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Abstract. In this paper we introduce UBCSAT, a new implementation and ex-
perimentation environment for Stochastic Local Search (SLS) algorithms for SAT
and MAX-SAT. Based on a novel triggered procedure architecture, UBCSAT pro-
vides implementations of numerous well-known and widely used SLS algorithms
for SAT and MAX-SAT, including GSAT, WalkSAT, and SAPS; these imple-
mentations generally match or exceed the efficiency of the respective original
reference implementations. Through numerous reporting and statistical features,
including the measurement of run-time distributions, UBCSAT facilitates the ad-
vanced empirical analysis of these algorithms. New algorithm variants, SLS al-
gorithms, and reporting features can be added to UBCSAT in a straightforward
and efficient way. UBCSAT is implemented in C and runs on numerous platforms
and operating systems; it is publicly and freely available at www.satlib.org/
ubcsat.

1 Introduction

The propositional satisfiability problem (SAT) is an important subject of study in many
areas of computer science and is the prototypical NP-complete problem. MAX-SAT
is the optimisation variant of SAT; while in unweighted MAX-SAT, the goal is to find
a variable assignment that satisfies a maximal number of clauses of a given CNF for-
mula, in weighted MAX-SAT, a weight is assigned to each clause, and the goal is to find
an assignment that maximises the total weight of the satisfied clauses. MAX-SAT is a
conceptually simple NP-hard combinatorial optimisation problem of substantial theo-
retical and practical interest; many application-relevant problems, including scheduling
problems or most probable explanation (MPE) finding in Bayes nets, can be encoded
and solved as MAX-SAT.

Some of the best known methods for solving certain types of SAT instances are Sto-
chastic Local Search (SLS) algorithms; these are typically incomplete, i.e., they cannot
determine with certainty that a formula is unsatisfiable, but they often find models of
satisfiable formulae surprisingly effectively [8]. For MAX-SAT, SLS algorithms are by
far the most effective methods for finding optimal or close-to-optimal solutions [5, 8].



procedure SLS-for-SAT(F )
input: propositional formula F
output: satisfying assignment of F or ‘no solution found’

a := InitialiseSearch(F );
while not Terminate(F , a) do

if Restart(F , a) then
a := ReInitialiseSearch(F );

else
X := SelectVarsToFlip(F , a);
a := FlipVars(F , a,X );

end
end
if Solved(F , a) then

return a
else

return ‘no solution found’
end

end SLS-for-SAT

Fig. 1. Pseudo-code for a typical Stochastic Local Search algorithm for SAT; a is a variable
assignment, X is a set of variables in the given formula F .

Although SLS algorithms for SAT and MAX-SAT differ in their details, the basic ap-
proach is mostly the same. In the following, we mainly focus on SLS algorithms for
SAT, while MAX-SAT algorithms will be discussed in more detail in Section 6.

In Figure 1 we provide pseudo-code for a typical SLS algorithm for SAT. Each run
of the algorithm starts by determining an initial, complete assignment of truth values to
all variables in the given formula F (search initialisation). Then, in each search step,
a set of variables is selected, whose truth values are then changed from true to false or
vice versa. Each change of a single variable’s truth value is called a variable flip; almost
all SLS algorithms perform exactly one variable flip in each search step, but there are
cases in which a given SLS algorithm may flip no variables in a given search step
(a so-called null-flip), or several variables at once (also known as a multi-flip). Variable
flips are typically performed with the purpose of minimising an evaluation function that
measures solution quality in terms of the number of unsatisfied clauses under a given
variable assignment. The search process is terminated when a termination condition is
satisfied; this is typically the case when either a solution, i.e., a satisfying assignment
of F , has been found or when a given bound on the run-time, which is also referred
to as cutoff time and which may be measured in search steps or CPU time, has been
reached or exceeded. To overcome or avoid search stagnation, many SLS algorithms for
SAT make use of a restart mechanism that re-initialises the search process whenever a
restart condition is satisfied. For example, all GSAT and WalkSAT algorithms restart the
search periodically [14, 13]. While restart mechanisms are crucial for the performance
of some SLS algorithms for SAT, such as basic GSAT [14], they have been found to be
ineffective in other cases [8].



Even though SLS algorithms for SAT and MAX-SAT have achieved great levels
of success, we believe that there is still significant potential for further improvements.
To further explore this potential, we developed UBCSAT: an implementation and ex-
perimentation framework for SLS algorithms for SAT and MAX-SAT. Our primary
objective was to create a software environment that facilitates research on and develop-
ment of SLS algorithms. Specifically, the development of UBCSAT was based on the
following six design principles and goals:

1. include highly efficient, conceptually simple and accurate implementations of a
wide range of prominent SLS algorithms for SAT and MAX-SAT;

2. facilitate the development and integration of new algorithms (and algorithm vari-
ants);

3. provide support for advanced empirical analysis of the performance and behaviour
of SLS algorithms without compromising implementation efficiency;

4. provide explicit support for algorithms designed to solve the weighted and un-
weighted MAX-SAT problems;

5. provide an open-source software package that is publicly available to the academic
community;

6. implement the project in a platform-independent way, avoiding non-standard pro-
gramming language extensions.

Before discussing the design and features of UBCSAT in more detail, we briefly
discuss two related software projects: OpenSAT and COMET.

The OpenSAT project [1] (www.opensat.org) was developed as a Java-based
open source project for complete SAT solvers. A primary goal of OpenSAT was to
make the advanced techniques and data structures used by state-of-the-art complete SAT
solvers openly available in order to accelerate the development of new SAT solvers.
Generally, the architecture and implementation of complete SAT solvers, which are
based on the David-Putnam-Loveland procedure, differs considerably from that of SLS-
based SAT algorithms, and traditionally there has been very little overlap between the
algorithmic and implementation details used in these two types of SAT solvers. There-
fore, using OpenSAT as the basis for achieving the previously stated goals, while prob-
ably not completely infeasible, appears to be problematic. In addition to the difficulty of
supporting the development and implementation of SLS algorithms in a straightforward
way, the current lack of support for MAX-SAT solvers, and the fact that OpenSAT cur-
rently does not provide dedicated support for the advanced empirical analysis of SAT
algorithms, it is somewhat questionable whether its Java-based implementation makes
it possible to achieve performance that is competitive with the native reference imple-
mentations of high-performance SLS algorithms such as WalkSAT [13] or SAPS [9].

COMET [17] is an object-oriented language that supports a constraint-based archi-
tecture for local search. The COMET language is very sophisticated and can model SLS
algorithms for solving complex constraint satisfaction problems, but it neither offers
explicit support for SAT/MAX-SAT nor does it provide tools for advanced empirical
evaluation. While in principle, both of these issues could be addressed by realising the
respective functionality within COMET, implementing UBCSAT in COMET seemed
to pose the risk that in order to take full advantage of UBCSAT, users would have to un-
derstand both the idiosyncrasies of COMET as well as the architecture and interface of



UBCSAT; we believe that as a consequence, UBCSAT would have been less accessible
to its main target group, namely researchers interested in SAT and MAX-SAT. While
there is evidence that COMET algorithm implementations are quite efficient, we do not
have any insight as to how these would compare with the native reference implementa-
tions of the state-of-the-art SLS algorithms covered by UBCSAT.

To achieve our goals of a platform-independent and highly efficient implementation,
UBCSAT has been developed in strict ANSI C and tested on some of the most popular
operating systems (Linux, WindowsXP, SunOS). In order to provide a state-of-the-art
and platform-independent source of pseudo-random numbers, we have incorporated
the “Mersenne Twister” pseudo-random number generator [10]. UBCSAT is publicly
available for academic (non-commercial) use without restriction to encourage free and
open use throughout the SAT research community1.

In the remainder of this paper, we will describe the UBCSAT project in greater
depth. In Section 2 we give an overview of the UBCSAT architecture and illustrate the
fundamental concept of triggered procedures, which lies at the core of UBCSAT’s effi-
cient yet highly flexible design and implementation. In Section 3, we outline the current
collection of SLS algorithms for SAT that are currently implemented within UBCSAT
and compare their performance against that of the respective native reference imple-
mentations. In Section 4 we demonstrate how new algorithms are implemented within
UBCSAT. In Section 5 we discuss the importance of empirical analysis in SLS research,
and how UBCSAT can help facilitate empirical analysis. In Section 6, we describe how
UBCSAT supports SLS algorithms for weighted and unweighted MAX-SAT. Finally,
in Section 7 we summarise the key features and contributions of the UBCSAT project
and outline some directions for future work.

2 The UBCSAT Architecture

One of the challenges of developing the UBCSAT project was to build a flexible,
feature-rich environment without compromising algorithmic efficiency. To achieve our
goals, UBCSAT has been designed according to what we have named a triggered pro-
cedure architecture. The main ideas underlying this architecture are closely related to
certain concepts from object- and event-oriented programming.

The UBCSAT software is structured around a set of event points that occur through-
out the execution of a SLS algorithm for SAT. For each event point p, a list of procedures
is maintained that are executed whenever event point p is reached; this list is called the
triggered procedure list of p and its elements are called the triggered procedures of p.
A trigger is simply a mapping of a software procedure to an event point. When a trigger
is activated, then its associated procedure is added to the triggered procedure list of the
corresponding event point.

1 The UBCSAT source code and x86 executables for Windows and Linux are available for
download at http://www.satlib.org/ubcsat. Throughout this paper we have en-
deavoured to keep our descriptions and examples consistent with the UBCSAT software pack-
age version 1.0, but as development on UBCSAT continues some aspects may deviate from
these descriptions.



Initially, the triggered procedure lists for all of the event points are empty; it is only
when triggers are activated that procedures become executed when an event point is
reached. For example, you may have a procedure for displaying the current status of
an algorithm as it searches. You can create a trigger that maps your procedure to an
appropriate event point, perhaps at the end of each search step. Whenever you would
like to have the status displayed you can activate your trigger, which will ensure that at
the end of each search step your procedure is executed. However, if you do not wish to
have the status displayed then you do not have to do anything; your trigger will not be
activated, no procedure will be added to a triggered procedure list, and your algorithm
will not be slowed down by your status display procedure.

In addition to its associated procedure, event point and activation status, a trigger t
can have a dependency list and a deactivation list, which are lists of other triggers that
are activated or deactivated (respectively) when t is activated. The dependency list is
used, for example, to ensure that when the procedure of a trigger relies on the existence
of special data structures, the triggers for the procedures that create and update those
data structures are also activated. The deactivation list is intended for advanced UBC-
SAT users, and can be used to override default routines and to avoid conflicts between
incompatible routines. In practice, deactivation lists are used in UBCSAT to improve
implementation efficiency by combining the functionality of multiple procedures into
one. For example, consider triggers ta and tb that have procedures a() and b(), but when
both triggers are activated it would be significantly more efficient if the functionality of
procedures a() and b() were combined into one procedure. In this case, a new procedure
ab() could be created and assigned to a trigger tab which would include ta and tb in its
deactivation list and be available to algorithms that require the functionality of both ta
and tb. UBCSAT detects and produces a warning if deactivated triggers are somehow
reactivated, which might indicate a flaw in the design of an SLS algorithm that is being
developed within the UBCSAT framework.

There is also a special type of trigger called a container trigger that has no asso-
ciated procedure, but instead a list of secondary triggers that are activated whenever
the container trigger is activated. Container triggers are used as convenient shortcuts
for activating groups of triggers that are used simultaneously. Conceptually, container
triggers are very similar to dependency lists; by activating one trigger several others are
also activated. While dependency lists are an important part of ensuring the triggered
procedure architecture works properly, container triggers simply provide shortcuts for
added convenience. As we will show in a later example, many data structures in UBC-
SAT require three triggers to operate properly: one to create the data structure, one to
initialise it and one to update it. A container trigger can be created to activate all three
of those triggers simultaneously. If a trigger corresponds to a complicated procedure
that requires four different data structures to be in place, the dependency list can com-
prise of just four container triggers, instead of all twelve required triggers. An additional
container trigger could be created to encompass those four other container triggers, but
unless that container trigger would be used by other triggers, there is no added benefit
in doing so.

UBCSAT has over one hundred triggers, most of which have associated procedures
that fall into one of the following four categories: heuristic selection (e.g., of variables),



procedure UBCSAT
SetupUBCSAT();
ParseParameters();
ActivateAlgorithmTriggers();
ActivateReportTriggers();

∗ RunProcedures(PostParameters);
∗ RunProcedures(ReadInInstance);
∗ RunProcedures(CreateData);
∗ RunProcedures(CreateStateInfo);
∗ RunProcedures(PreStart);

StartClock();
while iRun < iNumRuns do

∗ RunProcedures(PreRun);
while ((iStep < iCutoff ) and (not bSolutionFound)) and (not bTerminateRun)) do

∗ RunProcedures(PreStep);
∗ RunProcedures(CheckRestart);

if bRestart or (iStep = 1) then
∗ RunProcedures(InitData);
∗ RunProcedures(InitStateInfo);

else
∗ RunProcedures(ChooseCandidate);
∗ RunProcedures(PreFlip);
∗ RunProcedures(FlipCandidate);
∗ RunProcedures(PostFlip);

end
∗ RunProcedures(PostStep);
∗ RunProcedures(CheckTerminate);

end
∗ RunProcedures(PostRun);

end
EndClock();

∗ RunProcedures(Final);
end UBCSAT

Fig. 2. High-level pseudo-code of UBCSAT; event points are indicated by asterisks.

data structure maintenance, report and statistic data collection, and file I/O. Triggers are
activated based on the SLS algorithm to be run, the reports/statistics requested and other
system command line parameters. In the UBCSAT implementation, the triggered pro-
cedure lists are simply arrays of function pointers, so when each event point is reached,
it is very efficient to call its triggered procedures.

Figure 2 shows a high-level pseudo-code representation of UBCSAT and indicates
many of the most important event points. The following example further illustrates the
use of event points and the concept of triggered procedures.

Let us consider WalkSAT/TABU, a well-known high-performance SLS algorithm
for SAT that is based on the WalkSAT architecture [12]. As in most WalkSAT-based
algorithms, WalkSAT/TABU starts each search step by uniformly selecting a clause
from the set of currently unsatisfied clauses. Each variable in the clause is assigned
a score, corresponding to the change in the number of unsatisfied clauses that would
occur if that variable were flipped. The variable with the best score that is not tabu is
selected as the flip variable (breaking ties randomly). A variable is tabu if it has been
flipped within the last TabuTenure search steps, where TabuTenure is a parameter of the
WalkSAT/TABU algorithm. If all of the variables in the selected clause are tabu, then
no flip occurs at that step.



CreateDefaultStateInfo()

WalkSAT/TABU

Triggers

CreateFalseClauseList()

FalseClauseListDefaultProcedures

CreateStateInfo

PickWalksatTabu VarLastChange

CreateVarLastChange()

DefaultInitVars()InitData

InitDefaultStateInfo() InitFalseClauseList()InitStateInfo InitVarLastChange()

PickWalksatTabu()ChooseCandidate

DefaultFlip()FlipCandidate

UpdateFalseClauseList() UpdateVarLastChange()PostFlip

Event Points Triggered Procedures

Fig. 3. The WalkSAT/TABU algorithm triggers and the triggered procedures that appear in the
event point triggered procedure lists. The dashed arrows illustrate how the VarLastChange proce-
dures were added to the triggered procedure lists by the activation of the PickWalksatTabu trigger.
Note that some procedures and event points are not listed, including a few additional procedures
triggered by DefaultProcedures.

In the UBCSAT implementation of WalkSAT/TABU, the main heuristic procedure
is PickWalksatTabu(), and a trigger of the same name exists which maps the procedure
to the ChooseCandidate event point. Most algorithms in UBCSAT also activate the De-
faultProcedures trigger, a container trigger that includes triggers for handling common
tasks, such as keeping track of the current truth assignment and reading the formula into
memory. Efficient implementations of WalkSAT-based algorithms require a list of the
currently unsatisfied clauses, which is maintained by a set of procedures whose triggers
are all included in the FalseClauseList container trigger.

Different from, say, WalkSAT/SKC, WalkSAT/TABU needs to know when each
variable has been flipped last, in order to determine its tabu status. This requires a
simple data structure (an array of values) that is maintained using three triggered pro-
cedures: CreateVarLastChange() allocates the memory required for the data structure,
InitVarLastChange() initialises it at the beginning of each run and after restarts, and
UpdateVarLastChange() updates it after each flip. Each of these procedures has a trig-
ger that associates it with the event points CreateStateInfo, InitStateInfo, and PostFlip,
respectively. For convenience, these three triggers are grouped into a container trigger
named VarLastChange. When the PickWalksatTabu trigger is registered in UBCSAT, it
lists VarLastChange in its dependency list, so when the Walksat/TABU algorithm is se-
lected, the PickWalksatTabu trigger is activated, which will activate the VarLastChange
trigger, and hence the three previously described triggers. (See also Figure 3.)

The primary advantage of the triggered procedure architecture lies in the fact that
of the many procedures that are needed to realise the many SLS algorithms and report
formats supported by UBCSAT, only those required in any given run are activated and



used, while the remaining inactive or non-triggered procedures do not affect UBCSAT’s
performance. A secondary advantage is that different algorithms and reports can share
the same data structures and procedures, saving much programming effort. Potential
drawbacks stem from the implementation overhead of having to register all triggers, and
from the fact that in this framework, algorithms are typically split into many rather small
procedures, which can lead to decreased performance compared to more monolithic im-
plementations. However, we have found that these disadvantages are far outweighed by
the advantages of UBCSAT’s triggered procedure architecture. In particular, as we will
demonstrate in the following section, the performance of UBCSAT is very competitive
with native reference implementations of the respective SAT algorithms.

3 A Collection of Efficient Algorithm Implementations

UBCSAT can be seen as a collection of many different SLS algorithms. Compared to
the respective reference native implementations of these algorithms, by integrating them
into the UBCSAT framework several advantages can be realised: Generally, by using a
single executable with a uniform interface, working with different algorithms becomes
easier and more convenient. From an implementation point of view, different algorithms
share common data structures and procedures, which reduces implementation effort
and the likelihood of programming errors. And from an empirical algorithmics point
of view, comparing two algorithms is facilitated by the fact that UBCSAT allows fairer
comparisons between algorithms that share components and use the same statistical
calculations, input and output formats.

The UBCSAT software package currently implements the following SLS algorithms
for SAT:

– GSAT [14]
– GWSAT [13]
– GSAT/TABU [11]
– HSAT [3]
– HWSAT [4]
– WalkSAT/SKC [13]

– WalkSAT/TABU [12]
– Novelty and R-Novelty [12]
– Novelty+ and R-Novelty+ [6]
– Adaptive Novelty+ [7]
– SAPS and RSAPS [9]
– SAPS/NR [16]

UBCSAT is designed to support weighted MAX-SAT versions (see also Section 6)
as well as variants that may differ in their behaviour or implementation from the basic
version of a given algorithm. Consequently, each algorithm within UBCSAT is identi-
fied as a triple (“algorithm”, bWeighted, “variant”), selectable on the command line
as ubcsat -alg algorithm [-w] [-v variant].

For each of the previously listed algorithms, we ensured that the UBCSAT im-
plementation behaves identically to the respective original reference implementation,
taking into consideration the stochastic nature of the algorithms. This is illustrated in
Figure 4, in which run-time distributions for the UBCSAT implementations of GWSAT
and WalkSAT/SKC are compared with those for the original GSAT (version 41) and
WalkSAT (version 43) implementations.

At the same time, the UBCSAT versions of all algorithms were optimised for effi-
ciency, with the goal of matching or exceeding the time performance of the respective
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Fig. 4. Quantile-quantile plots of the run-time distributions for UBCSAT vs. GSAT v41 on in-
stance uf200-easy (left side) and WalkSAT v43 on bw large.a (right side) based on 5 000
runs per algorithm (run-time is measured in search steps).

reference implementations. For many SLS algorithms, the key to an efficient imple-
mentation lies in the way crucial data structures are organised and incrementally main-
tained. For example, many algorithms (such as GSAT and its variants) assign a score to
each variable that is defined as the net change in the total number of satisfied clauses
caused by flipping that variable. Rather than recomputing all variable scores in each
step, they can be stored and incrementally updated, such that after each flip only the
scores affected by that flip are recalculated [8]. However, we have found that in some
situations too much time can be spent by using this scheme; in particular, using it in
the implementation of WalkSAT algorithms actually decreases their performance. To
further complicate matters, the optimal incremental update strategy often depends on
the characteristics of the given problem instance.

In our UBCSAT implementation, we strove to use data structures and incremental
updating schemes that are efficient, yet reasonably straightforward to understand and
implement. The UBCSAT architecture supports functionally identical algorithm vari-
ants that are implemented using different data structures and/or incremental updating
schemes in a straightforward way, which makes it easy to implement new developments
in this area (such as Fukunaga’s recent scheme [2]).

The performance of the UBCSAT implementations of all supported algorithms has
been tested against that of the respective reference implementations in order to ensure
that the former are at least as efficient (in terms of run-time) as the latter. More impor-
tantly, for GSAT- and WalkSAT-algorithms, the UBCSAT implementations have been
shown to be significantly faster (see Table 1 for representative results).

4 A Framework for Developing New Algorithms

As discussed in the previous section, the UBCSAT environment includes a wide variety
of algorithms and data structures. To facilitate the development and integration of new
SLS algorithms, UBCSAT has been designed in such a way that new algorithms can



Algorithm uuf100-01 uuf400-01
UBCSAT Original s.f. UBCSAT Original s.f.

WalkSAT/SKC 97.7 144.7 1.48 98.5 150.3 1.53
Novelty 117.1 151.6 1.29 114.5 153.4 1.34
GSAT 106.7 305.0 2.86 114.1 316.5 2.77
GWSAT 172.1 590.1 3.43 266.8 768.2 2.88

Algorithm jnh202 rg-200-2000-4-11
UBCSAT Original s.f. UBCSAT Original s.f.

WalkSAT/SKC 134.0 217.2 1.62 142.1 310.7 2.19
Novelty 168.4 230.8 1.37 159.5 323.0 2.02
GSAT 202.3 1541.6 7.62 233.0 397.8 1.71
GWSAT 254.3 1894.7 7.45 541.5 1354.5 2.50

Table 1. Total run times (in seconds) for 100 000 000 search steps on a dual-processor 1GHz Pen-
tium III (Coppermine) machine with 256KB cache and 1GB RAM running SuSE Linux 9.1. The
speedup factor (s.f.) shows the software speedups of the UBCSAT implementation over the origi-
nal implementations (GSAT v41 and WalkSAT v43). Note by choosing unsatisfiable instances for
this speed comparison, we ensured that in all cases exactly the same number of search steps have
been performed. The uuf-* instances are uniform random 3-SAT, the jnh instance is random
P -SAT, and the rg instance is a structured encoding of a graph colouring instance.

easily re-use the existing procedures and data structures from other algorithms; the basis
for this is provided by the triggered procedure architecture discussed in Section 2.

To illustrate how new algorithms are added to UBCSAT, in Figure 5 we present the
pseudo-code required to add a new WalkSAT/TABU algorithm variant to UBCSAT. We
have named the new variant WalkSAT/TABU-NoNull, and it differs from the regular
WalkSAT/TABU algorithm in only one detail: if all of the variables in the selected
clause are tabu, then a variable will be selected from the clause at random and flipped.
(This variant is interesting from a practical point of view, since WalkSAT/TABU is one
of the best-performing WalkSAT algorithms, but often suffers from search stagnation
as a consequence of null-flips.)

Within UBCSAT, the new algorithm will be identified as a (“walksat-tabu”, false,
“nonull”); it differs from the already supported WalkSAT/TABU only in its variable
selection procedure, whose trigger we name PickWalksatTabuNoNull. An algorithm
can explicitly specify the data structure procedures required, or it can inherit them
from another algorithm. In this case, we will simply inherit everything from regular
WalkSAT/TABU (“walksat-tabu”, false, “”). When an algorithm requires algorithm-
specific command-line parameters (such as the tabuTenure parameter in WalkSAT/TABU)
they must be defined or optionally inherited from an existing algorithm. In addition to
creating and registering the new trigger in the system, its associated procedure, here also
called PickWalksatTabuNoNull, has to be implemented, which in this example simply
calls the regular WalkSAT/TABU variable selection procedure and then handles the
special case when a null-flip occurs. While this example illustrates a particularly simple



procedure AddWalksatTabuNoNull()
CreateAlgorithm(“walksat-tabu”, false, “nonull”, % algorithm, bWeighted, variant

“WalkSAT/TABU without null-flips”, % description
“McAllester, Selman, Kautz [AAAI 97] (modified)”, % authors
“PickWalksatTabuNoNull”, % heuristic trigger(s)
...); % details omitted

InheritDataTriggers(“walksat-tabu”, false, “”);
InheritParameters(“walksat-tabu”, false, “”);
CreateTrigger(“PickWalksatTabuNoNull”, % trigger name

ChooseCandidate, % event point
PickWalksatTabuNoNull, % pointer to procedure
...);

end AddWalksatTabuNoNull

procedure PickWalksatTabuNoNull()
PickWalksatTabu();
if iF lipCandidate = NULL then

iF lipCandidate := PickRandomVarFromClause(iWalkSATClause);
end

end PickWalksatTabuNoNull

Fig. 5. Pseudo-code of the procedures required for extending UBCSAT with a new variant of
WalkSAT/TABU.

variant of an existing algorithm, the process of adding implementations of new SLS
algorithms to UBCSAT is typically similarly straightforward.

5 An Empirical Analysis Tool

Empirical analysis plays an important role in the development and successful applica-
tion of SAT algorithms. To characterise or measure the behaviour of an SLS algorithm,
typically data needs to be collected from multiple independent runs of the algorithm.
Each run corresponds to a complete execution of the algorithm outlined in Figure 1;
note that the pseudo-code of Figure 2 performs multiple runs. (Note that when restart
mechanisms are used, a single run can be punctuated by one or more restarts, but this
does not partition it into multiple runs.) As an example, consider the run-time data
shown in Figure 4, which is based on 5 000 independent runs of each algorithm in-
volved in the respective experiment. To facilitate the advanced empirical analysis of the
SLS algorithms it implements, UBCSAT not only provides support for measuring and
reporting basic descriptive statistics over multiple runs, but also strongly supports the
analysis of run-time distributions (RTDs) [8]. In particular, UBCSAT can measure and
report RTDs in a format that can easily be plotted (see left side of Figure 7) or further
analysed with specialised statistical software.

Reports currently implemented in UBCSAT include the satisfying assignments found
in each run, detailed information about the search state at each search step, flip statistics
for individual variables and many others. In UBCSAT, statistics are special objects that
are used to collect and summarise data for the default reports. Statistics can be shown
for each individual run (column objects), or be summarised over all runs (stat objects).
Additional reports and statistics can be added to UBCSAT in a straightforward manner
that is conceptually closely related to the way in which new algorithms are added. Re-



integer iCurV arAge; % global variable for statistic

procedure AddAgeStat()
AddColumn(“agemean”, % column name

“Mean Age of Variables when flipped”,
&iCurVarAge, % pointer to data variable
“UpdateCurVarAge”, % trigger to activate
TypeMean, % type of statistic to collect on data
...);

CreateTrigger(“UpdateCurVarAge”, PreFlip, UpdateCurVarAge,
“VarLastChange”, % trigger dependency
...);

end AddAgeStat

procedure UpdateCurVarAge()
iCurV arAge := iStep− aV arLastF lip[iF lipCandidate];

end UpdateCurVarAge

Fig. 6. Pseudo-code for adding a new statistic that measures the mean age of variables when
flipped.

ports can be in any format and are implemented based on a list of triggered procedures
that collect and print the required information.

In Figure 6, we show the creation of a column object that will calculate the aver-
age age of variables flipped during a run. The age of a flipped variable is calculated as
the number of steps that have occurred since the last time the variable was flipped (the
calculation is shown in UpdateCurVarAge(). For this statistic, the trigger UpdateCur-
VarAge is required to ensure that the correct age value is calculated at the event point
PreFlip. The trigger UpdateCurVarAge depends on the trigger VarLastChange (see Fig-
ure 3), so if the algorithm already collects this data (as does, e.g., WalkSAT/TABU) then
the statistic will simply share the same data structure, but if the algorithm does not nor-
mally require this data, then the trigger will ensure that it is collected. Because this
column statistic has been identified as a TypeMean (average over all search steps of a
run), an additional trigger will be automatically activated to collect the data at the end of
each search step. Like many statistics added to UBCSAT, this age statistic is now avail-
able to all algorithms (that use a single-flip strategy). UBCSAT facilitates comparisons
between algorithms on statistics such as these, which can help further our understanding
of how SLS algorithms behave.

6 Support for MAX-SAT

One area where SLS algorithms have been very successful, and have defined the state-
of-the-art for more than a decade, is in solving the MAX-SAT problem, and in partic-
ular, the weighted MAX-SAT problem; for this reason, supporting MAX-SAT was one
of our primary goals. Although there are interesting differences between the state-of-
the-art SLS algorithms for SAT and MAX-SAT, at the conceptual and implementation
level, there are many similarities. Unweighted MAX-SAT can be seen as a special case
of weighted MAX-SAT where all clauses have uniform weight; therefore, in the follow-
ing, we will focus on the weighted MAX-SAT problem. It should be noted, however,
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Fig. 7. An example of a run-length distribution (RLD) (left side), and a time-dependent solution
quality statistics (SQT) plot (right side). The data underlying these curves can be easily generated
by the UBCSAT software package and plotted using gnuplot scripts which are available on the
UBCSAT website.

that in terms of implementation, SLS algorithms for unweighted MAX-SAT are much
more closely related to SLS algorithms for SAT. In UBCSAT, unweighted MAX-SAT
algorithms are therefore typically equivalent to the corresponding SAT algorithm, while
weighted MAX-SAT algorithms are implemented separately, facilitating conceptually
simpler and highly efficient implementations for both cases.

The main differences between SAT and MAX-SAT is that the optimal solution qual-
ity (i.e., maximal total weight of satisfied clauses) for a given problem instance is of-
ten unknown. Hence, the best assignment encountered during the search, the so-called
incumbent assignment, is memorised and returned at the end of the search. This mem-
orisation of the incumbent assignment is accomplished in UBCSAT via a report. Typi-
cally, SLS algorithms for MAX-SAT are not guaranteed to find optimal solutions, i.e.,
maximal weight assignments, but many state-of-the-art SLS algorithms for MAX-SAT
have the property that if they search long enough, the probability of finding an opti-
mal solution approaches one (the so-called PAC property, see also [6, 8]), and in many
practical cases assignments that are provably optimal or believed to be optimal can be
found within reasonable run-times. UBCSAT supports termination criteria that end a
run whenever a user-specified solution quality (e.g., the known optimal solution quality
for the given problem instance) is reached or exceeded; alternatively, particularly when
dealing with instances whose optimal solution quality is unknown, UBCSAT can be
configured with advanced criteria to determine when to terminate a run.

Currently, UBCSAT includes implementations of two dedicated algorithms for MAX-
SAT, SAMD [5] and IRoTS [15], as well as weighted MAX-SAT variants for many of
the SLS algorithms listed in Section 3. The mechanism for implementing new MAX-
SAT algorithms within UBCSAT is exactly the same as described for the case of SAT
in Section 4. While for unweighted MAX-SAT instances, the same DIMACS CNF file
format as for SAT is used, for weighted MAX-SAT instances, UBCSAT currently sup-
ports a straightforward extension of the this format known as the weighted CNF file
format (.wcnf). To support the empirical analysis of the behaviour and performance
of SLS algorithms for MAX-SAT, in addition to the previously mentioned statistics



and reports (see Section 5), UBCSAT supports advanced analysis methods for stochas-
tic optimisation algorithms. In particular, the following types of empirical performance
characteristics can be easily measured (see also [8]):

– qualified run-time distributions (QRTDs), i.e., empirical probability distributions
of the run-time required for reaching or exceeding a specific target solution quality
measured over multiple runs of the algorithm;

– solution quality distributions (SQDs), i.e., empirical probability distributions of the
best solution quality reached within a given amount of run-time, measured in terms
of search steps or CPU time over multiple runs of the algorithm;

– time-dependent solution quality statistics (SQTs), i.e., the development of descrip-
tive statistics (such as quantiles) of the SQDs as run-time increases.

QRTDs, SQDs, and SQTs are determined from so-called solution quality traces, which
contain information on every point in time the incumbent solution was updated during
a given run of the algorithm. The solution quality traces are collected by UBSAT with
minimal overhead during the run of any MAX-SAT algorithm. Figure 7 (right side)
shows a sample SQT measured by UBCSAT.

7 Conclusions and Future Work

In this paper we have introduced UBCSAT, a new software environment that we created
with the specific goal of facilitating and supporting research on SLS algorithms for SAT
and MAX-SAT. UBCSAT is built on the basis of a novel triggered procedures architec-
ture and includes highly efficient, conceptually simple, and accurate implementations
of a wide range of prominent SLS algorithms for SAT and MAX-SAT. UBCSAT fa-
cilitates the development and integration of new algorithms (and algorithm variants). It
provides support for advanced empirical analysis of the performance and behaviour of
SLS algorithms without compromising implementation efficiency. UBCSAT has been
implemented in a platform-independent way and is publicly available to the academic
community as an open-source software package.

While this paper has summarised the work on the UBCSAT project to date, UBC-
SAT is an ongoing effort, and we are very enthusiastic about expanding and building
upon the project in the future. We plan to expand UBCSAT by incorporating existing
and new SLS algorithms for SAT and MAX-SAT. While we have so far focussed on
an ANSI C compliant implementation, there is some interest in adding C++ interfaces,
as well as extending our implementation beyond the 32-bit boundary for counters. We
will continue to add more sophisticated reports and empirical analysis tools, and we
are also interested in providing more external support features, such as gnuplot scripts
and better integration with the R statistical software package. It has been suggested that
the UBCSAT project could benefit from support for parallel implementations, a more
formalised object-based system with advanced integrity checking, and even a graphical
user interface for constructing new algorithms and adding triggers. We are very inter-
ested in adding features that will make the software more accessible and useful to the
research community, and welcome feedback and suggestions for further improvements.



But above all else, we hope that our UBCSAT framework will help advance state-
of-the-art research in SLS algorithms, to help better understand how and why SLS al-
gorithms behave the way they do, and to unlock some of the unexplored potential of
SLS algorithms for SAT and MAX-SAT.
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