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1 SAPS and Variants

The SAPS algorithm is a Dynamic Local Search
(DLS) algorithm conceptually closely related to the
Exponentiated Sub-Gradient (ESG) algorithm de-
veloped by Schuurmans, Southey and Holte [3].
When introducing SAPS, our major contributions
were a reduction in the algorithmic complexity as
compared to the ESG algorithm and a new perspec-
tive on how the two algorithms were behaving. The
SAPS algorithm is described in detail in our pa-
per [2] and Figure 1 contains a pseudo-code repre-
sentation that accurately reflects how the SAPS al-
gorithm has been implemented in practice.

Similar to most DLS algorithms, SAPS assigns
a clause penaltyclp to each clause, and the search
evaluation function of SAPS is the sum of the clause
penalties of unsatisfied clauses. The core search
procedure is a greedy descent without sideways
steps. Whenever a local minimum occurs (no step
improvement in the evaluation function greater than
SAPSthresh is possible) a random walk step oc-
curs with probabilitywp. Otherwise, ascaling step
occurs, where the penalties for unsatisfied clauses
are multiplied by the scaling factorα (i.e. clp′ :=
α · clp). After a scaling step, asmoothing step
occurs with probabilityPsmooth. In a smoothing
step, all penalties are adjusted according to the mean
penalty valueclp and the smoothing factorρ (i.e.
clp′ := clp + (1− ρ) · clp).

Along with the SAPS algorithm, we also de-
veloped a reactive variant (RSAPS) [2] that reac-
tively changes the smoothing parameterρ during
the search process whenever search stagnation is
detected, using the same adaptive mechanism as
Adaptive Novelty+ [1]. More recently we have de-
veloped ade-randomisedvariant of SAPS called
SAPS/NR [6], which eliminates all sources of ran-
dom decisions throughout the search (breaking ties
deterministically, performing periodic smoothing,

and no random walk steps) and which relies upon
the initial random variable assignment as the only
source of randomness.

In our experiments, we have found that SAPS,
RSAPS and SAPS/NR are amongst the state-of-the-
art SLS SAT solvers, and each typically performs
better than ESG, and the best WalkSAT variantse.g.,
Novelty+ [2]. We have also conducted experiments
that show SAPS is similarly effective on MAX-SAT
problem instances [5].

2 Contest Implementation

For the SAT 2004 competition, we entered three al-
gorithm variants: SAPS, RSAPS and SAPS/NR. All
three algorithms were implemented in the UBCSAT
software package [7], the source code for which
is freely available athttp://www.satlib.
org/ubcsat . For all three algorithms, the de-
fault parameters were used (α, ρ, wp, Psmooth,
SAPSthresh) = (1.3, 0.8, 0.01, 0.05, -0.1). For
the SAPS/NR algorithm, a greedy initialisation was
used where each variable was initialised to>, ⊥ or
RandSelect({>,⊥}) if there were more occurrences
of the positive literal, negative literal, or neither, re-
spectively. The performance results for all three al-
gorithms after the first stage of the competition were
nearly identical. RSAPS and SAPS/NR each solved
27 series and 143 instances, while SAPS solved 26
series and 144 instances. We chose SAPS to con-
tinue onward into the final rounds of the competi-
tion.

3 Ongoing Research

Since the introduction of the SAPS algorithm, our
focus has been on understanding the behaviour of
SAPS and other DLS algorithms as opposed to im-
proving the performance of the algorithm.
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SAT COMPETITION 2004 -SOLVER DESCRIPTION

procedureSAPS(F , α, ρ, wp, Psmooth, SAPSthresh)
input:

propositional formulaF , scaling factorα,
smoothing factorρ, random walk probabilitywp,
smoothing probabilityPsmooth,
SAPS thresholdSAPSthresh

output:
variable assignmentA

for i := 1..|A| do a(i) := RandSelect({>,⊥})
for j := 1..|CLP | do clp(j) := 1
while (F is unsatisfied underA) do

curScore := Eval(F, A, CLP )
bestScore :=∞
BestV ars := ∅
for each i s.t.variablei appears in an unsatisfied clausedo

score := Eval(F,Flip(A, i), CLP )
if score < bestScore then

bestScore := score
BestV ars := {i}

else ifscore = bestScore then
BestV ars := BestV ars ∪ {i}

end if
end for
if (bestScore− curScore) < SAPSthresh then

k := RandSelect(BestV ars)
A := Flip(A, k)

else
with probability wp do

k := RandSelect({1..|A|})
A := Flip(A, k)

otherwise
for eachj s.t.clausej is unsatisfied underA do

clp(j) := clp(j)× α
end for
with probability Psmooth do

for j := 1..|CLP | do
clp(j) := clp(j) + (1− ρ)× clp

end for
end with

end with
end if

end while
return (A)

end procedure SAPS

Figure 1: The SAPS algorithm. For eachclausej in
F there is a clause penaltyclp(j) in CLP , andclp is
the mean of all clause penalties. Eval(F,A, CLP )
is the sum of allclp(j) whereclausej is unsatisfied
in F by A. In practice, Eval(...) values are cached
and updated after each flip. Flip(A, i) returns the
variable assignmentA with variablei flipped.

When studying the performance of SAPS when
applied to the unweighted MAX-SAT problem [5]
we made some interesting observations. For most
of the regular SAT instances we had tested, the op-
timal value ofα was not significantly different from
the default value of1.3. However, we found that
for slightly overconstrained MAX-SAT instances,
the optimal value ofα was significantly smaller,
and that optimal values were closer to1.05. For
heavily overconstrained instances, the optimal value
was even smaller, and closer to1.01. This suggests
that for SAPS and other DLS algorithms, a reactive

scheme for updating the scaling parameterα could
be very effective.

We set out to investigate the behaviour of DLS
algorithms and answer the question if DLS algo-
rithms were warping their search landscapes in an
intelligent manner in [6]. We found no evidence
that the clause penalties of SAPS were making the
warped landscapes any easier to search, which sug-
gests that DLS algorithms are behaving quite dif-
ferently than expected based on some of the orig-
inal intuitions underlying these algorithms. In the
same study, we also investigated the importance
of random decisions in SAPS, and found that for
SAPS/NR the random initialisation of variables is
sufficient to achieve the full variance in runtime
observed by other state-of-the-art stochastic local
search algorithms.

Recently, Thorntonet al. developed the Pure
Additive Weighting Scheme (PAWS) algorithm and
found that PAWS can outperform SAPS on larger,
more difficult instances [4]. With these more re-
cent developments, and our increasingly better un-
derstanding of DLS algorithms and their behaviour,
we are now in an excellent position for developing
the next generation of DLS algorithm for SAT.
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