Warped L andscapes and
Random Acts of SAT Solving

Dave A.D. Tompkins & Holger H. Hoos

Department of Computer Science
University of British Columbia
Canada

Outline

1. Dynamic Local Search (DLS) for SAT and MAX-SAT
2. Do DLS Algorithms Learn?
3. Is Randomness Needed?

4. Conclusions & Future Work

Dynamic Local Search (DL S) for (MAX-)SAT

Propositional Satisfiability Problem (SAT):
Given: Propositional formula ® in conjunctive normal form.

Objective: Find an assignment of truth valuesto variablesin ®
such that ¢ is satisfied, or declare ® as unsatisfiable.

Example:
(aVb) A (—aV —b)

~» satisfiable, solution: a = true, b = false

Maximum Propositional Satisfiability Problem (MAX-SAT):
Given: Propositional formula ® in conjunctive normal form.

Objective: Find an assignment of truth valuesto variablesin ®
that maximises the number of satisfied clausesin ®.

Weighted MAX-SAT:

Given: Propositional formula in conjunctive normal form,
weights w(c) associated with each clause c € ®

Objective: Find an assignment of truth valuesto variablesin ®
that maximises the total weight of satisfied clausesin ®.

~» hard vs. soft constraints

Stochastic L ocal Search (SLS)

Approach:

e Guess (i.e., randomly generate) initial candidate solution
(SAT: randomly determine truth value for each variable).

o |teratively perform search steps by modifying small parts of
the candidate solution guided by evaluation function
(SAT: pick avariable and change its truth value
In order to reduce number of unsatisfied clauses).

e Stop this process when termination condition is satisfied,
e.g., solution found or time-limit reached.

e Stochastic decisions are used to overcome / avoid
search stagnation caused by, e.g., local minima.

Note:

e SL S algorithms are amongst the best-performing methods for
solving hard, satisfiable SAT instances.

e SLSalgorithms are (by alarge margin) the best-performing
methods for solving hard MAX-SAT instances.

Dynamic L ocal Search (DL S)

Key idea: Modify evaluation function during search process
to escape from local minimain objective function g.

DL Sfor SAT:
e associate penalty values clp(c) with every clause ¢
e initialise clause penalties (typically cip(c) := 1)

e perform local search on

g (clp,a) = Z clp(c)

c s unsat under a

e modify clause penalties (important choices. when? how?)

Dynamic L ocal Search

solution

Note:

e DLSfor SAT effectively finds locally optimal solutions
for a series of weighted MAX-SAT instances,
where the clause weights correspond to the clp values.

e Many DLS agorithms are motivated by methods from
continuous optimisation, but important theoretical properties
do not carry over.

e Modifications of clause weights typically have
high time complexity compared to local search steps.

Some DL S Algorithmsfor SAT

— Breakout Method [Morris, 1993]

x GSAT with clause weights [Selman & Kautz, 1993]

— GSAT with rapid weight adjustment [Frank, 1997]

+ Discrete Lagrangian Method (DLM) [Wah et al., 1998-2000]

— Smoothed Descent and Flood (SDF) algorithm
[Schuurmans & Southy, 2000]

+ Exponentiated Subgradient (ESG) algorithm
[Schuurmans et al., 2001]

+* Scaling and Probabilistic Smoothing (SAPS) algorithm
[Hutter, Tompkins, & Hoos, 2002]

Scaling And Probabilistic Smoothing (SAPS)

Random Init
cpl(c) ;=1 [all c]

Random Walk

I PROB(1-wp)

[terative Best Scaling:
— %
Imp}*ovem?nt I PROB(wp)> cpl(c) :=a*cpl(c)
using clp's [all unsat c]
A
\- PROB(sp)
not Imin PROB(1-sp)

Smoothing:

cpl(c) := clp(c)*r
+avg(clp(c))*(1-r)
[all c]

J

SAPSon SAT (median run-timein CPU sec)

Problem Instance || Novelty™ ESG || SAPS | sf.
uf100-hard 0.046 0.006 0.006 | 1.00
uf250-med 0.015 | 0.0195 0.011 | 1.36
uf250-hard 2.745 0.461 0.291 | 1.58
uf400-med 0.160 0.324 0.103 | 1.55
uf400-hard 22.3 9.763 1973 | 4.95
flat100-med 0.008 0.013 0.008 | 1.00
flat100-hard 0.089 0.037 0.032 | 1.16
flat200-med 0.208 0.237 0.087 | 2.39
flat200-hard 18.862 5.887 3.052 | 1.93
bw_large.a 0.014 0.016 0.009 | 1.56
bw_large.b 0.339 0.280 0.179 | 1.56
logistics.c 0.226 0.229 || 0.037 | 6.10
aislo 4.22 0.139 0.051 | 2.73

GLSSAT?2 - median time

SAPS on MAX-SAT: test-set wjnh

0.1 ™ ™
<
X X x x
X :
| ¢ T &
001 e @ R 4
- >< >><<>§<>Z§< X ¢
* 'ééx % o
§&X
.
0,001 F e .
Satisfiable
3 3 Unsatisfiable <
0.0001 L] o, e
0.0001 0.001 0.01 0.1

SAPS - median time

SAPSon MAX-SAT: test-sets rnd100-1000u, rnd150-1500u

¢ X
| | | non
N ! ! ! —_
N : : ; © ©
| | | > >
. : : ' o O
. : : : ouwn
X o W | —
XX R
|wmxx ““““ ™ .
o
X : : :
XA | | |
XXX W W
R
XX e | |
& i m m
X SIS | |
WMMW»X
o %0 W
R WAQOOAOQ “““““““““““““““““““““ =]
CCe ¥ e W W
RIR m m
S5, | |
* : :
*e¥ o |
£ Jedd W
* : :
*,% m
” * 0 :
8 . m
IRAN |
LR N :
. Wo . .
SO UNE SOOI SOOI e
e e
.
i [- »
— — — —
o o o o
o o =
o o
o

swi uelpsw - 21VSS19

0.01 0.1

SAPS - median time

0.001

0.0001

Do DLSAlgorithmsLearn?

Original motivation of DL S;

e Fill Inloca minima

e Learn important / hard clauses

~» Hypothesis:

Clause penalties determined by DL S algorithm
render problem instance easier to solve

Note: This hypothesis was never tested!

Dynamic L ocal Search

solution

Dynamic L ocal Search

solution

Experiment:

1.

Solve benchmark instances using SAPS;
measure search cost (median # variable flips).

Take snapshots of clause penalty values
at end of characteristic successful runs.

Initialise clause penalties according to snapshots,
measure search cost for SAPS.

Initialise clause penalties randomly;
measure search cost for SAPS.

Analyse differences in search cost
for “learned” and random penalties.

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

Selecting Characteristic Runs

L

10

100

1000

Number of Search Steps

10000

100000

Flat100: SAPS-generated vs. random weights

2 100000 | : R
) [
o,
V)
d—
e
f=)
()]
=
®)
Q o
S o
Q P
o e
(@) 0
> &
= 10000 %@% 5
c &
®
| -
c
(@]
e
S
(@))
[
@
c)
= gl
c
@ o
©
L 1000 : S
1000 10000

Median run-length on SAPS generated weights [steps]

100000

Median run-length on randomly generated weights [steps]

UF100:

10000 |

1000 |

100

SAPS-generated vs. random weights

T

1

100

1000
Median run-length on SAPS generated weights [steps]

10000

SAPS Generated
Weighted Instances

Randomly Generated
Weighted Instances

|nstance Unweighted || go.25 | Median | go.75 || qo.25 | Median | go.75
uf100-easy 81 || 0.98 1.01 | 106 || 131 1.36 | 1.46
uf100-hard 3,763 1.08 1.11 | 1.14 1.03 1.06 | 1.10
uf250-hard 197,044 || 0.98 1.06 | 114 || 0.97 1.03 | 106
uf400-hard 2,948,181 || 0.92 1.04 | 117 || 0.95 1.10 | 1.19
flat100-hard 24,248 || 0.99 1.02 | 104 || 0.98 1.01 | 104
bw_large.a 2,499 || 0.90 093 | 098 | 101 1.04 | 1.07
bw_large.b 34,548 || 0.97 1.02 | 1.08 || 0.99 1.07 | 111
logistics.c 9,446 || 0.97 1.03 | 1.06 1.05 1.07 | 1.14
ssa7552-038 3,960 | 0.86 091 | 095 | 1.02 1.08 | 112
aislo 20,319 1.06 1.09 | 111 1.04 1.11 | 1.19

Result:

No support for hypothesis that clause penalties
determined by SAPS render problem instances easier.

S0 ...why does SAPS work?

e Main effect of scaling: escape from local minimum
and avoid being immediately sucked back in.

e But: adverse side effects (e.g., very likely new / more
local minima) due to large “footprints’ of clauses.

e Hence: Need mechanism for undoing
unwanted effects of scaling ~» smoothing!

Note:

The main role of penalty modifications appearsto be
search diversification, which in many other SL S algorithms
IS achieved through strong randomisation of the search.

| s Randomness Needed?

Random decisionsin SAPS:
1. random initialisation of variable assignment
2. random tie-breaking in subsidiary local search
3. random walk steps (in local minimum)

4. probabilistic smoothing

SAPS/NR:
e deterministic tie-breaking
e no random walk steps (wp = 0)
e deterministic periodic smoothing

~» after initialisation, SAPS/NR is completely deterministic

Experiment:
1. Compare performance and behaviour of SAPS and SAPS/NR.

2. Study variants of SAPS/NR in which only afraction
of variablesisinitialised with random truth values
(others set deterministically).

SAPS SAPS/NR
Instance Mean | cC.V. Mean | cC.V.
uf100-easy 102 | 0.75 103 | 0.70
uf100-hard 5572 | 0.95 5,458 | 0.97
uf250-hard 296,523 | 0.98 282,668 | 1.02
uf400-hard 4,349,480 | 0.75 || 3,662,192 | 0.83
flat100-hard 35,124 | 1.02 33,519 | 0.98
bw_large.a 3,374 | 0.85 3,245 | 0.81
bw_large.b 50,025 | 0.95 50,266 | 0.94
logistics.c 12,873 | 0.76 12,458 | 0.83
ssa7552-038 4,460 | 0.44 4,399 | 041
asl0 32,810 | 1.01 31,527 | 0.99

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

SAPSvs. SAPS/NR (100 random decisions)

uf100-hard

T

|

SAPS

SAPS/NR [100]

10

100

1000
Number of Search Steps

10000

100000

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

SAPSvs. SAPS/NR (0 random decisions)

uf100-hard

b

1

SAPS
| SAPS/NR [0]

10

100

1000
Number of Search Steps

10000

100000

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

SAPSvs. SAPS/NR (1 random decision)

uf100-hard

b

1

SAPS
 SAPSINR [1]

10

100

1000
Number of Search Steps

10000

100000

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

SAPSvs. SAPS/NR (2 random decisions)

uf100-hard

b

1

SAPS
 SAPSINR [2]

10

100

1000
Number of Search Steps

10000

100000

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

SAPSvs. SAPS/NR (4 random decisions)

uf100-hard

b

1

SAPS
 SAPSINR [4]

10

100

1000
Number of Search Steps

10000

100000

P(solve) [%]

100

90

80

70

60

50

40

30

20

10

SAPSvs. SAPS/NR (8 random decisions)

uf100-hard

b

SAPS
. SAPS/NR [g]

10

Number of Search Steps

10000

100000

Result:

e Behaviour and performance of SAPS/NR
+ random initialisation is indistinguishable
from fully randomised SAPS

e Performance of (deterministic) SAPS/NR
shows sensitive dependence on initial conditions
~» central component in definition of chaotic behaviour!

e Diversifying effect of penalty updates
IS sufficient to propagate small amount
of randomness throughout entire search process.

Conclusions

e Penalty mechanismin DLS #- global simplification
(no “long-term memory™)

e Local (“short-term memory”) effects dominate search
behaviour

e Penalty mechanism in SAPS primarily provides
search diversification

e Only few initial random decisions are sufficient for obtaining
same behaviour as fully randomised SAPS algorithm

e Behaviour of deterministic SAPS/NR algorithm
sensitively depends on initial conditions (chaotic behaviour?)

Future Work

e Characterisation of “warped” search spaces

e Separation of short-term and long-term memory in DLS
e optimally weighted SAT instances

e advanced initialisation methods for SAPS/NR

e further investigation of “chaotic” behaviour in SAPS/NR

