
A Two State Environment Stochastic Game
The two state environment showed in Figure 1 of the main
text induces a stochastic game whenever n > 1. This stochas-
tic game has multiple possible Nash Equilibria on which
teammates must coordinate on.

Figure 5: Stochastic game diagram induced from our two state en-
vironment. Game states are labeled so that sc(i, j) represents both
agents (i and j) being in physical state sc.

To show the emergence of multiple Nash Equilibria, Fig-
ure 5 shows the stochastic game induced in this environment
with n = 2 agents (i and j). The possible scenarios of the
game are labeled so that sc(i, j) represents both agents being
in physical state sc. The reward represents the total reward
yielded from the environment in that specific game state (i.e.,
reward = 2r represents both i and j received r). For any agent
to obtain the reward of r at sr, some agent in the environment
must visit sc to change the boolean signal to c = 1. With just
two agents, there are multiple joint policies that yield optimal
reward on which agents must learn to coordinate on. Specif-
ically, the two agents could 1) both move between sc and sr

together, 2) transition from sc to sr (vice versa) with a1 to
never be in the same state, or 3) each agent always stays in
either sc or sr using a0.

B Reward Redistribution
The first theoretical finding in the manuscript is how larger
teams increase the probability of agent i receiving a posi-
tive reward signal for executing a reward-causing state-action
pair.

Theorem 1. There exists an environment where increasing
team size increases the probability of an agent receiving a re-
ward for executing any reward-causing state-action pair that
is greater than if they were not in a team.

Proof. Due to agent’s policies being initialized uniformly at
random at the beginning of learning, we assume full cover-
age of the state space by all independent agents in the limit.
Subsequently, suppose agent i is executing a reward-causing

state-action pair that yields the minimum reward in the en-
vironment (Assumption 3). Any teammate moving to a re-
ward state increases the reward i receives for executing that
reward-causing state-action pair through TRi[n] compared to
when i acts individually. The probability of any teammate j

being in a reward state sr is equal to the product of agents
not being in sr subtracted from 1. Let 0 < ⇣ < 1 be the
probability that a teammate j is not located in a reward state,
sr, where ⇣j = ⇣k for each j, k 2 Ti (i.e., ⇣ is assumed to be
equal for all teammates). For a team of size n, the probabil-
ity of any teammate being in a reward state at any timestep is
P (sj = sr) = 1� ⇣

(n�1). Since 0 < ⇣ < 1, the second term
⇣
(n�1)

! 0 as n ! 1. As a result, the overall probability of
any teammate being in a reward state P (sj = sr) converges
to 1 as team size increases.

Theorem 1 shows how larger teams make reward-causing
state-action pairs attractive for agents that learn from experi-
ence to maximize their future reward.

C Decreased Information
Our second theoretical contribution examines the impact of
team size on the amount of information agents gain through
their policies.
Proposition 1. Let ⇡Ti be the joint fixed behavior policy of
agents in Ti that generates a joint trajectory of experiences
⌧Ti (a collection of individually observed trajectories by each
i 2 Ti), where the randomness of state-action pairs in ⌧Ti de-
pends on all N agents (by the definition of a stochastic game).
Let TRt

i[n] be a random variable denoting the team reward at
any timestep t (where the randomness of the deterministic re-
ward follows from the randomness of the joint state-action
pairs of individual agents in Ti at time t, depending on all N
agents, ⌧ t

Ti
). It follows that:
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Proof. The chain rule of mutual information gives us:
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By the definition of mutual information, we can expand in
terms of entropy:

= H(Z(⌧Ti))�H(Z(⌧Ti)|⌧Ti)

�H(Z(⌧Ti)) +H(Z(⌧Ti)|⌧
�t

Ti
)

= H(Z(⌧Ti)|⌧
�t

Ti
)�H(Z(⌧Ti)|⌧Ti).

We know Z(⌧Ti) is a deterministic function of ⌧Ti due to
the deterministic aggregation (mean reward) of n determin-
istic reward functions of all teammates. The deterministic



individual reward functions are already dependent on all N
agents; thus, we can drop the second term and simplify to:

= H(Z(⌧Ti)|⌧
�t

Ti
).

Since we know each agent in Ti is optimizing their dis-
counted sum of future team rewards, we know Z(⌧Ti) =
⌃H

t=1�
t�1
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t

i[n], and can substitute for Z(⌧Ti):
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Finally, since TRt

i[n] is unable to be impacted by the future
(i.e., anything greater than t), we can remove the correlation
with ⌧ t+1:H :

= H(TRt

i[n]|⌧
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).

Proposition 1 equates the information at any time of a
stochastic game to the entropy of the team reward signal.
The left-hand side quantifies the information between a sin-
gle joint state-action pair for the team ⌧ t

Ti
and the team’s joint

policy return over the joint trajectory, Z(⌧Ti), conditioned on
the joint trajectory without timestep t, ⌧�t

Ti
. Next, we show

that the variance of the team reward function converges to
zero as team size increases.
Lemma 1. The team reward random variable TRi[n] for any
state-action pair converges to the mean environmental reward
(mean of any agent’s individual reward function) as team size
increases in the limit (i.e., TRi[n](s

t
,at, st+1) ! Ri as n !

1).

Proof. Since the team reward is an aggregation of n individ-
ual and uniformly random rewards samples from identical re-

ward functions, TRi[n] ⇡ N
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is the standard deviation of Ri (i.e., distance

from Ri), we know �Ri > 0. Furthermore, �Ri is a constant
and n � 1; thus, var

⇥
TRi[n]

⇤0 is negative and converges to
zero as n increases in the denominator.

Finally, we use Proposition 1 and Lemma 1 to show that
the information in a stochastic game converges to zero as a
funciton of team size.
Theorem 2. The information in a stochastic game at time t,
I(Z(⌧ i); ⌧ t

i
|⌧�t

i
), converges to 0 as the size of a team, n,

increases in the limit.

Proof. By Proposition 1, we can use the entropy of TRt

i[n]

to determine the information of Z(⌧ i) at time t of a tra-
jectory. By the Central Limit Theorem and Lemma 1, let
TR
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i[n] be a Gaussian distributed random variable so that
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. We rewrite the entropy of TRi[n] at time t given
the trajectory up to t, H(TRt
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1:t�1), in terms of the func-
tion’s variance:
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Since ⇡ is a constant, the variance �
2 =

�
2
Rip
n

regulates the

entropy of TRt

i[n]. By Lemma 1, we know lim
n!1
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Thus, the entropy and information carried by the actions of
⇡i in a stochastic game at time t converges to zero as team
size increases.

Theorem 2 states that agents will be unable to perform
proper credit assignment and learn good policies as their
team’s size increases in the limit. This result is significant
since it characterizes how fully cooperative systems can per-
form worse than a population of multiple smaller teams.

D Information with Teams
A fixed behavior policy ⇡i induces a stationary visitation dis-
tribution for agent i over states and state-action pairs, denoted
as d⇡i(s) and d

⇡i(s, a) respectively. Since we are concerned
with the progression of how agents learn, our theory assumes
agents are initialized with random policies that cover the state
space uniformly, consistent with past work [Arumugam et al.,
2020].

The value of var
h
I
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i

depends on calculating the
KL Divergence for state-action pairs from the distribution of
states and actions for ⇡i, d⇡i . Given the distributional support
Xsi,ai (the distribution of team rewards conditioned on spe-
cific state-action pairs that are not mapped to zero), this can
be expanded to be:
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Note that Si and Ai are based on agent i’s individual ob-
servations and policy, but ZTi is based on their shared team
reward.



Figure 6: 4-States: Environment diagram.

E 4-States
E.1 Environment
Figure 6 shows the 4-States environment in our evaluation,
an augmentation of the simple 2-States environment shown
in Figure 1 of the main text. We add two “no-op” states to the
two state environment that return no reward and do not im-
pact the binary signal (i.e., agents should avoid these states).
States are labeled sc , sr, s3 (no-op), and s4 (no-op). A re-
ward of +1 is given at sr, conditioned on the visitation of sc.
Agents simultaneously choose among four actions: stay at
their current state (s0) or move to any of the other three states
(s1, s2, or s3). An action transitions agents to their intended
next state with 90% probability and to another random state
with 10% probability. We fix |T | = 1 and increase n by a
factor of 2 to remove the impact of other teams on the binary
signal. Agents using Tabular Q-Learning [Sutton and Barto,
2018] with � = 0.9 and ✏-exploration (✏ = 0.3) for 50 trials
of 1,000 episodes (100 steps each). The stochastic transitions
and ✏-exploration causes agents not to select the best action
or move to their intended state about 33% of timesteps.

F Iterated Prisoner’s Dilemma (IPD)
F.1 Environment
We follow a similar IPD configuration as recent work with
teams [Radke et al., 2022; Radke et al., 2023] and assume
that there is a cost (c) and a benefit (b) to cooperating where
b > c > 0. Agents are randomly paired with another agent at
each timestep, a counterpart, that may or may not be a team-
mate with some probability ⌫. Agents must choose to either
cooperate with (C) or defect on (D) their counterpart. Agents
only observe the team label (i.e., number) of their counter-
part, and receive their team reward, TRi[n], after their own
and teammates’ interactions; therefore, the strategies of all
agents on team Ti affects how agents learn to play any mem-
ber of Ti. We fix the cost c = 1, benefit b = 5, and define
|T | = 2 with increasing sizes of each team where n = 1 (no
teams), n = 2 (one teammate), and then multiples of 5 to
study general trends with larger teams. We fix ⌫ = 97%
(non-teammates are 16 times more likely than teammates)
and 100% when n = 1 (agents do not play themselves). Each
experiment lasts 1.0 ⇥ 106 episodes where N = 30 agents
learn using Deep Q-Learning [Mnih et al., 2015], repeated
for 20 trials.

Figure 7: IPD: Mean population reward (top) and mean difference
in agents’ Q-values (bottom). Less difference between Q-values
indicates agents have less preference for either action.

Figure 8: IPD: Mean maximum eigenvalue (�max) of agents’ Hes-
sian matrices (i.e., flatness of loss landscape).

F.2 Results
Figure 7 shows our results in the IPD environment for the
mean population reward (top) and the difference in Q-values
for C and D when paired with non-teammates (bottom). Both
graphs share the same x-axis, representing the timesteps of
our experiments.

Since mutual cooperation is the result with the highest
mean population reward, we use reward as a proxy for learned
cooperation (higher is better). When n = 1, agents con-
verge to the Nash Equilibrium of mutual defection and ob-
tain the lowest mean population reward. Consistent with past
work [Radke et al., 2022], our results show how having even
one teammate allows agents learn cooperation and achieve
high mean population reward despite only being paired with
this teammate 3% of the time. However, team growth has
diminishing returns. When n = 30, the mean population
reward approaches the mean reward and agents behave ran-
domly (i.e., Ri = 2 when cost is 1, benefit is 5).

The bottom graph shows how initially providing agents
with teammates (n = 2) increases the difference in Q-values
significantly since agents learn the benefit of mutual coop-
eration. Agents adapt this behavior towards other teams and
the population experiences high cooperation and high reward.
Further increasing team size tends to reduce the difference
in Q-values until agents have little Q-value difference when
n = 30. These results are consistent with our theory and
experiments in the other three domains.



Figure 9: Cleanup: Team reward obtained at each pixel for different agents. The top row shows all agents’ behaviors when n = 4 and the
bottom row shows all agents when n = 6. Plots that appear in the main text are indicated with a green star and plots that are omitted from
the main text due to space limitations are indicated with a yellow star.

Figure 10: NMMO: Custom environment layout for our evaluation.

As a further analysis into how teams impact learning, Fig-
ure 8 shows the mean maximum eigenvalue (�max) of agents’
policy network Hessian matrices as they learn (log10 scale).
Lower values of �max represent a flatter optimization sur-
face [Kaur et al., 2022] that makes convergence through
stochastic gradient descent more difficult. When n = 1, the
high rate of 0 reward leads to a flat optimization landscape,
but when n = 2 or 5, �max is the highest among all team
structures we study. As teams grow larger, the loss landscape
flattens and convergence to a minima becomes more difficult.
This highlights that teams shape the loss landscape to assist
convergence to a cooperative minima [Radke et al., 2022], but
large team structures flatten the landscape and reduce conver-
gence.

G Cleanup Gridworld Game Extended
G.1 Environment
Cleanup [Vinitsky et al., 2019] is a temporally and spa-
tially extended Markov game representing a sequential social
dilemma. Agents in Cleanup have eight actions: 9 movement
(up, down, left, right, stay, turn left, and turn right), a clean-
ing beam, and a punishment beam. Agent observability is
limited to an egocentric 15 ⇥ 15 pixel window, and agents re-
ceive +1 reward for collecting an apple in the orchard. Apple
growth is conditional on the cleanliness of an adjacent river,
and cleaning this river yields no direct environmental reward.
Successful groups in Cleanup balance the temptation to free-
ride and pick apples with the public obligation to clean the
river. We set |T | = 1 and increase team size to remove im-
pacts of other teams on the conditional reward structure. We
implement Proximal Policy Optimization (PPO) [Schulman
et al., 2017] agents for 10 trials of 1.6⇥ 108 episodes (1,000
timesteps each) using the Rllib RL library.

G.2 Spatial Results
Figure 9 shows the spatial behavior of all agents in one trial
when n = 4 (top row) and n = 6 (bottom row). This figure
is an expanded version of Figure 4 in the main text, where
darker red corresponds with higher reward when the agent
is located at that spatial location. When n = 4 (top row),
the population divides labor so that Agents 0 and 3 agents
specialize to clean the river and Agents 1 and 2 pick apples
which achieves the highest reward in our evaluation, shown in
Figure 2b of the main text. Additionally, Figure 9 (top row)
shows how Agents 0 and 3 not only both converge to clean the
river, but learn different cleaning roles and spatially divide the
river territory for more efficiency. This spatial specialization
is not typically observed with apple picking agents, but both
apple picker agents still collect a significant amount of apples
when n = 4 regardless.



Figure 11: NMMO: Agent behavior in NMMO when n = 1, 2, 4, 5, 9. When n = 1, the agent spends time in the center region of the map
which results in no reward. Agents learn about the value of food and water when they have teammates. When n = 2 or n = 4, agents
spatially disperse and specialize in roles of collecting food or water while not interfering with each other. When n = 5 or n = 9, agents
begin to converge to similar areas of the map and eventually interfere with each other’s ability to collect food or water and venture back into
the center area of the map.

Compare this with when n = 6 shown in Figure 9 (bot-
tom row), where we consistently find 3 river cleaner and 3
apple picker policies emerge within agents in Ti. The be-
havior of the three river cleaners is less spatially specialized,
resulting in Agents 0 and 3 cleaning the same location and
learning the same role on their team (i.e., the role of cleaning
the bottom half of the river). This duplication of roles leads to
less team reward than smaller team structures despite having
more agents, as shown in Figure 2b of the main text. Since
we observe that two spatially specialized agents are able to
effectively clean the river (seen when n = 4), the team would
benefit from one of these redundant cleaners learning to in-
stead pick apples and collect more reward. This gives fur-
ther insight into why large cooperative systems achieve less
reward than systems composed of multiple smaller teams in
Cleanup, even when mixed incentives exist between teams as
shown in [Radke et al., 2022].

H Neural MMO Extended
H.1 Environment
Neural MMO (NMMO) [Suarez et al., 2019] is a large, cus-
tomizable, and partially observable multiagent environment
that supports foraging and exploration. We configure a map
with 1024 ⇥ 1024 pixels bounded by lava tiles to enclose
the agents within the environment. As mentioned in the
main text, agent observability is limited to an egocentric
15 ⇥ 15 pixel window and have movement and combat ac-
tions. Agents maintain a stash of consumable resources (food
and water) that deplete some amount at each environmen-
tal timestep but are replenished through harvesting from the
lakes and forests located throughout the environment. There
is no standard NMMO configuration; therefore, we can cus-
tomize the environment and reward function to satisfy the as-
sumptions made in Section 4 (shown in Figure 10). Agents
in a team share water and food resources amongst themselves
and we remove agent death by starvation so that every episode
is the same length. Agents always spawn in a random loca-
tion at the center of the map. The environment has stones
which agents must move around to reach water and forest
tiles. Grass tiles offer nothing to the agents.

We set a resource depletion rate of -0.02 (minimum of 0.0),

replenish amount of +0.1 (maximum amount of 1.0), and spa-
tially separate the forests and lakes to encourage exploration.
We reward agents for positive increases to their lowest re-
source: min(I)t � min(I)t�1 when min(I)t > min(I)t�1,
where I is the inventory of food and water. Agents must learn
to maintain both food and water to receive reward, creating
multiple dynamically changing reward-causing state-action
pairs, a more challenging scenario than the other environ-
ments. We implement PPO agents for 5 trials of 1.6 ⇥ 107

episodes (1,000 timesteps each) using Rllib.

H.2 Spatial Results
Figure 11 shows the movement of agents when n =
1, 2, 4, 5, 9. When n = 1 (Figure 11 left), the agent has diffi-
culty learning about the value of both food and water, result-
ing in the agent staying in the center region of the map where
there is only grass and stone (Figure 10). When the agent is
given a teammate (n = 2; Figure 11 middle left), they con-
verge to complimentary roles and explore different regions of
the environment, collecting either food or water and sharing
their resources. This behavior is also observed when n = 4
with two agents collecting food or water each. This joint pol-
icy generates one of the best team reward results in our evalu-
ation showing the benefits of adding teammates. When n = 5
or n = 9, the agents still learn complimentary roles; how-
ever, they tend to interfere with each other and cover similar
areas of the environment, consistent with our spatial results
in Cleanup shown in Figure 4 of the main text or Figure 9 in
Appendix G.2. The environment is significantly large so that
this movement is avoidable; however, agents have difficulty
learning how to spatially disperse as to maximize the reward
from their joint policy. Furthermore, when n = 9, two agents
return to the center grass/stone area later in an episode which
contributes no positive reward for their team.

I Summary of Notation
Table 1 lists the notation used throughout the paper for easy
access for the reader.



Notation Description
i An arbitrary agent.
j A second arbitrary agent.
N Set of all agents.
N Size of the set of all agents.
A Joint action space.
S Joint state space.
R Joint reward space.
P Transition function.
� Discount factor.
⌃ Policy space of all agents.
⇡i Policy of agent i.
t Arbitrary timestep of an episode.
si Single state for agent i.
ai single action for agent i.
st Joint state at time t.
at Joint action at time t.
R

t

i
(st,at, st+1) Agent i’s individual reward at time t.

Vi Value function of agent i.
T Set of all teams.
Ti Set of teams i belongs to.
Ti 2 Ti Specific team that i belongs to.
n The number of agents in a team.
TRi[n] Team reward for a team of size n.
H Length of a full episode.
⌧i Trajectory of state-action pairs generated by i.
⇡Ti Joint policy for n agents in team Ti.
⌧Ti Joint trajectory for n agents in team Ti.
⌧
t

Ti
Joint state-action pair at time t for the agents in team Ti.

⌧
1:t�1
Ti

Joint trajectory for n agents in team Ti up to time t� 1.
⌧
�t

Ti
Joint trajectory for n agents in team Ti without the joint state-action pair at time t.

Z(⌧Ti) Random variable denoting the team random return obtained from a joint trajectory ⌧Ti .
sTi Team Ti’s joint state.
sTi Team Ti’s joint action.
ZTi Random variable denoting the team reward observed at sTi and taking joint action aTi .
I
⇡i
si,ai

Information gained by ⇡i in single-agent setting.
DKL Kullback-Leibler (KL) divergence.
p(Zi|si, ai) Distribution of returns conditioned on particular state-action pair.
p(Zi|si) Distribution of returns conditioned only on state.
I(Ai;Zi|Si) Expected information ⇡i carries in single-agent setting.
I
⇡i(Ai;ZTi |Si) Expected information ⇡i carries in a multiagent team from a team reward.

I
⇡i
Si,Ai

(ZTi) Expected information gained by ⇡i over distribution of individual state-action pairs.
✏ Threshold on the expected information in an environment.
µ Threshold on the variance of expected information across state-action pairs.
H(TRt

i[n]) Entropy of team reward funciton.

Table 1: Notation summary throughout the paper for the reader.
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