Dynamic Scoring Functions with Variable Expressions:

New SLS Methods for Solving SAT

by Dave Tompkins & Holger Hoos

SAT 2010 :: Edinburgh, Scotland

Key Contributions

- Variable Expressions (VEs)
- New Conceptual Model for SLS
- Design Architecture for VEs (DAVE)

randomly initialize all variables while (formula not satisfied) select a variable and "flip" it

 $(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$

randomly initialize all variables

while (formula not satisfied) select a variable and "flip" it

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$
$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

x_I	x_2	x_3	x_4	x_5
T	F	F	T	T
T	F	F	F	T
T	T	F	F	T

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

x_I	x_2	x_3	x_4	x_5
T	F	F	T	T
T	F	F	F	T
T	T	F	F	T
F	T	F	F	T

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

$$(\neg x_1 \lor x_2 \lor \neg x_5) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4)$$

Overview

Overview

Automated Design Philosophy

Automated Design Philosophy

 Don't be afraid to expose more parameters

Don't "fix" early design choices

Automated Tools

 We can use automated configurators to determine the optimal algorithm parameters for a target instance set

- ParamILS [Hutter et al., 2007]
- Offload tedious human tasks to machines

Overview

Scoring Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make - break) [GSAT, Selman et al. 1992]

- Scoring Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make break) [GSAT, Selman et al. 1992]
- Dynamic Properties
 age = # of steps since x was flipped [TABU, Glover 1986]
 flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]

- Scoring Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make break) [GSAT, Selman et al. 1992]
- Dynamic Properties
 age = # of steps since x was flipped [TABU, Glover 1986]
 flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]
- Static Properties

- Scoring Properties
 make = # of clauses that become satisfied if we flip x
 break = ... unsatisfied ...
 score = (make break) [GSAT, Selman et al. 1992]
- Dynamic Properties
 age = # of steps since x was flipped [TABU, Glover 1986]
 flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]
- Static Properties

Potential for New Properties

Overview

Variable Expressions (VEs)

• combinations of variable *properties* in mathematical expressions:

```
break make – break (make – break) + 3 \cdot \log_2(age) + age/flips
```

Most existing SLS algorithms use straightforward VEs
 ... we explore more complex VEs

VW2: The Origin of VEs

Variable Weighting Algorithm VW2 [Prestwich, 2005]

New Property: w(eight) (initialized to zero)

updated after a flip: $\mathbf{w} := (1-s) \cdot (\mathbf{w}+1) + s \cdot (\text{step } \#)$

• New Scoring VE: $break + c \cdot (w - w_{avg})$

Our Interest in VW2

- CBMC software verification instances
 - Challenging for SLS, but
 easy for most DPLL-based solvers
 - VW2 was the best-performing SLS algorithm (Optimal performance with no smoothing)
- With no smoothing, the VE becomes:

break + c·flips

Combining Properties

Select variable with minimum value of:

break +
$$c$$
·flips

Combining Properties

Select variable with minimum value of:

break + $c \cdot flips$

Combining Properties

Normalize properties values to [0..1]
 amongst the "candidate" variables

Allow for non-linear normalization

More Normalization

- Consider traditional (make break)...
 - what about $(c_1 \cdot \text{make} c_2 \cdot \text{break})$??
 - Relative number of clauses (relMake & relBreak)
- more | normalization | discussed in paper

Modifying Existing Algorithms with VEs

• VW2: break + c · flips \rightarrow || break || + c · || flips || a

Speedup factor:2.5 (steps)2.1 (time)

Modifying Existing Algorithms with VEs

WalkSAT:

$$c_1 \cdot \| \operatorname{make} \|^{al} + c_2 \cdot \| \operatorname{relMake} \|^{a2} + c_3 \cdot \| \operatorname{break} \|^{a3} + c_4 \cdot \| \operatorname{relBreak} \|^{a4}$$

- Speedup factor:
 - 7.2 (steps)
 - 3.1 (time)
- (compared to original WalkSAT)
 - > 4000 (steps)
 - > 2000 (time)

Overview

Our New SLS Model

Variable Filters

Filter Variables Variable Expression(s) Selection Mechanism

Variable Filters

- Popular Filters:
 - All Variables (GSAT, Selman et al., 1992)
 - Select a random clause (WalkSAT, Selman et al., 1994)
 - Promising variables (G²WSAT, Li & Huang, 2005)

Filter Variables

Variable Expression(s)

Selection Mechanism

- Potential for new filters: (examples)
 - Oldest unsatisfied clause
 - Most frequently unsatisfied clause
 - Two random unsatisfied clauses
 - 5 oldest variables

Our New SLS Model

Filter Variables Variable Expression(s) Selection Mechanism

Separation of: VEs & Selection Mechanism

- Novelty Algorithm [McAllester, Selman & Kautz, 1997]
- Select "best" variable with maximum of: (make – break)
 breaking ties by
 (age)
- If the best variable has the minimum
 (age)
 then, with probability p, select 2nd best var.

Separation of: VEs & Selection Mechanism

- Novelty Algorithm [McAllester, Selman & Kautz, 1997]
- Select "best" variable with maximum of:

```
(VE<sub>1</sub>)
breaking ties by
(VE<sub>2</sub>)
```

If the best variable has the minimum (VE₃)

then, with probability p, select 2nd best var.

Our New SLS Model

Our New SLS Model

Our New SLS Model

Algorithm Controllers

Algorithm Controllers

Randomized hybrids:

20%: algorithm A

70%: algorithm B

10%: filter from A, selection mechanism from B

"Smart" controllers:

If condition 1 is true, use algorithm C, if condition 2 is true, use algorithm D, otherwise, use the above randomized algorithm

Our New SLS Model

Overview

Software Implementation

- Design Architecture for Variable Expressions (DAVE)
 - Entire algorithm specified at runtime
 - Controllers, filters, VEs, selection mechanisms
 - Arbitrary complex VEs (interpreted)
 - Sophisticated macro system
 - Aids the use of automated configurators
- Extension of UBCSAT (2.0)

Our Methods in Practice

Our Methods in Practice: VE-Sampler

- Randomized algorithm controller
 - Selects between 5 different VEs in the form: $\|\mathbf{p}_1\|^{al} + c \cdot \|\mathbf{p}_2\|^{a2}$
- Properties p₁ and p₂ are configurable from amongst 21 different properties (& property ratios)
- Automated configurator (ParamILS)
 - Over 10⁵⁰ possible configurations

VE Sampler Results

Speedup factor:16.2 (steps)9.0 (time)

Future Work

- New variable properties
- New VE constructions
 - Better normalizations
- New selection mechanisms
- New algorithm controllers
- Continue to use automated tools to test and evaluate all of the all of the above

Key Contributions

- New conceptual model for SLS
 - Separate flters, VEs & selection mechanisms
 - Algorithm controllers for robust hybrid algorithms
- Variable Expressions (VEs)
 - Complex combinations of variable properties
 - Advanced normalization methods
- Design Architecture for VEs (DAVE)
 - Very flexible
 - Well suited for automated tools