Dave's CPSC 121 Tutorial Notes - Week One

Last Updated: 2008.01.23 (v2.0)

Formula Sheet Tips

- $\wedge \approx and \approx a \wedge d \approx co \wedge junction \approx i \cap tersection$
- **proposition:** (lower case): statement that is true \oplus false: p:(4+5>7)**Predicate:** (upper case): can become a proposition: P(x):(x+5>7) (coming soon)
- Logical Equivalence (≡) Laws:

(for your sheet)

Distributive: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \quad p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$ De Morgan's: $\sim (p \wedge q) \equiv (\sim p) \vee (\sim q) \qquad \sim (p \vee q) \equiv (\sim p) \wedge (\sim q)$

Absorption: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

(for completeness)

Commutative: $p \land q \equiv q \land p$

Associative: $(p \land q) \land r \equiv p \land (q \land r)$

Identity: $p \wedge t \equiv p$ $p \vee c \equiv p$ Negation: $p \vee (\sim p) \equiv t$ $p \wedge (\sim p) \equiv c$

Double Negation: $\sim (\sim p) \equiv p$ Idempotent: $p \land p \equiv p$

Universal bound: $p \lor t \equiv t$ $p \land c \equiv c$

Negations of t and c: $\sim t \equiv c$

- Implication: $p \to q \equiv \sim p \lor q$
 - if p then q
 - p implies q
 - p is sufficient for q
 - q is necessary for p
 - contrapositive: $\sim q \rightarrow \sim p$
 - the contrapositive is equivalent to the original: $p \to q \equiv \sim \! q \to \sim \! p$
 - converse: $q \rightarrow p$
 - inverse: $\sim p \rightarrow \sim q$
 - the *converse* and *inverse* are **not** equivalent to the original, but are equivalent to each other.
- Bi-Implication: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
 - p if and only if q (and vice-versa)
 - p is sufficient and necessary for q (and *vice-versa*)

Sample Problems

1. Truth Table Fun

With 2 variables, there are 4 rows in the truth table, and 16 possible *unique* expressions:

p	q	7	$b \wedge d$	$b \sim \wedge d$	p	$b \to d \equiv \sim b \wedge d$	d	$(b \sim \wedge d) \vee (b \wedge d \sim) \equiv b \leftrightarrow d$	$b \lor d$	$b \sim \wedge d \sim$	$(b \sim \land d \sim) \lor (b \land d) \equiv b \oplus d$	$b\sim$	$b \sim \sqrt{d}$	d \sim	$b \lor d \sim$	$b \sim \sqrt{d} \sim$	c
T	T	T	Т	T	T	T	T	T	Т	F	F	F	F	F	F	F	F
T	F	Т	T	T	T	F	F	F	F	T	T	T	T	F	F	F	F
F	T	Т	T	F	F	T	Т	F	F	T	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F	T	F	T	F	T	F	T	F	T	F

How about with more variables?

# Variables	# Rows in the Truth Table	# of (unique) expressions
2	$4 [2^2]$	$16 [2^4]$
3	$8 [2^3]$	$256 [2^8]$
4	$16[2^{4}]$	65 536 [2 ¹⁶]
8	256 [2 ⁸]	$[2^{256}] \approx \text{\# atoms in the universe}$

2. Generating Expressions from Truth Tables

			1	2	3	4
p	q	r	?	$\sim p \lor q \lor \sim r$	$p \vee \sim q \vee \sim r$	$ \mid (\sim\!p\vee q\vee \sim\!r)\wedge (p\vee \sim\!q\vee \sim\!r)\mid$
T	T	T	T	T	T	T
T	T	F	Т	T	T	T
T	F	T	F	F	T	F
T	F	F	T	T	T	T
F	T	T	F	Т	F	F
F	T	F	Т	Т	T	T
F	F	T	Т	T	T	T
F	F	F	Т	Т	T	T

Consider the traditional problem: if you were given the expression in column 4: $(\sim p \lor q \lor \sim r) \land (p \lor \sim q \lor \sim r)$

How would you generate the truth table? You would first construct columns for the simpler expressions in column 2 and 3 and then combine the columns to get the values in column 4.

So what if you want to do the opposite: If you are give the truth table values for column 1, how do you find that expression? Well, do the opposite: decompose column 1 to get columns 2 and 3 and then determine the expressions for those columns. *That's the only hint you are getting*.

3. Playing With Implications

If *I get ice cream* then *I am happy*

i: I get ice cream

h: I am happy

 $i \rightarrow h$

Me getting ice cream implies that I am happy

Me getting ice cream is a sufficient condition for me to be happy

Me being happy is necessary when I get ice cream

 $i \to h \equiv \sim i \lor h$ [Equivalence]

I don't get ice cream or I am happy

 $\sim i \vee h \equiv \sim (i \wedge (\sim h))$ [DeMorgan's Law]

It is never the case that I get ice cream and I am not happy

 $i \rightarrow h \equiv \sim h \rightarrow \sim i$ [Contrapositive]

If I am not happy then I didn't get ice cream

Note that all of the above statements are equivalent.

4. Implications don't have to make sense in 'english'

Q: How was your fist tutorial with Dave?

A: Dave is not a good TA or Dave teaches drunk

In Logic:

g: Dave is a good TA

d: Dave teaches drunk

 $\sim\!g\vee d$

Remember,

 $\sim\!g\vee d\equiv g\to d$

So

Dave is a good TA implies that Dave teaches drunk

or in other words,

Dave teaching drunk is necessary for Dave to be a good TA

It's hard to argue with that logic:)