Dave's CPSC 121 Tutorial Notes - Week Six

Last Updated: 2008.02.29 (v2.0)

Formula Sheet Tips

• Binary Representations

				unsigned	signed	HEX
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	2	2	2
0	0	1	1	3	3	3
0	1	0	0	4 5	4 5	4 5
0	1	0	1		5	
0	1	1	0	6	6	6
0	1	1	1	7	7	7
1	0	0	0	8	-8	8
1	0	0	1	9	-7	9
1	0	1	0	10	-6	Α
1	0	1	1	11	-8 -7 -6 -5	В
1	1	0	0	12	-4	С
1	1	0	1	13	-4 -3 -2	D
1	1	1	0	14	-2	Е
1	1	1	1	15	-1	F

• Powers of 2

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

• Taking the 2's Compliment

Step Zero: Always check the width (number of bits) of your "system"

Step One: Flip the bits

Step Two: Add One (ignore overflow)

Sample Problems

1. A Little Humour

Because the topic this week is straightforward and there are lots of samples in the textbooks for converting between binary numbers and decimal and Hex, I thought I'd just share two lame jokes:

Why is Halloween = Christmas? Because $31_{OCT} = 25_{DEC}$

There are 10 kinds of people in the world:

Those who get binary jokes, and those who don't.

2. A Few Tips on dealing with Binary Representations

All of the following assume that you have an n-bit system, and I provide an example with a 4-bit system [n=4].

- UNsigned values range from $(0 \dots 2^n 1) [0 \dots 15]$
- Signed values range from $(-2^{n-1} \dots 2^{n-1} 1) [-8 \dots 7]$
- Because there is an "extra" negative number, you can't take 2's compliment of the smallest negative number [the 2's compliment of 1000 is 1000, or -(-8) = -8]
- The 2's compliment of zero is zero.
- Wrap-around (overflow) occurs when you add one to the largest number and get the smallest unsigned: [15+1=0] signed: [7+1=-8]
- To interpret the decimal value of a negative signed binary value, there are two methods:
 - Find the 2's compliment of the number and negate it [2's compliment of 1101 is $(0010+1)=0011_2=3_{10}\to -3$]
 - Ignore the first bit and then and add -2^{n-1} [1101 \to 101₂ = 5₁₀ \to 5 + (-2³) = 5 + (-8) = -3]
- To convert between Binary \Leftrightarrow Hex, align in groups of 4 and zero-pad on the *left* if necessary $[1101110101111110_2 \rightarrow 1 \ 1011 \ 1010 \ 1011 \ 1110_2 \rightarrow 1BABE_{16}]$