χ(t, c) is unbounded whenever t ≤ c− 2.

Corollary 1. For any c ≥ 2 and any t ≤ c− 2, we have χ(t, c) =∞.

Proof. Applying Proposition 1 a total of t times, we obtain

χ(t, c) ≥ χ(t− 1, c− 1) ≥ χ(t− 2, c− 2) ≥ · · · ≥ χ(0, c− t) .

But when c−t ≥ 2, no finite number of colors is sufficient to (c−t)-strong color all 0-intersecting hypergraphs
since this class includes all hypergraphs.

The following two propositions give the lower bounds on χ(t, c) when t ≥ c− 1.

Proposition 2. For any c ≥ 2, we have χ(c− 1, c) ≥ 2c− 1.

Proof. Fix c ≥ 2 and consider the hypergraph G =
(
[3c−3],

(
[3c−3]
2c−2

))
. This hypergraph is (c−1)-intersecting

and all its edges have size 2c− 2. Consider any coloring of the vertices in G that uses at most 2c− 2 colors.
The most common c− 1 colors in such a coloring must cover at least

(c− 1)

⌈
3c− 3

2c− 2

⌉
= (c− 1) · 2 = 2c− 2

vertices. So one of the edges of G covers vertices with at most c− 1 distinct colors and the coloring of G is
not c-strong. Thus, χ(c− 1, c) ≥ χ(G, c) ≥ 2c− 1.

Proposition 3. For any t ≥ c ≥ 2, we have χ(t, c) ≥ 2(c− 1).

Proof. Fix t ≥ c ≥ 2 and consider the hypergraph G =
(
[(2c − 1)t],

(
[(2c−1)t]

ct

))
. The hypergraph G is t-

intersecting and all its edges have size ct. Consider any coloring of the vertices in G that uses at most 2c− 3
colors. The most common c− 1 colors in such a coloring must cover at least⌈

c− 1

2c− 3
(2c− 1)t

⌉
=

⌈
c(2c− 3) + 1

2c− 3
t

⌉
=

⌈
ct+

t

2c− 3

⌉
> ct

vertices. So one of the edges of G covers vertices with at most c− 1 distinct colors and the coloring cannot
be c-strong. Thus, χ(t, c) ≥ χ(G, c) ≥ 2(c− 1).

3 Probabilistic upper bound

For a fixed 0 < p < 1, the p-biased measure of a family F over [n] is µp(F) := PrS [S ∈ F ], where the
probability over S is obtained by including each element i ∈ [n] in S independently with probability p.
Such a set S is called a p-biased subset of [n]. Dinur and Safra [4] showed that when p is small enough,
2-intersecting families have small p-biased measure. Friedgut [6] showed how the same result also extends
to t-intersecting families for every t > 2.
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Theorem 1 (Dinur and Safra [4]; Friedgut [6]). Fix t ≥ 1. Let F be a t-intersecting family. For any
p < 1

t+1 , the p-biased measure of F is bounded by µp(F) ≤ pt.
We obtain upper bounds on the chromatic number of intersecting hypergraphs by applying an immediate

corollary of Theorem 1.

Corollary 2. Fix t ≥ 1. Let F be a t-intersecting family. For any p < 1
t+1 , the probability that a p-biased

subset of [n] contains a set S ∈ F is at most pt.

Proof. Fix F to be some t-intersecting family and define F ′ to be the t-intersecting family obtained from
F by adding any set which contains a member of F . That is, F ′ = {T ′ ⊆ [n] | ∃T ∈ F s.t. T ⊆ T ′}. Fix
p < 1

t+1 and let S ⊆ [n] be a random p-biased subset of [n]. The set S contains some set of F if and only if

S ∈ F ′. By Theorem 1, the probability that this event occurs is at most pt.

We use the corollary to argue that when ` is large enough, a random `-coloring of a t-intersecting
hypergraph is c-strong with positive probability.

Theorem 2. For every t ≥ c ≥ 2, let ` be an integer that satisfies ` > (c− 1)(t+ 1) and(
`

c− 1

)(
c− 1

`

)t

< 1 .

Then χ(t, c) ≤ `. In particular, since ` = tt satisfies both conditions, χ(t, c) is finite.

Proof. Let G = ([n], E) be a t-intersecting hypergraph and let ` be an integer that satisfies both conditions
of the theorem. Consider a random coloring of G where each vertex is assigned a color that is chosen
independently and uniformly at random from [`]. Fix C to be a set of c−1 colors. The set S of vertices that
receive one of the colors in C is a random subset of [n] where each element is included in S independently
with probability p = c−1

` < 1
t+1 . By Corollary 2, the probability that S contains any edge in E is at most

( c−1
` )t. Applying the union bound over all possible choices of c − 1 colors, the probability that some edge

in G contains vertices that have at most c − 1 colors is at most
(

`
c−1

)
( c−1

` )t < 1. Therefore, there exists a
c-strong coloring of G that requires only ` colors.

Remark 1. The proof of Theorem 2 does more than is required for establishing the value of χ(t, c). It shows
that when ` is large enough, a random coloring of a t-intersecting hypergraph with ` colors is c-strong with
high probability.

Theorem 2 yields different upper bounds for different values of t with respect to a given c. When t = c,
the best bound obtained by the theorem is exponential in c.

Corollary 3. For every c ≥ 2, χ(c, c) <
√
c · ec.

When t = 2c, the bound is already much stronger and shows that the chromatic number χ(t, c) is
polynomial in c.

Corollary 4. For every c ≥ 2 and t ≥ 2c, χ(t, c) < 2c2.

As t grows beyond 2c + 1, the bound obtained by Theorem 2 does not continue to improve. In fact, it
gets much worse. Note also that because of the condition ` > (c − 1)(t + 1), the theorem does not yield a
sub-quadratic upper bound on χ(t, c) for any t ≥ c.
Remark 2. The topic of semi-strong coloring of intersecting hypergraphs came up in the authors’ study of
property testing of boolean functions [2]. A common approach in such testing algorithms is that of implicit
learning, where we randomly partition some domain and identify a small subset of special parts in the
partition. The main obstacle is often to prove that when the function is far from satisfying the questioned
property, no choice of a small number of special parts would fool the tester. Theorem 2, and particularly
Corollary 4, guarantees that when we randomly partition the domain into a polynomial number of parts
(which are analogous to colors), with high probability the union of any small number of parts will satisfy
some criteria (such as not completely containing any member of some bad intersecting family). See [2] for
more details.
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