Dynamic Scoring Functions

with Variable Expressions:
New SLS Methods for Solving SAT

by Dave Tompkins & Holger Hoos

SAT 2010 :: Edinburgh, Scotland




Key Contributions

e Variable Expressions (VEs)
* New Conceptual Model for SLS
* Design Architecture for VEs (DAVE)




Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)




Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)




Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)




Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)

(=, Vx,V=xs)A(=x,V=x, VX YA (=x  V=x ) A(=x , Vx, Vi V=x,)




Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)
(=, Va,V=x ) A(=x, V=, Ve ) A (=x, V=) A(=x, Ve, Vi V=)

(=0, Ve, V=) A=, V=, Ve YA (=, V=xs) A(=x, VX, VeV =xy)




Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)

(
=x,V=x5)A(=x \/x2\/x3\/—-x4)
(




Overview

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Overview

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Automated Design Philosophy

Algorithm
EIEINEES

Algorithm




Automated Design Philosophy

e Don’t be afraid
to expose more
parameters

* Don’t “fix” early
design choices




Automated Tools

* We can use automated configurators to
determine the optimal algorithm parameters
for a target instance set

* ParamlLS [Hutter et al., 2007]

e Offload tedious human tasks to machines




Overview

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Variable Properties

* Scoring Properties
make = # of clauses that become satisfied if we flip x

score = (make — ) [GSAT, Selman et al. 1992]




Variable Properties

* Dynamic Properties
age = # of steps since x was flipped [1ABU, Glover 1986]
flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]




Variable Properties

* Static Properties




Variable Properties

e Potential for New Properties




Overview

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Variable Expressions (VEs)

 combinations of variable properties
in mathematical expressions:

break
make — break
(make — break) + 3 - log,(age) + age/flips

* Most existing SLS algorithms use straightforward VEs
... we explore more complex VEs




VW2: The Origin of VEs

e Variable Weighting Algorithm VW2 [pPrestwich, 2005]

* New Property: w(eight) (initialized to zero)

updated after a flip:  w :=(1-5)-(w+1) + s-(step #)

* New Scoring VE: + o (W —w,,)




Our Interest in VW2

e CBMC software verification instances

— Challenging for SLS, but
easy for most DPLL-based solvers

— VW2 was the best-performing SLS algorithm

(Optimal performance with no smoothing)

With no smoothing, the VE becomes:

+ c-flips




Combining Properties

Select variable with minimum value of:

+ c-flips

breakﬁ -

A




Combining Properties

Select variable with minimum value of:

+ c-flips

breakﬁ - Q

A




Combining Properties

* Normalize properties values to [0..1]
amongst the “candidate” variables

 Allow for non-linear normalization




More Normalization

e Consider traditional (make — break)...
— what about (¢, - make — ¢, - break) ??
— Relative number of clauses (relMake & relBreak)

* more H normalization“ discussed in paper




Modifying Existing Algorithms with VEs

e VW2:
break + ¢ - flips > [|break|| + c - || flips |«

=
B ]

I

* Speedup factor:
2.5 (steps)
2.1 (time)

VW24+VE [steps

]
s

=

10° 10° 107
VW2 [steps]




Modifying Existing Algorithms with VEs

e \WalkSAT:

¢, || make||* + ¢, - ||relMake [|42 + c; - || break ||+ + ¢, - || relBreak || +¢

* Speedup factor:
7.2 (steps)
3.1 (time)

WalkSAT+VE [steps]

* (compared to original WalkSAT)
> 4000 (steps)
> 2000 (time)




Overview

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Our New SLS Model

[ Filter Variables HVariable Expression(s) H Selection Mechanism J




Variable Filters

Filter Variables Variable Expression(s) H Selection Mechanism J




Variable Filters

* Popular Filters:
e All Variables (GsAT, selman et al., 1992)
e Select a random clause (walksaT, selman et al.,, 1994)
* Promising variables (c2wsar, Li & Huang, 2005)

Filter Variables Variable Expression(s) H Selection Mechanism J

* Potential for new filters: (examples)
Oldest unsatisfied clause
Most frequently unsatisfied clause
Two random unsatisfied clauses
5 oldest variables




Our New SLS Model

[ Filter Variables HVariable Expression(s) Selection Mechanism




Separation of:
VEs & Selection Mechanism

¢ Novelty AIgO rithm [McAllester, Selman & Kautz, 1997]

e Select “best” variable with maximum of:
(make — break)
breaking ties by
(age)
* |f the best variable has the minimum

(age)
then, with probability p, select 2"¢ best var.




Separation of:
VEs & Selection Mechanism

¢ Novelty AIgO rithm [McAllester, Selman & Kautz, 1997]

e Select “best” variable with maximum of:
(VE,)

breaking ties by
(VE,)
* |f the best variable has the minimum
(VE;)
then, with probability p, select 2"¢ best var.




Our New SLS Model

[ Filter Variables ]—{ Evaluate VEs ]—-[ Select Variable ]




Our New SLS Model

[ Filter Variables ]—{ Evaluate VEs ]—-[ Select Variable ]—

Flip Selected Variable & Update State Information / Bookkeeping




Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

Filter Variables ]—{ Evaluate VEs ]—-[ Select Variable

Flip Selected Variable & Update State Information / Bookkeeping




Algorithm Controllers

[ Controller

\

FILT —1 VEs

\

—

[ Controller ]

{ FILT —1 VEs

" VSM

—
—

FILT —1 VEs

J

" VSM

—
—

"1 VSM

[ Controller

———

Sub-Controller

Sub-Controller

Sub-Controller




Algorithm Controllers

 Randomized hybrids:

20%: a
70%: a
10%: fi

gorithm A
gorithm B

ter from A, selection mechanism from B

* “Smart” controllers:
If condition 1 is true, use algorithm C,
if condition 2 is true, use algorithm D,
otherwise, use the above randomized algorithm




Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

3

\ 4 A 4 A 4

Filter Variables ]—{ Evaluate VEs ]—-[ Select Variable

Flip Selected Variable & Update State Information / Bookkeeping




Overview

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Software Implementation

* Design Architecture for Variable Expressions
(DAVE)

— Entire algorithm specified at runtime

* Controllers, filters, VEs, selection mechanisms
— Arbitrary complex VEs (interpreted)
— Sophisticated macro system

* Aids the use of automated configurators

e Extension of UBCSAT (2.0)




Our Methods in Practice

Variable
Expressions

Properties

Software
Framework

Automated
Tools




Our Methods in Practice:
VE-Sampler

 Randomized algorithm controller

— Selects between 5 different VEs in the form:
o [|7 +c[lp, [+

* Properties p, and p, are configurable from
amongst 21 different properties (& property
ratios)

 Automated configurator (ParamlLS)

— Over 10°° possible configurations




VE Sampler Results

—
=
=

e Speedup factor:
16.2 (steps)
9.0 (time)

—
=
L]

ol
-
)
m—
o
D
-l
=
=
=
e
=l
iy
|
-.-"'

=
T

10* 10° 106
VW2 [steps]




Future Work

New variable properties
New VE constructions

— Better normalizations
New selection mechanisms
New algorithm controllers

Continue to use automated tools to
test and evaluate all of the all of the above




Key Contributions

* New conceptual model for SLS
— Separate flters, VEs & selection mechanisms
— Algorithm controllers for robust hybrid algorithms

e Variable Expressions (VEs)

— Complex combinations of variable properties
— Advanced normalization methods

* Design Architecture for VEs (DAVE)

— Very flexible
— Well suited for automated tools




