Captain Jack: New Variable Selection Heuristics in
Local Search for SAT

Dave A. D. Tompkins', Adrian Balint?, and Holger H. Hoos!

Department of Computer Science 2Institute of Theoretical Computer Science
University of British Columbia, Canada Ulm University, Germany
{davet, hoos}@cs.ubc.ca adrian.balint@uni-ulm.de

Abstract. Stochastic local search (SLS) methods are well known for their abil-
ity to find models of randomly generated instances of the propositional satisfia-
bility problem (SAT) very effectively. Two well-known SLS-based SAT solvers
are SPARROW, one of the best-performing solvers for random 3-SAT instances,
and VE-SAMPLER, which achieved significant performance improvements over
previous SLS solvers on SAT-encoded software verification problems. Here, we
introduce a new highly parametric algorithm, CAPTAIN JACK, which extends the
parameter space of SPARROW to incorporate elements from VE-SAMPLER and
introduces new variable selection heuristics. CAPTAIN JACK has a rich design
space and can be configured automatically to perform well on various types of
SAT instances. We demonstrate that the design space of CAPTAIN JACK is easy
to interpret and thus facilitates valuable insight into the configurations automat-
ically optimized for different instance sets. We provide evidence that CAPTAIN
JACK can outperform well-known SLS-based SAT solvers on uniform random
k-SAT and ‘industrial-like’ random instances.

1 Introduction

The propositional satisfiability problem (SAT) is one of the most prominent problems
in computer science, not only because it is a prototypical NP-complete problem, but
also because of its simplicity, expressiveness and practical relevance. Problem instances
from domains such as software verification can be easily encoded into SAT, and there
is much interest in developing SAT solvers that can solve these practical problems ef-
fectively. There is also much interest in random instances; they have been frequently
studied and are underlying one of the three categories in the SAT competition.

Two popular approaches for solving SAT are conflict driven clause learning (CDCL)
and stochastic local search (SLS), and in this work we focus on the latter. SLS solvers
are usually incomplete, i.e., they cannot determine with certainty that a given propo-
sitional formula is unsatisfiable. SLS algorithms for SAT typically start by randomly
assigning to every variable appearing in a given formula a value of either true or false.
Then, in each subsequent search step a variable is selected to have its truth assignment
flipped from true to false or vice versa.

Because SLS is the most effective approach for solving random satisfiable instances,
there has been much interest in studying the performance of SLS-based solvers on ran-
dom instances from the so-called uniform random k-SAT distribution [6], especially

3-SAT instances at, or near, the solubility phase transition, where there is an equal
probability of generating a satisfiable or unsatisfiable instance [12]. One of the best
known SLS solvers for large random 3-SAT instances near the phase transition is SPAR-
ROW [3], which replaced the variable selection heuristic in GNOVELTY™ [13] with a
probabilistic distribution-based mechanism. We will describe SPARROW in Section 2.1.

While SLS is currently not competitive with CDCL on large satisfiable industrial
instances, there has been some recent success in closing the gap. The VE-SAMPLER
algorithm [18] was able to achieve a significant improvement in this area by solving
the CBMC software verification benchmark instances over ten times faster than the
previous best known SLS algorithm SATENSTEIN-LS [10]. In Section 2.2, we will
describe some of the specifics of VE-SAMPLER.

SATENSTEIN-LS and VE-SAMPLER are examples of highly parametric algorithms
that are designed to be automatically configured, using an automated algorithm config-
urator that takes as inputs an algorithm, its configuration space and an instance set and
then attempts to find the best-performing configuration of the algorithm on the given
instance set. Following this approach, which is a prominent special case of computer-
aided algorithm design [7], the traditional role of an algorithm designer is redefined to
be more focused on constructing rich and interesting spaces of algorithms.

It is well established that SAT instances drawn from different sources and distri-
butions have different characteristics, and the efficacy of a solver on an instance often
depends on those characteristics. Portfolio-based approaches, such as SATZILLA [19],
exploit this phenomenon by selecting one or more solvers to be used for solving a
given instance based on characteristics of that instance. One of our goals in this work
was to create a highly parametric algorithm that can help explore the algorithmic dif-
ferences (or similarities) between configurations that achieve good results on different
types of instances (e.g., random vs application or random 3-SAT vs 7-SAT). To achieve
this goal, our algorithm should have a parameter space that is not only easy to under-
stand, but also contains configurations that achieve good performance on a wide variety
of instance types; without good performance, the resulting configurations are not very
meaningful, and without intuitively understandable configurations, it is difficult to draw
conclusions from automatically optimized configurations. In Section 4, we introduce
CAPTAIN JACK, a new, highly parametric algorithm that attempts to strike a balance
between these two objectives. It was named for the fictional pirate Captain Jack Spar-
row, because it incorporates elements from SPARROW, as well as because it can achieve
good performance on a wide variety of instances, and is hence a jack-of-all-trades.

In Section 6, we present evidence that CAPTAIN JACK does achieve good perfor-
mance on nine different instance sets, and is now the best known SLS-based SAT al-
gorithm for large random 3-SAT instances and a class of recently proposed ‘industrial-
like’ instances [1]. Moreover, we show how the resulting configurations found by CAP-
TAIN JACK provide interesting insight into the configurations found for each of the
instance sets; for example, we found evidence that the CAPTAIN JACK configuration
optimized for the previously mentioned industrial-like instances exhibits characteristics
consistent with those obtained for some practical software verification instances.

Additional information and experimental data, including source code and instance
sets, can be found at www.cs.ubc.ca/research/captain-jack.

www.cs.ubc.ca/research/captain-jack

2 Background

Throughout this work, we use the approach for modeling and representing SLS algo-
rithms introduced by Tompkins and Hoos [18], according to which each search step
involves three heuristic stages. First, the variables are filtered so that only a subset of
variables are considered as flip candidates. Next, the candidates are evaluated according
to one or more variable expressions (VEs), where each VE is a mathematical expression
that can include properties of the variables. Finally, once the VEs have been evaluated,
a variable selection mechanism (VSM) is employed to select the variable to be flipped.
A controller determines for each search step which filter, VEs and VSM are used.

Some variable properties are defined via a VE that contains other properties, such
as score, which is equivalent to the VE (make — break), where the properties make
and break measure the number of clauses that would become satisfied and unsatisfied,
respectively, if the variable were to be flipped. The value of a property can depend on the
specific context in which the variable is selected and additional state information of the
algorithm. For example, algorithms with dynamic clause penalties, such as PAWS [15]
and GNOVELTY ™ [13], use a penalized property penScore, whose value depends on the
full variable assignment and on the clause penalties (weights).

Variable properties can be loosely classified as either greedy properties, which tend
to increase the number of satisfied clauses during search, such as make and break, or
diversification properties, which tend to better explore the search space and avoid local
minima, such as age and flips. The age property is defined as the number of search steps
that have occurred since the given variable was last flipped. The flips property (a.k.a.
Sflipcount) measures how many times a variable has been flipped. In Section 4, we will
describe several new greedy and diversification properties.

2.1 SPARROW

The SPARROW algorithm [3], named after the city of Ulm’s mascot, is based on the
GNOVELTY™ algorithm [13]. GNOVELTY ™ combines a clause penalty-based scheme
similar to PAWS [15] with the promising variable scheme of G2WSAT [11] (see [13]
and the GNOVELTY™" source code, version 1.2, from the 2009 SAT Competition for
more details). The behaviour of SPARROW differs from GNOVELTY™ only when there
are no (penalized) promising variables, in which case a novel VE and a probabilistic
VSM is used instead of the NOVELTY-based component in GNOVELTY ™.

The VE used by SPARROW is (sparrowScore - sparrowAge), where sparrowScore
and sparrowAge are defined as follows':
P if penScore < 0

. Ace — 1 (age)ce -
1 otherwise) sparrowAge +

sparrowScore = {
Cd

SPARROW uses a distribution-based VSM, where each variable is selected propor-
tionally to the VE (sparrowScore - sparrowAge). When we use a similar approach to

!'The definition and notation we use differs slightly from the published version of SPAR-
ROW [3], but accurately reflects the source code implementation.

select an element from a set where the elements are assigned fixed weights, we will
refer to it as weighted selection.

The full parameter space for SPARROW includes the three constants mentioned
above and the smoothing probability (ps) inherited from GNOVELTY™. Balint and
Frohlich proposed (¢, ¢4, ce, ps) := (2,4,10°,0.347) as a good configuration for large
3-SAT instances, which was found by manual tuning on selected 3-SAT competition
benchmark instances [3].

2.2 VE-SAMPLER and PARAMILS

VE-SAMPLER [18] was developed to demonstrate the power of using new and inno-
vative variable properties and VEs in SLS algorithms. It was inspired by the VW2
algorithm [14], which was observed to be very effective on the CBMC software verifi-
cation instances with the VE (break + c - flips). Based on the WALKSAT architecture,
VE-SAMPLER uses the selection of an unsatisfied clause as a filter. In each search step,
a controller selects one of six VEs using weighted selection; one of these VEs corre-
sponds to a (freebie) random walk step, and the remaining five are all of the general
form:
||greedy||“* + clw(s,m, 1) - ||diversification|**

where ||p|| indicates a property p that is normalized to values between zero and one,
and clw(s, m,) is a simple mechanism that selects between three coefficients (s, m,)
depending on whether the clause length is respectively less than, equal to, or greater
than three. Each VE uses one greedy property (chosen from a set of five) and one
diversification property (chosen from a set of thirteen), except for one VE that uses
two greedy properties (see [18] for details). VE-SAMPLER uses maximum VSM, where
the variable with the maximum evaluated VE is selected. At the time of this writing,
VE-SAMPLER is the fastest SLS-based SAT solver on the CBMC and SWV software
verification instances [18]; it has subsequently been shown to have good performance
on random 3-SAT instances [16], although on these, it does not reach the performance
of SPARROW or SATENSTEIN-LS.

The configuration space of VE-SAMPLER is enormous, with over 10°° unique con-
figurations. The configurator used on VE-SAMPLER was PARAMILS [9,8], an SLS-
based procedure that searches the configuration space of a given algorithm. The primary
inputs to PARAMILS are a target solver (binary), a set of target (training) instances,
a solver cutoff time, an evaluation function and a configuration file that specifies the
configuration space (each solver parameter along with a set of possible values). The
evaluation function used was the penalized average runtime (PAR-10), where instances
not solved within the cutoff are counted as ten times the given cutoff time. The primary
output of PARAMILS is the best configuration of the target algorithm that PARAMILS
found by the search process, i.e., the configuration that achieves the best PAR-10 per-
formance on the instances in the given set.

To ensure that the results from PARAMILS generalize to instances other than those
used during the optimization process, we use a set of test instances to report final results
that is disjoint from the training set used when running PARAMILS.

3 Design Considerations underlying CAPTAIN JACK

Many SLS for SAT algorithms switch between greedy (intensification) steps and diver-
sification steps, or use diversification properties as tie-breakers in greedy steps. SPAR-
ROW and VE-SAMPLER have mixed steps that combine a greedy and a diversification
property in a VE; the likelihood of a variable being selected can be dominated by the
greedy property, the diversification property or neither of them. CAPTAIN JACK allows
for all three types of steps (greedy, diversification and mixed), and we introduce pa-
rameters to control the balance between the three. Mixed steps are rarely used in SLS
algorithms for SAT, and we were interested in observing the proportion of mixed steps
PARAMILS would select, and how that proportion would depend on the target instance
set. We were also curious whether PARAMILS would select a distribution-based VSM
as in SPARROW or a maximum VSM as in VE-SAMPLER; therefore, CAPTAIN JACK
supports both types of VSMs.

One of the objectives of our earlier work had been to encourage the use of more di-
verse variable properties [18]; this was achieved in VE-SAMPLER by means of categor-
ical parameters that select properties from a given set. One problem with this approach
is that a configuration only has a few selected properties, which may include duplicates,
and it is hard to assess the viability of each individual property. To help avoid this prob-
lem in CAPTAIN JACK, each property has a parameterized weight that controls how
frequently it is selected. This makes it easier to assess which properties are important
for a given instance set. It also renders CAPTAIN JACK an excellent framework for in-
troducing and testing new variable properties; after these are added to the configuration
space, the automated configurator can gradually introduce them into configurations by
means of modifying their weights relative to other properties.

One significant departure in CAPTAIN JACK from SPARROW is the absence of pe-
nalized clause weights. In preliminary experiments, we observed that with penalized
clauses the proportion of (greedy) promising steps was significantly higher, reducing
the impact of the core CAPTAIN JACK components we were interested in exploring.
In addition, we found the penalized promising variable mechanism as implemented in
GNOVELTY™" (and, hence, SPARROW) problematic and memory intensive for large in-
stances.

Finally, when designing a highly parametric algorithm with the aim of configuring
it automatically, it is important to understand the limitations of the automatic algorithm
configurators currently available. The state-of-the-art configurator PARAMILS, which
we used in this work, tends to have difficulties with configuration spaces like that of
VE-SAMPLER, characterized by many categorical parameters (e.g., property selection)
and complex interaction between parameters (e.g., the normalization and non-linear
transformation for each property). The same holds for all other configurators we are cur-
rently aware of. To render CAPTAIN JACK more easily configurable, we decided to use
very few categorical parameters, no conditional parameter dependencies and smoother
interactions between parameters (as introduced by the previously mentioned property
weights).

4 Captain Jack

In each search step of CAPTAIN JACK, the controller makes four core algorithmic deci-
sions that determine the behaviour of the solver:

if promising steps are enabled and promising variables exist, select one; otherwise,
determine if a greedy, diversification or mixed step will occur;

select the greedy and/or diversification properties to use; and

determine the VSM (maximum or distribution-based) to be used and select the
variable accordingly.

Sl o e

First, if promising variables exist, a straightforward G2WSAT greedy search step [11]
is taken, in which the promising variable with the best score is selected, breaking ties
by the age property; this step is skipped if promising variables are turned off, which is
one of the many configurable parameters. If no promising variables exist, an unsatisfied
clause is selected at random (i.e., the same filter as in WALKSAT is used).

The second decision in CAPTAIN JACK is which fype of step to take: a greedy step,
a diversification step or a mixed step. Each type of step has a parameterized weight, and
the type of step is determined by weighted selection. For instances with variable clause
lengths, the weights also depend on the length of the selected clause. CAPTAIN JACK
uses a clause length range classification similar to VE-SAMPLER, where each clause
falls into one of the following four ranges: {< 2,3,4...9,> 10}; thus, for instances
with variable clause lengths, there are 12 weights that determine the step type.

The next decision is to select the greedy and/or diversification properties. There are
9 greedy and 17 diversification properties, as described in Table 1. Each property is
assigned a parameterized weight and is selected by weighted selection. For greedy and
diversification steps, only one property is selected, while for mixed steps one greedy
and one diversification property is selected, and the product of those two is computed.

The final decision in CAPTAIN JACK is whether to use a distribution-based VSM or
a maximum VSM. The probability of using a maximum VSM is a parameterized value
that is determined by the clause size and the type of the search step, resulting in 12 total
probabilities for instances with variable clause lengths.

Table 1 gives an overview of the variable properties used in CAPTAIN JACK. As
in VE-SAMPLER, when using interchangeable properties, special care must be taken to
adjust the values of the score properties that can have negative values, and the break and
flips properties, where large property values indicate undesirable choices. In CAPTAIN
JACK, we opted for simplicity over potentially more effective normalizations and used
very straightforward adjustments. For example, a constant is added to the score property
values so the minimal candidate variable score is one (see website for more details).

In addition to the five greedy properties used in VE-SAMPLER, we introduced four
new greedy properties (see upper part of Table 1). The sparrowScore property assigns a
constant value of one to non-promising variables with a positive score; sparrowScore,,
replaces this constant with a new parameter (c;). The scoreRatio has two obvious forms,
and we added a separate Boolean parameter (bs) to determine which of the two ratios
should be used. reIMake and relBreak were already used in VE-SAMPLER, as the rel-
ative number of clauses affected, normalized by the number of occurrences of the vari-
able (numOcc and numOcc’ are the number of clauses the variable currently appears in

make number of clauses that become satisfied if the variable is flipped

break number of clauses that become unsatisfied if the variable is flipped

score increase in the number of satisfied clauses if the variable is flipped (make — break)
sparrowScore ., from the SPARROW algorithm: if score < 0, ¢,*“"®, otherwise ¢

scoreRatio if bs, (make /(make + break)), otherwise (make/(break + €))

re]Make (make /numOcc): make adjusted by the number of occurrences of the variable (see text)
relBreak (break / (numOcc’ + €))

relScore (relMake — relBreak)

relScoreRatio same as scoreRatio, with relMake and relBreak

rand a random number between zero and one

flat no property value, i.e., one

fair 1 for the ‘next’ variable in the clause, otherwise O (see text)

last 0 if the variable was flipped the last time the clause was selected, otherwise 1

age number of search steps since the variable was last flipped

age, number of search steps since the flip prior to the most recent flip

agey number of search steps since the fifth most recent flip

ageRange the age property with less sensitivity | age/c, |

sparrowAge from the SPARROW algorithm: 1 + (age/cq)®

tabu 0 if the variable is tabu (age < c), otherwise 1

flips number of times the variable has been flipped

flops number of times the variable appeared in a selected clause, but was not flipped
normFlops similar to flops, but is increased by 1/clauseLen each time it is not flipped
resetFlops same as flops, but reset to zero whenever the variable is flipped (excl. promising steps)
relFlips (flips /numOcc)

relFlops (relFlops /numOcc)

relNormFlops (normFlops / numOcc)

Table 1. Variable properties in CAPTAIN JACK Top: greedy, bottom: diversification.

as false and true, respectively). The properties relScore and relScoreRatio are defined
similarly.

Furthermore, we introduced ten new diversification properties (see lower part of Ta-
ble 1). Whenever a clause is selected and the fair property is selected, the ‘next’ variable
in the clause is assigned a property value of one, and all others are zero; this is imple-
mented by maintaining a counter for each clause and simply selecting the next variable
in sequence. The last property is zero for the variable that was flipped at the most recent
time the same clause was selected, regardless of the property based on which that pre-
vious selection was made. In VE-SAMPLER, the age’ property was used to keep track
of the number of steps since the flip prior to the most recent flip. Here, we call this
property age, and generalize it to the age; family of properties. In CAPTAIN JACK we
wanted to explore larger values of k and added the age property. The ageRange prop-
erty uses a divisor parameter (c,.) and a floor function to achieve a coarser evaluation of
age. In VE-SAMPLER, the filtCount property was used to maintain how often a vari-
able appears in the filtered variables (i.e., the selected clause). The flops property is very
similar, but is instead only incremented when the variable appears in the selected clause
and is not flipped. The normFlops property is related to flops, but is incremented by
(1/clauseLen) when the variable is not flipped. The resetFlops property is the same as
flops, but is reset to zero whenever the variable is selected (excluding when it is flipped
as a promising variable). Finally, the relFlips, relFlops and relNormFlops properties
are all normalized analogously to reIMake.

S Experimental Setup

For our experiments we used nine benchmark sets: six random uniform k-SAT sets, one
random industrial-like set and two sets of SAT-encoded software verification problems.
For the random instances, we generated two sets each for £ = 3,5, 7; one set for
smaller instances at the solubility phase transition and one set of larger, slightly un-
derconstrained instances. For the phase transition sets, we used clauses/variables ratios
of 4.26, 21.11 and 87.79 for 3-, 5-, and 7-SAT, respectively, as specified by Mertens
et al. [12]. For the underconstrained sets, we chose ratios of 4.2, 20 and 85, as previ-
ously used in the SAT competition. To select the instance size n for these sets, we took
into consideration both the sizes used in the competition and the time required to solve
instances. We selected n = 1000 (1k) and 10000 (10k) for 3-SAT, 100 and 500 for
5-SAT, and 60 and 90 for 7-SAT. For each set, we generated instances with the 2009
SAT competition generator and removed instances that were not solved by TNM within
10000 seconds; we randomly selected 250 instances for training and 250 for testing.

The CBMC and SWYV software verification instance sets have been previously stud-
ied in the literature [10,8,18]. While PICOSAT [4] can solve any of the instances in
these sets in less than two seconds, they are known to be challenging for SLS-based
solvers; in fact, about 50% of the instances in SWV cannot be solved consistently by
any SLS-based SAT solver we are aware of.

Finally, we used the double power-law generator provided by Ansétegui et al. to
generate a set of random industrial-like instances we dub IL50k; we chose this gener-
ator since it produces variable length clauses that have properties similar to industrial
problems [1]. Our set contains satisfiable instances with the same characteristics as the
instances used by Ansétegui et al. (22, 8, k) := (2.650,0.75, 5), but with 5 - 10* (50k)
variables instead of 500k; we randomly chose 50 training and 50 test instances.

We compared the performance of CAPTAIN JACK against six state-of-the-art SLS
solvers. These include the three top SLS solvers from the 2009 SAT Competition ran-
dom category, TNM, GNOVELTY T2 and ADAPTG?WSAT2009%* (henceforth, as
AG?22009+1), for which we used the parameterless competition versions (see the com-
petition booklet for details). We also selected the UBCSAT [17] implementation of
SPARROW [3]; it behaves exactly like the original implementation, but is more efficient
and exposes additional parameters. The final two solvers are the highly parametric VE-
SAMPLER [18] and SATENSTEIN-LS [10] solvers. For VE-SAMPLER, we used the
three native (i.e., non-interpreted) implementations configured for CBMC, SWV and
random 3-SAT instances at the phase transition (R3SAT in [10]). We chose not to re-
configure the interpreted version of VE-SAMPLER on our new sets, which would re-
quire developing native implementations for a fair comparison.

We used the FOCUSEDILS 2.3.5 variant of the PARAMILS framework to configure
SPARROW, SATENSTEIN-LS and CAPTAIN JACK on each of the nine sets. In each of
the configuration experiments for SPARROW and SATENSTEIN-LS, we performed 24
independent PARAMILS runs of at least 7 CPU days each, from which we selected
the one with the best performance on the respective training set. For CAPTAIN JACK,
we used a training protocol comprising three sequential stages, designed to deal with
successively harder instances and larger fractions of the given training set. These three

3-SAT 5-SAT 7-SAT
1k 10k 100 500 60 9o | IS0k | CBMC | SWV
Algorithm PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10 PAR-10
% sol. % sol. % sol. % sol. % sol. % sol. % sol. % sol. % sol.
69.0 433 0.31 12.1 15 68.9 0.83 0.35 4533
CAPTAIN JACK[+] | 1547 24.4 0.23 9.2 1.1 223F 0.78 0.31 464
99.0% 99.8% | 100% 100% | 100% 99.4% | 100% 100% 24.5%
63.0 220 0.18 129 0.81 324 14 69.4 4413
SPARROW [] 1.9+t 583* 0.14 9.1 0.59 129 1.3 3.9 446F
99.1% 97.1% | 100% 100% | 100% 99.7% | 100% 99.0% | 26.5%
82.4 0.08 2856
VE-SAMPLER [] 15.07 n/a n/a n/a n/a n/a n/a 0.07 295+
98.8% 100% | 52.5%
335 72.1 0.21 33 0.92 34.1 12 0.62 4640
SATENSTEIN|[] 82" 30.0 0.15 2.6 0.68 13.6 1.1 0.54 464+
99.6% 993% | 100% 100% | 100% 99.7% | 100% 100% 22.7%
754 691 0.22 272 19 30.6 350 525 4640
TNM 1427F 154+ 0.17 17.5 1.6 13.3 44.47% 73.5% 46471
98.9% 903% | 100% 99.9% | 100% 99.8% | 944% | 91.8% | 22.7%
78.6 2604 0.27 112 .1 22.1 1901
GNOVELTY 2 1631 382t 0.20 8.3 0.78 10.3 295+ n/a n/a
98.9% 588% | 100% 100% | 100% 99.9% | 70.4%
763 2373 0.21 244 15 15.6 6.9 3267 4217
AG22009T+ 1247F 331F 0.17 152 1.4 11.9 6.5 383% 440t
988% 621% | 100% 99.9% | 100% 100% 100% 46.7% | 30.0%

Table 2. Solver Evaluation on Test Sets. Each cell summarizes the test-set performance of the
solver for 10 runs on each instance in the set with a cutoff of 600 seconds. The top row shows
the penalized average runtime (PAR-10): the mean of all runs over all instances with timeouts
replaced with a penalized value of 6 000 (= 10 - 600) seconds. The second row shows the mean
of the median runtimes for each instance in the set, where if any instances has a median at the
cutoff time, the median is included but marked (7). The third row indicates the percentage of
all runs completed within the timeout. The algorithms indicated ([x]) have been optimized by
PARAMILS on each target set. Unfortunately, GNOVELTY "2 crashed on the CBMC and SWV
instances and could therefore not be evaluated on those.

stages consisted of 24 independent PARAMILS runs for one, three and three CPU days,
respectively (see website for further details).

The PARAMILS training was conducted on Westgrid clusters (wee website for de-
tails), but otherwise all solver evaluations and times reported were performed using the
EDACC framework [2] running on bwGRiD [5] (Intel two socket 4-Core Xeon E5540
CPUs 2.83 GHz, with 16GB RAM running Linux).

6 Results & Discussion

In Table 2, we present the results from our evaluation of CAPTAIN JACK and several
state-of-the-art algorithms on the instance sets described in Section 5. As previously
mentioned, CAPTAIN JACK was designed to perform well on a wide variety of in-
stances, and this is reflected in the results. We note that the configurations evaluated
here are, for the most part, not the best that exist in the CAPTAIN JACK design space.
For example, in results not reported here, but available online, we ran PARAMILS for an
additional three days on each set and were able to obtain configurations that achieved

modest improvements in PAR-10 (6%-9%) on 3sat10k, 5sat500 and IL50k and more
significant improvement (20%) on CBMC and SWV. Furthermore, as we will discuss
later in this section, we found evidence that in some cases, the best CAPTAIN JACK
configuration on a given type of instances was not the one optimized for that type,
which clearly indicates that PARAMILS at least in some cases produced sub-optimal
configurations.

The relative performance of CAPTAIN JACK is the best on 3sat10k and IL50k, and
CAPTAIN JACK is now the best known SLS solver for those sets. On the sets 5sat100,
7sat60 and 7sat90 CAPTAIN JACK performs significantly worse than SPARROW. We
conjecture that this is connected to the relatively small number of variables in these
instances, but further investigation is needed to explain this phenomenon.

Finally, we were quite surprised by the strong performance of SPARROW on IL50k,
as results obtained for the default configuration of SPARROW were much worse. In-
terestingly, the configuration of SPARROW found by PARAMILS on IL50k uses no
smoothing, a rare situation for high-performance SLS algorithms using clause penal-
ties — a phenomenon that might warrant further investigation.

Next, we investigated the CAPTAIN JACK configurations found by PARAMILS for
each of our instance sets (see Table 3). As mentioned earlier, we do not believe that
these configurations are optimal, and longer runs of PARAMILS could produce rather
different configurations. Nevertheless, we believe that qualitative differences between
these configurations, which are based on multiple, long runs of PARAMILS, are likely
meaningful.

In CAPTAIN JACK we introduced several new variable properties, and we were cu-
rious to see which role these would play in the configurations found by PARAMILS.
Clearly, the age; property is very effective, which was surprising to us, especially
since the value of 5 was selected somewhat arbitrarily; this suggests that the age,
family of properties merits further study. The slight modification we introduced in
sparrowScore,, which allows for positive non-promising variables to have a parame-
terized value (cs), also appeared to be quite effective, and most configurations had a
value of ¢, slightly greater than one. Considering that the original sparrowScore prop-
erty had been developed for solving random 3-SAT, it is perhaps not surprising that
sparrowScore, is prominently used only in the random k-SAT configurations. Con-
versely, our new properties scoreRatio and relScoreRatio appeared to be useful only on
the software verification benchmarks, both of which had b, set to true (see Table 1). Our
intuition was that the fair and flops-based properties would be good for diversification,
but that they should be used sparingly; our results are consistent with this intuition, but
further study is warranted. Overall, the diversification properties most often selected
are the age variants, which is also the most prominent diversification property in the
literature. It is also very clear that the flips properties are very important for instances
with variable-length clauses and non-uniform variable distributions.

We were wondering whether PARAMILS would prefer a ‘traditional’ approach for
SLS-based SAT solving with mostly greedy steps and a few diversification steps, as
it did for 7sat90; however, most of the optimized configurations turned out to favour
mixed steps. This supports previous evidence that exploring new and innovative meth-
ods for mixing properties in VEs is a promising area of research. We introduced clause-

3-SAT 5-SAT | 7-SAT
step type / 1k 10k|100 500 | 60 90 IL50k CBMC Swv
VSM % % | % % | % %|<2 3 49 >10[(<2 3 49 >10(<2 3 49 > 10
greedy step 3 6 67 93] 10 8 8 67 8 33 | 31 32 94
mixed step 100 94 | 94 33 |100 1 | 80 100 67 31 | 62 17 66 | 62 100 64 3
div. step 3 6 | 10 33 62 | 31 17 11 1 8 4 3
greedy: %max | - 80|30 50| - 50| 80 - - 100 [80 O 40 O (100 - O 90
mixed: %max | 10 90 |90 10 |90 0|9 10 0 70 | 60 70 - 10 | 60 100 O 30
div.: % max - 0 - - - 20010 - 20 O 30 10 80 O 100 - 50 0

3-SAT 5-SAT | 7-SAT
property Ik 10k | 100 500 |60 o0 | 30K | CBMC | SWV
Do D | % D | % % % %o %

make 40 | 2.8 071 05 13

break 1.2 10 | 2.8 50 47 6.3 6.2

score 99 10 |28 20 3 70 25 0.4

sparrowScore., 79 40 | 90 78 |50 47| 05 0.8 3.1

scoreRatio 9.9 1.4 24 1.5 0.8 25

relMake - - - - - - 18 1.6 0.4

relBreak - - - - - - 8.8 3.1

relScore - - - - - - 1.1 1.6 12

relScoreRatio - - - - - - 1.1 51 50

rand 15 06(05 0306 52| 13 1.4

flat 99| 1 44|03 0.3 0.3

fair 0.2 05 14103 0.7 52 0.7

last 15 49|41 07|10 13| 03 0.3

age 36 99|33 1425 13 1.3 2.8

age; 05 20|16 14 43

ages 15 40 |41 07|20 42 44

ageRange 73 06| 1 27106 0.3 1.3

sparrowAge 29 03 0720 16| 27 0.3

tabu 36 49|33 4 |41 32| 07 0.7

flips 3.6 2 07|13 43 0.3 44

flops 7.3 0.5 25 16| 03 0.3 0.3

normFlops 0.5 03 2703 13

resetFlops 05 9941 03]03 32 0.3 0.7

relFlips - - - - - - 54 42 14

relFlops - - - - - - 2.7 52 0.3

reINormFlops - - - - - - 0.7 2.8

Table 3. Parameter Settings in CAPTAIN JACK. (Top:) The weight for each search step type
(greedy / mixed / diversification), and for each type, the percent of steps where the maximum
VSM was selected (as opposed to a distribution-based VSM). For instances with variable length
clauses, the values depend on the selected clause length {< 2,3,4...9,> 10}. (Bottom:) The
weight for each variable property (greedy and diversification properties are selected indepen-
dently). All weights have been normalized to appear as percentages. Non-applicable values are
shown as a dash (-), and weights with value zero are blank. The most significant properties (with a
combined weight of > 75%) are in bold. As an example, for 3sat10k, 94% of the (non-promising)
search steps are mixed steps, and in 90% of those steps the maximum VSM is used. make and
age are each independently selected as the greedy and diversification property for 40% of the
mixed steps. This means that for 13.5% (0.94-0.9-0.4 - 0.4) of the (non-promising) search steps
the variable with the maximum value of (make - age;) is selected.

length-dependent behaviour in CAPTAIN JACK to see if we could observe interesting
trends, e.g., we hypothesized that mixed or diversification steps could be more impor-
tant for larger clause lengths, but the results are inconclusive. However, it appears that
IL50k and CBMC benefit from more diversification steps than the random k-SAT sets,
and — as we will observe in Table 4 — it appears that SWV does as well. For random
k-SAT, the configurations for the underconstrained sets allow for more greedy steps,

which is consistent with the understanding that these instances are relatively easier to
search than those at the phase transition. The proportion of solely greedy steps is actu-
ally higher (12%) for 3sat10k if we consider that flat is selected as the diversification
property for 10% of the mixed steps; this is an example of the kind of inter-parameter
dependency that we were attempting to minimize in CAPTAIN JACK, but is impossible
to eliminate completely.

There is no clear preference between maximum vs distribution-based VSMs. It
would be interesting re-run PARAMILS on CAPTAIN JACK with two different restricted
configuration spaces that force all steps to be either a maximum or distribution-based
VSM; we could then observe which VSM would achieve better performance, and study
the differences between the resulting configurations. We note that CAPTAIN JACK is
well suited for this kind of analysis, which we are confident will lead to an improved
understanding of the performance potential inherent in various algorithm components,
and of their interaction when solving various types of SAT instances.

There are a few additional parameter settings, such as the parameters c;, ¢, and by
in Table 1, that are not shown in Table 3 and can be found online. One of these is the
Boolean parameter to control if GZWSAT promising steps are taken; only the CBMC
and SWV configurations do not take promising steps. This may suggest that promising
steps may be more suited for randomly generated instances (including IL50k), which
is consistent with the observation that AG22009+, which relies heavily on promising
steps, is the worst performer on CBMC in Table 2.

Another method for evaluating the differences between our configurations is to
cross-test each of the configurations on each of the sets, and we present the results
of these experiments in Table 4. These results also indicate how ‘specialized’ each of
our optimized configurations are. The most surprising result is that in several cases,
the best configuration for an instance set is actually not the one optimized for the re-
spective training set. As previously stated, this clearly indicates that PARAMILS does
not always find optimal configurations within the design space of CAPTAIN JACK. The
most interesting such configuration is the one obtained for IL50k, which performs very
well on the SWV set. This suggests that the industrial-like instances could indeed be
very useful for optimizing performance on harder industrial instances. This similarity is
reinforced further as the SWV configuration is the second-best configuration (by a large
margin) on the IL50k set. Finally, because the IL50k set has an average clause length
of 5, we hypothesized that the 5-SAT configurations might perform well on IL50k or
vice-versa, but this appears not to be the case. This further highlights the fact that the
structural aspects of real verification instances captured by the industrial-like instances,
albeit simplistic, are at least to some degree informative.

One final experiment we performed was to test if algorithms trained on the IL50k
instances would be able to solve larger instances from the same distribution. Ansétegui
et al. [1] generated larger (500k) instances, and demonstrated that GNOVELTY " was
unable to solve these. We generated a set of ten such instances (IL500k) that, aside
from the number of variables, have the same characteristics as the IL50k set. Because
the instances are so large, we observed that many SLS solvers (e.g., from the SAT com-
petition, but also SATENSTEIN-LS) encounter technical problems when trying to solve
them. We ran the IL50k configurations of CAPTAIN JACK and SPARROW and the UBC-

3-SAT 5-SAT 7-SAT

Configuration 1k 10k 100 500 60 90 IL50k CBMC SwWv
CJ [3satlk] 1 61.5 | 1.38 957 | 1.08 1.03 157 5876 1.02
CJ [3sat10k] 2.65 1 1.41 545 1.99 3.99 167 1890 1.02
CJ [5sat100] 256 135 1 932 | 1.18 0.72 170 7108 1.03
CJ [5sat500] 243 200 1.35 1 1.00 0.97 1271 10014 1.00
CJ [7sat60] 99.1 200 | 0.82 539 1 2.33 786 9989 1.02
CJ [7sat90] 105 200 1.82 12.1 | 144 1 1929 3088 0.98
CJ [IL50K] 16.6 200 | 450 567 | 220 158 1 1106 0.83
CJ [CBMC] 199 200 | 6.71 483 | 297 17.70 1236 1 1.02
CJ [SWV] 148 200 176 567 | 947 79.2 2.29 243 1

Table 4. Cross-Testing of CAPTAIN JACK configurations. Each configuration of CAPTAIN
JACK was run once on each instance in each test set with a cutoft of 600 seconds. We report the
ratio of the resulting PAR-10 to the PAR-10 for the targeted configuration. Configurations that
outperform the targeted configuration for the set are in bold.

SAT implementation of ADAPTG?WSAT™* on each of the 10 instances with a cutoff
of 12 hours per instance. ADAPTG?WSAT™ solved only 5 instances and SPARROW
was able to solve 9. However, CAPTAIN JACK was able to solve all 10 instances in a
combined time of 77 minutes. For perspective, PICOSAT [4] solved all 10 instances
in a combined time of 2 minutes and showed little variation in runtime per instance
compared to the SLS solvers.

7 Conclusions & Future Work

In this work, we have introduced CAPTAIN JACK, a highly parametric SLS algorithm
that can be automatically configured to perform well on various types of SAT instances
and is currently the best known SLS algorithm for solving large random 3-SAT and
‘industrial-like’ instances. We designed CAPTAIN JACK in a way that would aid us in
exploring which components and heuristic mechanisms give rise to strong performance
on different types of SAT instances and made several interesting observations in this
respect. We also introduced several new variable properties and provided evidence these
can be very effective; in particular, our results suggest that the family of age,, properties
merits further investigation. Finally, we provided preliminary evidence that training on
smaller industrial-like instances may be a viable approach to improving SLS algorithm
performance on larger industrial problems.

Our results reported here provided further evidence that mixed VEs can be very
effective; while CAPTAIN JACK, SPARROW and VE-SAMPLER combine only two vari-
able properties, we believe that it may be interesting to investigate more complex com-
binations. We also see potential in developing an adaptive CAPTAIN JACK that adjusts
its balance between diversification and intensification throughout the search and incor-
porates a mixed VE that combines property values accordingly. Ultimately, we hope
that CAPTAIN JACK will provide further insight into SLS algorithm development, and
that algorithm developers will be able to gain insight and inspiration from examining
CAPTAIN JACK configurations that are effective for solving particular instance sets. We
believe that such work will lead to new and specialized lightweight algorithms, similar
to SPARROW, that improve the state-of-the-art for solving SAT.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable feedback. This
research has been enabled by the use of computing resources provided by the bwGRiD
project [5], WestGrid and Compute/Calcul Canada. Furthermore, HH acknowledges
funding received through the NSERC Discovery Grants Program.

References

10.

12.

13.

14.

15.

16.

17.

18.

19.

. Ansétegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT instances. In:

IJCAI-2009. pp. 387-392 (2009)

. Balint, A., Diepold, D., Gall, D., Gerber, S., Kapler, G., Retz, R.: EDACC - an advanced

platform for the experiment design, administration and analysis of empirical algorithms. In:
LION-2011 (to appear)

. Balint, A., Frohlich, A.: Improving stochastic local search for SAT with a new probability

distribution. In: SAT-2010. LNCS, vol. 6175, pp. 10-15 (2010)

. Biere, A.: PicoSAT essentials. JSAT 4, 75-97 (2008)
. bwGRiD: Member of the German D-Grid initiative, funded by the Ministry of Education and

Research and the Ministry for Science, Research and Arts Baden-Wiirttemberg

. Chvatal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the ACM 35(4),

759-768 (1988)

. Hoos, H.H.: Computer-aided design of high-performance algorithms. Tech. Rep. TR-2008-

16, University of British Columbia (2008)

. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stiitzle, T.: ParamILS: An automatic algorithm

configuration framework. Journal of Artificial Intelligence Research 36, 267-306 (2009)

. Hutter, F., Hoos, H.H., Stiitzle, T.: Automatic algorithm configuration based on local search.

In: AAAI-2007. pp. 1152-1157 (2007)
KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically
building local search SAT solvers from components. In: IJCAI-2009. pp. 517-524 (2009)

. Li, C.M., Huang, W.Q.: Diversification and determinism in local search for satisfiability. In:

SAT-2005. LNCS, vol. 3569, pp. 158-172 (2005)

Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random k-SAT from the cavity
method. Random Structures & Algorithms 28, 340-373 (May 2006)

Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local
search for satisfiability. JSAT 4, 149-172 (2008)

Prestwich, S.: Random walk with continuously smoothed variable weights. In: SAT-2005.
LNCS, vol. 3569, pp. 203-215 (2005)

Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause
weighting for SAT. In: PRICAI-2008. pp. 405416 (2008)

Tompkins, D.A.D.: Dynamic Local Search for SAT: Design, Insights and Analysis. Ph.D.
thesis, University of British Columbia (2010)

Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimentation envi-
ronment for SLS algorithms for SAT and MAX-SAT. In: SAT-2004. LNCS, vol. 3542, pp.
306-320 (2005)

Tompkins, D.A.D., Hoos, H.H.: Dynamic scoring functions with variable expressions: New
SLS methods for solving SAT. In: SAT-2010. LNCS, vol. 6175, pp. 278-292 (2010)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm se-
lection for SAT. Journal of Artificial Intelligence Research 32, 565-606 (2008)

	Captain Jack: New Variable Selection Heuristics in Local Search for SAT
	Introduction
	Background
	Design Considerations underlying Captain Jack
	Captain Jack
	Experimental Setup
	Results & Discussion
	Conclusions & Future Work
	References

