Dave's CPSC 121 Tutorial Notes - Week Two

Last Updated: 2008.01.23 (v2.0)

Formula Sheet Tips

• Arguments:

Premises: w The argument is valid iff:

 $x \qquad [(w) \land (x) \land (y)] \to z$

Conclusion: $\frac{y}{\therefore z}$ is a tautalogy

• Rules of Inference:

Modus Ponens: $p \rightarrow q$ Modus Tollens: $p \rightarrow q$ $\sim q$

 $\begin{array}{c} p \\ \therefore q \\ \end{array}$

Generalization: p Specialization: $p \land q$ (Addition): $p \lor q$ (Simplification): $p \land q$ $p \land q$

Conjunction: p Elimination: $p \lor q$ (Disjunctive syllogism): $\sim q$

 $\begin{array}{c} q \\ \hline \therefore \ p \wedge q \\ \hline \end{array}$ (Disjunctive syllogism): $\begin{array}{c} \hline \sim q \\ \hline \therefore \ p \\ \hline \end{array}$

Transitivity: $p \rightarrow q$ Proof by cases: $p \rightarrow r$

(Hypothetical syllogism): $q \to r$ $q \to r$ $\therefore p \to r$ $\therefore (p \lor q) \to r$

Resolution: $p \lor q$

• Extra Rules of Inference: Alternate Implication (\rightarrow) Forms

Generalization: p p $p \rightarrow q$ $\therefore p \rightarrow q$ $\therefore p \rightarrow (q \lor r)$

• Multiplexer (Selector) Logic:

Variable s is to select between variables p and q: If s is true then be equal to p, otherwise (s is false) then be equal to q: $(s \wedge p) \vee (\sim s \wedge q)$

Sample Problems

1. Proving Logical Equivalence

if you want to prove $x \equiv y$, you have two methods:

- 1) Using truth tables, or
- 2) Using the Equivalence Laws.

We're focusing on 2) Equivalence Laws:

Always start with **just** the Left Hand Side (LHS) xor the RHS. Take a moment to decide which side might be *easier* for you.

General Format:

Prove
$$x \equiv y$$
:

LHS $\equiv x$
 $\equiv x'$ (some Equivalence Law)
 $\equiv x''$ (some Equivalence Law)
 $\equiv ...$
 $\equiv y$ (some Equivalence Law)
 $\equiv RHS$
 $\therefore x \equiv y$

Example:

Prove
$$(\sim p \land \sim q) \lor (p \land q) \lor (r \land \sim r) \equiv \sim ((p \lor q) \land \sim (p \land q))$$

In this case, starting with the LHS may be easier, but let's start with the RHS:

Note that if you apply the rules in reverse, you can go in the other direction (LHS to RHS)

2. Verifying Arguments

The process of proving an argument is valid has a similar *feel* to proving logical equivalences, but they are actually quite different.

However, both logical equivalences and arguments can be **verified** with a truth table. Recall the general argument form:

Premises: w The argument is *valid* iff:

 $x \qquad [(w) \land (x) \land (y)] \rightarrow z$

y is a tautalogy

Conclusion: $\overline{ } : z$

Let's verify the Resolution rule of inference using the truth table method;

Resolution: $p \lor q$

 $\frac{\sim p \vee r}{\therefore (q \vee r)}$

p	q	r	$p \lor q$	$\sim p \vee r$	$ [(p \lor q) \land (\sim p \lor r)] $	$(q \lor r)$	$ \mid [(p \lor q) \land (\sim p \lor r)] \rightarrow (q \lor r) $
F	F	F	F	T	F	F	T
F	F	T	F	T	F	T	T
F	T	F	Т	T	T	T	T
F	T	T	T	T	T	T	T
T	F	F	Т	F	F	F	T
T	F	T	T	T	T	T	T
T	T	F	Т	F	F	T	T
T	Т	T	T	T	T	T	T

Because the last column is a tautalogy, it means the Resolution rule is valid.

3. Valid Arguments

Don't mix up valid arguments and true conclusions:

Valid arguments can produce false conclusions if the original premises turn out to be false.

Dave's Absurdity Rule:

$$\begin{array}{c}
p \\
\sim p \\
\hline
\therefore q
\end{array}$$

p: Dave is a good TA

q: Dave is Superman

Dave is a good TA

Dave is not a good TA

: Dave is Superman

This argument is actually **valid**. We can verify it with a truth table:

p	$\mid q \mid$	$ [(p) \land (\sim p)] \to q $
F	F	Т
F	T	Т
T	F	Т
T	T	Т

However, clearly one of the original premises was false (I'll let you decide which one :)

Note that an argument is valid regardless of what the underlying propositional variables represent.

4. Making Arguments

When making arguments, we start with some known true things about our *universe* that we are given (our premises) and then continue to add more true things we have *deduced*, until (hopefully) we can arrive to the desired conclusion.

General Format:

Show that this Argument is valid:

Premises:

- (1) w
- (2) *x*
- (3) <u>y</u>

Conclusion:

Deductions:

- (4) a [Inference Rule ? on (?)]
- (5) b [Inference Rule? on (?)+(?)]

...

(?) z [Inference Rule ? on (?)]

: The Argument is valid

Example 1:

Premises:

- (1) $b \lor \sim c$
- (2) $(c \wedge d) \vee e$
- (3) $\sim e \wedge (h \rightarrow g)$
- $(4) \quad a \to \sim b$ $\therefore \sim a$

Conclusion:

Deductions:

(5) $\sim e$ Specialization (3)

(6) $c \wedge d$ Elimination (2)+(5)

(7) c Specialization (6)

(8) b Elimination (1)+(7)

(9) $\sim a$ Modus Tollens (4)+(8)

:. The Argument is valid

Example 2:

Premises: (1)
$$p \rightarrow r$$
 (2) $(s \land u) \rightarrow \sim r$

$$(3) \sim w$$

$$(4) \quad \frac{(s \lor w) \land u}{\therefore (p \land q) \to r}$$

Deductions: (5) u Specialization (4)

(6) $s \lor w$ Specialization (4) (7) s Elimination (3)+(6) (8) $s \land u$ Conjunction (5)+(7)

(9) $\sim r$ Modus Ponens (2)+(8) (10) $\sim p$ Modus Tollens (1)+(9) (11) $\sim p \lor \sim q$ Generalization (10)

(12) $\sim (p \wedge q)$ Equivalence [De Morgan's] (11)

(13) $\sim (p \wedge q) \vee r$ Generalization (12)

(14) $(p \land q) \rightarrow r$ Equivalence [Definition of \rightarrow] (13)

: The Argument is valid