
SAT COMPETITION 2005 - SOLVER DESCRIPTION

Scaling and Probabilistic Smoothing (SAPS)

Dave A. D. Tompkins, Frank Hutter, and Holger H. Hoos
Computer Science Department

University of British Columbia

{davet,hutter,hoos}@cs.ubc.ca

1 Preface
This paper is essentially a reprint of the solver de-
scription from the 2004 competition, as the software
submitted this year is identical to the 2004 software.

2 SAPS and Variants
The SAPS algorithm is a Dynamic Local Search
(DLS) algorithm conceptually closely related to the
Exponentiated Sub-Gradient (ESG) algorithm de-
veloped by Schuurmans, Southey and Holte [3].
When introducing SAPS, our major contributions
were a reduction in the algorithmic complexity as
compared to the ESG algorithm and a new perspec-
tive on how the two algorithms were behaving. The
SAPS algorithm is described in detail in our pa-
per [2] and Figure 1 contains a pseudo-code repre-
sentation that accurately reflects how the SAPS al-
gorithm has been implemented in practice.

Similar to most DLS algorithms, SAPS assigns
a clause penalty clp to each clause, and the search
evaluation function of SAPS is the sum of the clause
penalties of unsatisfied clauses. The core search
procedure is a greedy descent without sideways
steps. Whenever a local minimum occurs (no step
improvement in the evaluation function greater than
SAPSthresh is possible) a random walk step oc-
curs with probability wp. Otherwise, a scaling step
occurs, where the penalties for unsatisfied clauses
are multiplied by the scaling factor α (i.e. clp′ :=
α · clp). After a scaling step, a smoothing step
occurs with probability Psmooth. In a smoothing
step, all penalties are adjusted according to the mean
penalty value clp and the smoothing factor ρ (i.e.
clp′ := clp + (1 − ρ) · clp).

Along with the SAPS algorithm, we also de-
veloped a reactive variant (RSAPS) [2] that reac-
tively changes the smoothing parameter ρ during
the search process whenever search stagnation is

procedure SAPS(F , α, ρ, wp, Psmooth, SAPSthresh)
input:

propositional formula F , scaling factor α,
smoothing factor ρ, random walk probability wp,
smoothing probability Psmooth,
SAPS threshold SAPSthresh

output:
variable assignment A

for i := 1..|A| do a(i) := RandSelect({>,⊥})
for j := 1..|CLP | do clp(j) := 1
while (F is unsatisfied under A) do

curScore := Eval(F, A, CLP)
bestScore := ∞
BestV ars := ∅
for each i s.t. variablei appears in an unsatisfied clause do

score := Eval(F,Flip(A, i), CLP)
if score < bestScore then

bestScore := score
BestV ars := {i}

else if score = bestScore then
BestV ars := BestV ars ∪ {i}

end if
end for
if (bestScore− curScore) < SAPSthresh then

k := RandSelect(BestV ars)
A := Flip(A, k)

else
with probability wp do

k := RandSelect({1..|A|})
A := Flip(A, k)

otherwise
for each j s.t. clausej is unsatisfied under A do

clp(j) := clp(j)× α
end for
with probability Psmooth do

for j := 1..|CLP | do
clp(j) := clp(j) + (1− ρ)× clp

end for
end with

end with
end if

end while
return (A)

end procedure SAPS

Figure 1: The SAPS algorithm. For each clause j in
F there is a clause penalty clp(j) in CLP , and clp is
the mean of all clause penalties. Eval(F,A, CLP)
is the sum of all clp(j) where clausej is unsatisfied
in F by A. In practice, Eval(...) values are cached
and updated after each flip. Flip(A, i) returns the
variable assignment A with variable i flipped.

SAT COMPETITION 2005 - SOLVER DESCRIPTION

detected, using the same adaptive mechanism as
Adaptive Novelty+ [1]. More recently we have de-
veloped a de-randomised variant of SAPS called
SAPS/NR [6], which eliminates all sources of ran-
dom decisions throughout the search (breaking ties
deterministically, performing periodic smoothing,
and no random walk steps) and which relies upon
the initial random variable assignment as the only
source of randomness.

In our experiments, we have found that SAPS,
RSAPS and SAPS/NR are amongst the state-of-the-
art SLS SAT solvers, and each typically performs
better than ESG, and the best WalkSAT variants e.g.,
Novelty+ [2]. We have also conducted experiments
that show SAPS is similarly effective on MAX-SAT
problem instances [4].

3 Contest Implementation
For the SAT 2005 competition we entered just the
SAPS variant which was implemented in the UBC-
SAT software package [5] the source code for which
is freely available at http://www.satlib.
org/ubcsat. The default parameters for SAPS
were used (α, ρ, wp, Psmooth, SAPSthresh) = (1.3,
0.8, 0.01, 0.05, -0.1).

References
[1] H. H. Hoos. An adaptive noise mechanism for WalkSAT. In

Proc. of the 18th Nat’l Conf. in Artificial Intelligence (AAAI-
02), pages 655–660, 2002.

[2] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for
SAT. In LNCS 2470: Proc. of the Eighth Int’l Conf. on
Principles and Practice of Constraint Programming (CP-
02), pages 233–248, 2002.

[3] D. Schuurmans, F. Southey, and R. C. Holte. The exponen-
tiated subgradient algorithm for heuristic boolean program-
ming. In Proc. of the Seventeenth Int’l Joint Conf. on Artifi-
cial Intelligence (IJCAI-01), pages 334–341, 2001.

[4] D. A. D. Tompkins and H. H. Hoos. Scaling and probabilis-
tic smoothing: Dynamic local search for unweighted MAX-
SAT. In LNAI 2671: Proc. of the 16th Conf. of the Canadian
Society for Computational Studies of Intelligence (AI-2003),
pages 145–159, 2003.

[5] D. A. D. Tompkins and H. H. Hoos. UBCSAT: An imple-
mentation and experimentation environment for SLS algo-
rithms for SAT and MAX-SAT. In LNCS 3542: Proceed-
ings of the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), pages 305–
319, 2004.

[6] D. A. D. Tompkins and H. H. Hoos. Warped landscapes and
random acts of SAT solving. In Proc. of the Eighth Int’l Sym-
posium on Artificial Intelligence and Mathematics (ISAIM-
04), 2004.

