
JBIG2 Halftones: Analysis and Considerations for T.89

Dave Tompkins and Faouzi Kossentini
University of British Columbia
Contact: davet@ece.ubc.ca

This file and the accompanying bitstreams are available at:
http://spmg.ece.ubc.ca/jbig2 and http://spmg.ece.ubc.ca/jbig2/bitstreams

Introduction

To generate halftoned images in JBIG2, two separate segments are required: a pattern dictionary
and a halftone region.

The pattern dictionary contains all of the individual patterns used to generate the halftoned
picture. The patterns are concatenated and encoded as one larger region, as illustrated in the
following example:

Figure 1: 6x6 Halftone Pattern at 45º.

The pattern dictionary must be decoded and stored in memory before decoding the halftone
region segment.

In the halftone region segment, the header section contains numerous parameters which
determine how the halftone is to be constructed, such as the details for the halftone grid co-
ordinate system.

The data in the halftone region is simply several generic regions. The number of generic regions
depends on the number of patterns in the corresponding pattern dictionary. The generic regions
can be coded with either the MMR or the MQ coder. After all of the generic regions are decoded,
they are combined together as bit planes to construct a multi-level (gray scale) image. Each level
(or shade of gray) in the multi-level image corresponds to one of the patterns in the pattern
dictionary. For each pixel in the multi-level image, one pattern is placed in the bi-level image.

Angled Halftones

Angled halftones usually look better than non-angled halftones. However, an angled halftone
requires more complexity and more memory.

Because the multi-level image is angled over the region, there are elements in the multi-level
image that are not used to construct the image. Although these elements can be avoided with
the HSKIP parameter, they still require memory (in most practical implementations).

The formula for the multi-level image’s width is determined by this awkward formula:

() ()()

HDPW

RHRW
RH

RW

HGW

θθθ sincostancos 221 +⋅+⋅







−








=

−

 (1)

where RW and RH are the region width and height, θ is the angle of the halftone, HDPW is the
width of each pattern (assuming square patterns for simplicity). The formula for the height is
similar, and identical if θ = 45º or RW = RH.

The following figure illustrates how the multi-level image can be larger than the bi-level region.

Figure 2: Comparing the sizes of the Gray and Bi-Level Image

From this figure it is also clear and how the halftone angle of 45º requires the most memory.

Assuming RW ~= RH and θ = 45º (worst case scenario for memory), we can approximate the
width of the multi-level image with the follow equation:

()
HDPW

RHRW
HGW

222 +
= (2)

So for an 8.5” x 11” page at 200dpi and θ = 45º, the grayscale region must be (3932 / HDPW)
pixels wide (and high).

Pattern Dictionary Memory

The memory requirements for a pattern dictionary depend on several factors:

• Internal representation of the patterns
• Size of each pattern
• Number of patterns

The patterns could be easily left in their original format, concatenated together. However, it is
more likely that they will be separated. If separated, the same structure should be used as the
text symbols. In which case, the memory requirements for a pattern dictionary will be:

Pattern Dictionary Memory = (GRAYMAX+1) * (32 + R(HDPW) * HDPH) (3)

Where all the values are defined as in JBIG2, and R() is the rounding function.

For practical implementations, it is reasonable to assume that GRAYMAX <= 255.

Multi-Level Image Memory

In circumstances with small grid sizes, the most important constraint for halftone coding will not
be the pattern dictionary memory, but rather the memory required to store the individual bit
planes.

Because the bit planes are coded sequentially, all of them must be decoded before the halftone
can be constructed. This could require a considerable amount of memory.

Consider the following Table for an 8.5” x 11” page at 200 dpi. Assume square Halftone patterns.

Page Dimensions: 1700 x 2200 (468,600 bytes / 1024 = 458k)

HDPW
(HDPH)

Grid Angle
(θ)

Gray Image
Dimensions

Size of
1 Level

of
Patterns

of Bit
Planes

Image
Memory

% of Page
Buffer

2 0º 850 x 1100 115k 5 3 345k 75%
3 0º 567 x 734 51k 10 4 204k 45%
3 45º 1311 x 1311 210k 6 3 630k 137%
4 0º 425 x 550 29k 17 5 145k 32%
4 45º 983 x 983 118k 9 4 472k 103%
5 0º 340 x 440 18k 26 5 92k 20%
5 45º 787 x 787 76k 13 4 304k 66%
6 0º 284 x 367 13k 37 6 77k 17%
6 45º 656 x 656 53k 19 5 263k 57%
8 0º 213 x 275 7k 65 7 51k 11%
8 45º 492 x 492 30k 33 6 179k 39%

10 0º 170 x 220 5k 101 7 33k 7.2%
10 45º 394 x 394 19k 51 6 115k 25%
20 0º 85 x 110 1k 401* 9* 11k 2.4%
20 45º 197 x 197 5k 201 8 38k 8.5%

Table 1: Gray Image Memory Requirements at 200 dpi

 (*) It is unlikely that more than 256 levels of gray (# patterns) or 8 bit planes would be used.

From the table, we can see how in some circumstances, the multi-level image can require more
memory than the actual page buffer itself. For higher resolutions, the % of page buffer would be
approximately the same.

Striping Artifacts

Striping is used to break a large image into several, smaller stripes. Although there is a
compression penalty associated with striping, it is popular because it significantly reduces the
memory (buffer) requirements.

Stripe Size

Figure 3: JBIG2 Stripes

With halftone coding, it is possible that the striping of a page will introduce some visible artifacts
at the stripe boundaries. With some careful encoding, these artifacts may be eliminated, but it
may be very difficult when using angled halftones.

With non-angled halftones, the problem can be avoided by using a stripe size that is divisible by
the pattern height (HDPH).

With angled halftones, there are several concerns. The first concern is that the grids may not
align properly. Careful calculations for the starting grid position and grid offsets will have to be
made to ensure the patterns will align. Another concern is stripe overlap. To avoid any artifacts,
the encoder will have to consider regions of the page that are in the adjacent stripes -- which may
be awkward for some encoder implementations. And finally, striping may reduce the feasibility of
performing filtering or image processing on the grayscale image. These techniques often reduce
the image size slightly or produce negligible artifacts at the edges of the image, which will
become artifacts at stripe boundaries when striping is used.

Admittedly, not a lot of resources have been invested in developing techniques for analyzing and
reducing the artifacts associated with striped halftones.

Summary & T.89 Recommendations

Halftone coding in JBIG2 can achieve a very high compression rates, and could be very popular
in applications where lossy compression is acceptable.

There are two different types of memory constraints:
• Pattern Dictionary Memory
• Gray Image Memory

For small grid sizes, the Gray Image memory is of the greater concern. Tables 1 and 2
demonstrate the large Gray Image requirements when small grid sizes are used. To avoid
excessive Gray Image memory, striping can be used. However, unless special care is taken,
striping can introduce some unwanted artifacts in the image.

For larger grid sizes, the Pattern Dictionary Memory becomes more of a concern. Tables 2 and 3
list the Pattern Dictionary requirements for both small and large grid sizes.

We recommend that memory requirements for both the Gray Image and the Pattern Dictionary
are included in the same general buffer of memory as the Symbol Dictionaries. Because of the
large memory buffers that could be involved, it would be wasteful to allocate a separate buffer of
memory for either the pattern dictionary or the gray level image. We assume that the memory
available for symbol dictionaries would be at least as large as the page buffer -- which would be
large enough to support most practical halftones. There is no real need to place restrictions on
the halftone parameters, as the memory requirements will limit the availability of gray levels and
grid size. However, a limit on the number of gray scales to 256 (8 bit planes) would allow for
more straightforward implementations.

HDPW
(HDPH)

Grid
Angle

(θ)
of

Patterns
of Bit
Planes

Pattern
Memory

Image
Memory

Comp.
Ratio

Striped
Image

Memory

Striped
Comp.
Ratio

2 0º 5 3 0.2k 345k 6 : 1 40k 5 : 1
3 0º 10 4 0.4k 204k 12 : 1 24k 7 : 1
3 45º 6 3 0.3k 630k 7 : 1 242k 4 : 1
4 0º 17 5 0.8k 145k 16 : 1 17k 10 : 1
4 45º 9 4 0.4k 472k 11 : 1 181k 6 : 1
5 0º 26 5 1.3k 92k 20 : 1 11k 12 : 1
5 45º 13 4 0.7k 304k 14 : 1 116k 7 : 1
6 0º 37 6 2.0k 77k 24 : 1 9k 16 : 1
6 45º 19 5 1.0k 263k 17 : 1 101k 9 : 1
8 0º 65 7 4.1k 51k 30 : 1 6k 23 : 1
8 45º 33 6 2.1k 179k 22 : 1 68k 13 : 1

10 0º 101 7 7.1k 33k 37 : 1 4k 29 : 1
10 45º 51 6 3.6k 115k 27 : 1 44k 17 : 1
20 0º 401 9 43.9k 11k 71 : 1 1k 60 : 1
20 45º 201 8 22.0k 38k 49 : 1 15k 39 : 1

Table 2: Memory Requirements for a Full Page 200 dpi Image.
Compression Ratios are listed for figure Miriam200

Strip Size for this test is 256 pixels

HDPW
(HDPH)

Grid
Angle

(θ)

Theoretical
of

Patterns

Theoretical
Pattern
Memory

Practical
of

Patterns*

Practical
Pattern

Memory*
10 0º 101 7k 101 7k
10 45º 51 4k 51 4k
20 0º 401 44k 256 28k
20 45º 201 22k 201 22k
30 0º 901 134k 256 38k
30 45º 451 67k 256 38k
40 0º 1601 550k 256 88k
40 45º 801 275k 256 88k
50 0º 2501 1055k 256 108k
50 45º 1251 528k 256 108k
60 0º 3601 1801k 256 128k
80 0º 6401 6201k 256 248k
100 0º 10001 15939k 256 408k
150 0º 22501 66624k 256 758k
Table 3: Pattern Dictionary Requirements for Large Grid Sizes

(* For Most Practical Implementations, 256 levels of gray will be sufficient)

