SAT COMPETITION 2007 -SOLVER DESCRIPTION

Scaling and Probabilistic Smoothing (SAPS)

Dave A. D. Tompkins, Frank Hutter, and Holger H. Hoos
Computer Science Department
University of British Columbia
{davet,hutter,hogds@cs.ubc.ca

procedure SAPSEF, «, p, WP, Psmooths SAPSthresh)
1 Preface input:
. . . - : propositional formulaF’, scaling factok,
The first part of th|§ paper is essentially a repr|r_1t smoothing factop, random walk probabilitywp,
of the solver description from the 2005 competi- smoothing probabilityPs oo .

tion, as the software submitted this year is identi- >4 eSO AL Smreen

cal to the 2005 software. We entered the SAPS variable assignment

variant implemented in the UBQSAT software pack— for i = 1.|A| doa(i) := RandSelegq{ T, 1 })
age [7], the source code for which is freely available for j :=1.|CLP|doclp(j) =1
athttp://ww satlib. org/ ubcsat . _ e Seore = Bk # it GLE)

The only difference to 2005 is that we submit bestScore:=oo

. . P BestVars:=o
two versions of SAPS' one with the orlglnal default for each i s.t. variablei appears in an unsatisfied clauke

parameters [4], and one with a new set of tuned pa- score := Eval(F,Flip(A, i), CLP)
rameters. These parameters have been found using ffscore = bestScore then
an automatic approach based on local search in pa- BestVars = {i}
rameter space [3]. Section 3 gives a brief overview e are s o e (i}
of this tuning approach and shows very promising end if
performance of the automatically tuned parameters. ﬁ”fbgt Score — curScore) < SAPSumrean then
2 SAPS and VarlantS k := RandSele¢tBestV ars)
A =Flip(A, k)

. . . =]
The SAPS algorithm is a Dynamic Local Search Sewith probability wp do
(DLS) algorithm conceptually closely related to the Z iziﬁg?ﬁefﬁt{l--lfll})
Exponentiated Sub-Gradient (ESG) algorithm de- otherwise
veloped by Schuurmans, Southey and Holte [5]. for ?C*(‘?)S;:t-cclla(@;eg‘Zuns"i“SﬂEd unded do
When introducing SAPS, our major contributions wdtor
were a reduction in the algorithmic complexity as W‘“}joﬁr‘.’t_’j"{”l%fglbagh do
c_ompared to the ESG algorithm and a new perspec- il'p(j')';: elp(j) + (1 — p) x dlp
tive on how the two algorithms were behaving. The den,dﬂl:or
SAPS algorithm is described in detail in our pa- end with
per [4] and Figure 1 contains a pseudo-code repre-endeyv(;‘“ilfe
sentation that accurately reflects how the SAPS al-rgrn (4)
gorithm has been implemented in practice. end procedure SAPS

Similar to most DLS algorithms, SAPS aSSIgnl§igure 1: The SAPS algorithm. For each claugen
a clause penaltylp to each clause, and the search ihere is a clause penalgyp(j) in CLP, anddclp is
evaluation function of SAPS is the sum of the clausge mean of all clause penalties. Bl A, CLP) is the
penalties of unsatisfied clauses. The core seakthn of allcip(j) whereclausej is unsatisfied inF by
procedure is a greedy descent without sideways In practice, Eval(...) values are cached and updated
steps. Whenever a local minimum occurs (no stefier each flip. Flipd, ¢) returns the variable assignment
improvement in the evaluation function greater that with variable; flipped.
SAPSinresn 1S possible) a random walk step oc-
curs with probabilitywp. Otherwise, ascaling step
occurs, where the penalties for unsatisfied clau
are multiplied by the scaling facter (i.e. clp’ :=

Qe clp). After a scaling step, amoothing step
occurs with probabilityP,,..tn. 1N @ smoothing

SAT COMPETITION 2007 -SOLVER DESCRIPTION

Parameter Default value Values considered for tuning Tuned value for random instances
a 13 1.01, 1.066, 1.126, 1.189, 1.256, 1.326, 1.4 1.126
p 0.8 0,0.17,0.333, 0.5, 0.666, 0.83, 1 0.666
Psmooth 0.05 0, 0.033, 0.066, 0.1, 0.133, 0.166, 0.2 0.033
wp 0.01 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 0.06
SAPSipresh -0.1 -0.1 -0.1

Table 1: SAPS parameters, and their default and tuned values. We considsteml \&alues for each of the four
tuning parameters, equally spaced on a grid with a manual chosenamptawer bounds (only for the multiplicative
parametery, we used a logarithmic grid).

space, computing the objective function as the me-

,, imeoutf" o™ 100 train inst, SATO4] o .- " N ’ -
2 ool ¥ Soestinst saTos dian runtime of SAPS for solving a fixed number of
g ' o % N instances (we uself = 100).
8 100 RO H .
= x %a S e . We considered the four SAPS parametets (
= 10 ° o
g . "o 853 °e ‘* py wp, Psmoorn) fOr tuning, fixing the fifth one,
s . oo,"b A <~ : SAPSinresn (but tuning SAPSy,-esn, Would also
R PRI Sk x be interesting). In previous research [4, 6, 2], we
e noticed that optimal parameter values can vary a lot
<0.01 ®O0 x x .)
] and so we allowed a wide range of parameter values;
_ CPU time(s), default parameters we summarise our choices in Table 1.
Figure 2:Perf_or_mance of tuned SAPS parameters vs. its \We tuned SAPS on 100 random instances from
defaults on training and test data. the SAT04 competition and tested on the remaining

50 random SATO04 instances, as well as on the 180

step, all penalties are adjusted according to the mé%{ﬁilablt_-:‘ random instances from the SAT05 compe-
penalty valueclp and the smoothing factqs (i.e tition. Figure 2 shows the results. Thus, we expect

clp’ = clp+ (1 — p) - clp). the tuned version of SAPS to outperform the de-
Along with the SAPS algorithm, we also default version quite clearly on random instances. We
veloped a reactive variant (RSAPS) [4] that reafannot say anything about its performance on other

tively changes the smoothing parameteduring types of instances, but, using ParamiLS, it would

the search process whenever search stagnatioP§sVery €asy to tune SAPS for good performance

detected, using the same adaptive mechanism i@ more general distribution of instances as well

Adaptive Novelty [1]. More recently we have de__(possibly loosing peak performance for specialised
veloped ade-randomised variant of SAPS called instances).
SAPS/NR .[8], which eliminates all sources qf rarReferences
dom de.CI.SIQnS thrOUghOUt. the Se.arch (breakln_g tlﬁ? H. H. Hoos. An adaptive noise mechanism for WalkSAT. In
deterministically, performing per|od!c smqothlng, Proc. AAAI-02, pages 655660, 2002.
and.n_o. random walk §teps) ar!d which relies up F. Hutter, Y. Hamadi, K. Leyton-Brown, and H. H. Hoos.
the initial random variable assignment as the only performance prediction and automated tuning of randomized
source of randomness. and parametric algorithms. Proc. CP-06, pages 213-228,

In our experiments, we have found that SAPS, 2006.
RSAPS and SAPS/NR are amongst the state-of-tf#- F. Hutter, H. H. Hoos, and T. 8tzle. Automatic algorithm
art SLS SAT solvers, and each typically performs configuration based on local search. Under review.
better than ESG, and the best WalkSAT variats [4] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and
N Ity+ 41 We h | ducted . t probabilistic smoothing: Efficient dynamic local search for
hoveh [S]APSe' ave _? SIO C‘;r” ucte e;‘/lpAeQ”;eAr%S SAT. InProc. CP-02, pages 233-248, 2002.
that show IS similarly effective on . [5] D. Schuurmans, F. Southey, and R. C. Holte. The exponen-

prObIem Instances [6] tiated subgradient algorithm for heuristic boolean progra

3 Automated Parameter Tuni ng ming. InProc. [JCAI-01, pages 334-341, 2001.
[6] D.A.D. Tompkins and H. H. Hoos. Scaling and probabilis-

We are currently performing research in automatic tic smoothing: Dynamic local search for unweighted MAX-
methods for parameter adjustment (for both local SAT. InProc. Al-03, pages 145-159, 2003.

search and tree search algorithms) and applied @rieD. A. D. Tompkins and H. H. Hoos. UBCSAT: An imple-
of our methods for tuning SAPS. This method, mentation and experimentation environment for SLS algo-
called ParamILS [3], views parameter tuning as an gtlhgmgégfm and MAX-SAT. InProc. SAT04, pages 305-
optimisation problem. In a nutshell, it performifﬂ '

iterated | | hi t fi ti D. A. D. Tompkins and H. H. Hoos. Warped landscapes and
an terated local search in parameter connigurati random acts of SAT solving. IRroc. ISAIM-04, 2004.

