
A Fast Segmentation Algorithm for Bi-Level Image Compression using JBIG2

Dave A. D. Tompkins and Faouzi Kossentini
Signal Processing and Multimedia Group

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, BC V6T 1Z4 Canada
{davet,faouzi}@ece.ubc.ca http://spmg.ece.ubc.ca

(Invited Paper)

Abstract

The emerging JBIG2 standard allows compliant encoders
to achieve very high compression rates on bi-level
images, especially when images are properly segmented
into regions of line-art, halftones and text. We propose a
fast method that is very effective at separating text from
non-text regions, even when the regions are non-
rectangular or have skew. Our method can also detect
regions of reverse-coloured text. In most cases, our
method increases the compression performance of the
encoder. More importantly, our method can improve
encoding speeds considerably, often by an order of
magnitude.

1. Introduction

The Joint Bi-Level Image Expert Group (JBIG) has
recently completed the committee draft of the JBIG2
standard [1]. JBIG2 is a significant improvement over
existing bi-level and facsimile standards, and will have
numerous applications beyond facsimile, including
document archiving and document transfers over the
Internet. For an overview of JBIG2, see [2].

JBIG2 only defines the requirements for decoding a
compliant bitstream, leaving the encoder design open and
flexible. Different JBIG2 encoders will have varying
levels of sophistication, speed, and compression
performance.

A JBIG2 bitstream can contain several different
region segments that, when combined together, will
compose the entire image. JBIG2 supports three basic
coding methods for compressing a region segment:
Generic, Halftone, and Text. Each method is optimized
for a specific type of image.

Generic regions are encoded directly as a bitmap
with one of two methods. The first method is known as

 This work was supported by both the Natural Sciences and Engineering
Research Council of Canada and Image Power, Inc.

Modified-Modified-Read (MMR), and is used in the
Group 4 (T.6) facsimile standard. The second method is a
variation of the template based arithmetic coding used in
the JBIG1 standard. The second method (MQ) achieves
higher compression and is the most effective method for
regions of line-art, figures and graphs.

Halftone regions are encoded as both a grayscale
image and a halftone pattern dictionary. A JBIG2
encoder essentially reverses the halftone process so that
decoders can re-halftone the grayscale image. Halftone
regions can achieve high levels of compression, but
except in special circumstances, are lossy. Figure 1 is an
example of a halftone region.

Text regions are referred to as symbol regions in
JBIG2, as the compression works for symbols that can be
from any alphabet or be non-text. The symbols
themselves are stored in dictionaries and are encoded as
generic regions. Symbol regions contain the information
required to position a symbol from the dictionary at a
specific location in the image.

Figure 1. Lena Halftone at 200 dpi

A typical image encountered by a JBIG2 encoder
will be a formatted document, containing any
combination of text, tables, figures, line-art and halftone
regions. To take full advantage of methods available
within JBIG2, a sophisticated encoder will segment the
image, and then use the best coding method for each
region.

Traditionally, document segmentation algorithms
have been developed for Optical Character Recognition
(OCR) applications. A historical summary of the
available methods can be found in [3]. Segmentation
methods can be loosely classified as bottom-up, top-down
or both. Bottom-up approaches to document
segmentation generally start with individual letters on a
page, and then based on text-layout conventions, group
letters into words, words into paragraphs, and so on.
Line-art and halftones are often detected by their size, or
their non-text layout. Top-down approaches take
advantage of the fact that formatted documents usually
have margins surrounding each region. The page can be
subdivided into different regions by examining the white-
space in the document. Alternatively, top-down methods
will use the bit-density or texture of the document to
identify and classify regions. Some modern segmentation
methods still have problems with skew (text appearing on
an angle), non-rectangular regions, reverse-coloured text,
and foreign languages. Many methods also require large
quantities of training sets to properly identify regions.
Unfortunately, even OCR segmentation methods that are
relatively fast can be too slow for some bi-level image
compression systems.

In this paper, we present a method that quickly
segments an image into text and non-text regions. It can
detect regions of reverse-coloured text, and is not
adversely affected by skew or irregularly shaped regions.
Our algorithm decreases encoding time significantly, and
almost always improves compression performance.

This paper is organized as follows. Section 2 outlines
the challenges of designing a fast segmentation algorithm,
and the differences between segmenting for JBIG2 and
OCR applications. Section 3 describes our segmentation
method, with our experimental results discussed in
Section 4 and our conclusions in Section 5.

2. Segmenting for JBIG2

Although the general objectives of JBIG2
segmentation and OCR segmentation are similar, their
requirements are quite different. In general, an OCR
segmentation method has to be much more accurate.
Misinterpreting a block of text as a graphic or not
detecting a region of reverse-coloured text may be
catastrophic in an OCR application, while in a JBIG2
environment similar errors will only lead to sub-optimal
compression performance.

Because they are required to be more accurate, OCR
algorithms are allowed to be slower. In general, symbol
based bottom-up approaches are faster than top-down
strategies as the number of symbols is much smaller than
the number of pixels [4]. Most bottom-up strategies
require that all of the symbols in the document are
extracted. Although symbol extraction can be executed
relatively quickly, the analysis of the symbols can be
quite costly. For a proper analysis, some sorting or
comparison operations must be performed, which can be
of complexity O(n·log2n) or worse. Images with halftone
regions can easily have over 10,000 symbols, which may
make even a simple analysis too costly for a JBIG2
application. JBIG2 segmentation methods should avoid a
full symbol analysis.

A JBIG2 segmentation method must also consider the
consequences of misinterpreting a region type. There will
be considerable loss in quality if a lossy halftone coding
method is used for a text or line-art region. The generic
coding method is designed for a wide variety of region
types, and can be used to losslessly compress any region.
The symbol coding method can be used for non-text
images, and can even achieve higher compression rates
than the other methods, although a comparable or slightly
poorer compression performance is more common.
However, the danger in misinterpreting non-text data as
text is not the slightly smaller compression performance,
but rather the potentially large difference in execution
time.

To achieve the high levels of compression possible in
symbol regions, an encoder must perform a detailed
analysis on all of the symbols. This symbol analysis is
even more complex than a segmentation scheme, and may
have a worst-case complexity of O(n2). If a halftone
region with tens of thousands of symbols is
misinterpreted as text, the result can be catastrophic. As a
result, cautious JBIG2 encoders should be biased towards
non-text regions, which is the opposite of the guideline
for OCR applications.

3. Segmentation Method

Our objective was to develop a fast method of
separating text from non-text regions. We wanted to
avoid performing a costly symbol analysis at the
segmentation stage, and prevent our symbol region coder
from performing a text analysis on a halftone region. We
were primarily concerned with lossless coding at
facsimile resolutions (200 dpi). We were also interested
in a mechanism for detecting regions of reverse-coloured
text. And finally, if possible, we wanted to avoid using a
method requiring a large set of training data.

Our method requires that an analysis be performed on
a reduced image. Instead of reducing the image by
downsampling, a block technique is employed [5]. Each

pixel in the reduced image corresponds to a NxM block in
the original image. A reduced pixel is white if and only if
all of the pixels in the corresponding block are white.
Based on this reduction criterion, the reduced image
appears dark and smudged, which is why the technique is
often called smearing. The technique is illustrated in
Figure 2.

Figure 2. Smearing Reduction Technique
Title page of this paper scanned at 200 dpi, and then

reduced with smearing (8x8)

Where a bottom-up approach could have been quite
slow on the full image, it is now quite feasible on the
reduced image. After reducing the image, we extract all
of the symbols using the 8-connected technique described
in [4]. We then examine each symbol to determine if it
has non-text characteristics. In general, halftone regions

and line-art will appear as large black symbols, while text
regions will consist of several small symbols. If a symbol
is determined to be non-text, then all of the pixels
corresponding to the symbol in the original image are
removed as a region and encoded separately.

In the reduced image, reverse-coloured text regions
will have the same characteristics as halftone regions.
When a non-text region is removed from the original
image, we test to see if it is reverse-coloured text. To
perform this test, we reverse the region and then repeat
the analysis we did on the entire image. If the reduced
image is still a large black blob, then it is most likely a
halftone. Conversely, if there are a large number of small
symbols, then it is most likely text. The process of
reversing the region, reducing the image and extracting
the symbols can all be performed very quickly, and is
illustrated in Figure 3.

The segmentation method can be summarized as
follows. The original image is reduced, and all of the
symbols from the reduced image are extracted. Each
symbol corresponds to a region in the original image, and
is checked for non-text characteristics. If the symbol is
classified as non-text, the corresponding region from the
original image is removed. The removed region is
reversed, reduced and the symbols are extracted. If there
are a large number of symbols the region is encoded as
reverse-coloured text. Otherwise, the region is encoded
as non-text. After the non-text and reverse-text regions
have been removed from the original image, the
remaining region is encoded as text. For each of these
steps, there are thresholds and parameters that will
determine how sensitive the implementation is.

The first parameters to consider are the dimensions of
the reduction block, N and M. For an efficient
implementation, it is vital that N be a multiple of 8. More
than likely, the image data will be stored as 8 horizontal

(a) (b) (c) (d) (e) (f)

Figure 3. Detecting Reverse-Coloured Text Regions. The original image (a) is reduced (b) and
then the non-textual region is extracted (c). The extracted region is then reversed (d) and reduced (e),
where it is now obvious that numerous symbols exist, and so symbol coding can be performed (f).

pixels per byte, and restricting N to multiples of 8 will
allow the reduction and region extraction operations to be
performed in a byte-wise manner, significantly improving
the speed of the encoder. There is no such restriction on
M, but by keeping M and N equal, the method becomes
invariant to image orientation, which may be a desirable
feature. For our implementation, we were concerned with
images at 200 dpi with 10 point (or higher) text and used
a block size of 8x8. Figure 2 illustrates the results of the
8x8 block size on the title page of this paper. The most
important feature of this reduced image is the halftone
area, which appears completely black. In the text region,
we can see how the horizontal space between words is
maintained, but in some circumstances, adjacent rows of
text become connected. This occurs when full height
letters (such as h) appear below dangling letters (such as
y). If we want to minimize these connections, the value
M can be reduced, or 4-connected symbol extraction can
be used instead of 8-connected. The 8x8 block size is
also effective at higher resolutions, but a larger block size
can be used to improve the speed even further.

To determine if a symbol in the reduced image
corresponds to a non-text region, we consider the weight
and the size of the symbol. The weight of a symbol is the
number of black pixels it contains. The symbol is
classified as non-text if its’ weight is above a certain
percentage of the weight of the entire reduced image.
Additionally, if the area of the symbol’s bounding box is
above a certain percentage of the entire area, then it is
very likely the corresponding region is line-art or a figure.
The threshold percentages are somewhat arbitrary, and
will determine the sensitivity of the encoder. High
percentages may allow small halftone regions to go
undetected, while low percentages may misinterpret dense
text regions as non-text. The thresholds will also be a
reflection of how aggressively the encoder will try to
compress the image. We found that the thresholds of 15%
worked well for our test images.

To determine if a region contains reverse-coloured
text, we examine the number of symbols in the reversed,
reduced image. If a sufficient number of symbols are
detected, then it will be worthwhile to encode the region
as text. The threshold for the number of symbols must be
large enough to avoid misinterpreting very dark halftones
as text, and small enough to ensure reverse-text regions
are not ignored. If we exclude large symbols (using the
same criteria we used previously) from the reverse-text
region, we can reduce the risk of interpreting a halftone as
text, and our threshold can be much smaller. For example,
all of the text on the title page of this paper reduces to 156
symbols. In our implementation, we chose a value of 30
symbols, which worked well for most of our test images,
but did make some mistakes. It should be noted that the
example in Figure 3 uses a small threshold for illustrative
purposes.

4. Experimental Results

For our experiments, we used the standard ITU images
as our base set. To test the flexibility of our method, we
constructed numerous compound documents by
combining halftone, line-art, text and reverse-text
elements from the base set. We also tested our algorithm
on complicated scanned documents. All speeds have
been given relative to the speed required to encode the
entire image with MMR generic mode, and include any
encoder overhead. All of the results presented here are
for lossless compression.

Overall, our method is fast and effective. Images
containing traditional white space borders are flawlessly
segmented. The title page of this paper represents a
simple segmentation problem. Table 1 shows the results
obtained from compressing the page scanned at a
resolution of 200 dpi. From the reduced image of Figure
2, we can see how the halftone image was easily
separated. By examining the clustered dots of Figure 1
you can see how the halftone contains twice as many
symbols as the text region. Removing the halftone
increases the compression performance by 14% and the
speed by a factor of 1.75.

Table 1. Encoding Performance for the
Title Page of this Paper (200 dpi)

Method
Number of
Symbols

Comp.
Ratio

Relative
Time

Generic - MMR - 5.5 : 1 1.0
Generic - MQ - 12.3 : 1 1.3
Symbol Region 7808 13.2 : 1 2.1
Segmented 2686 15.0 : 1 1.2

Although our method can segment the title page of this
paper flawlessly, more complicated images can cause
some minor problems. Figure 4 illustrates the results of
applying our method to the image known as CCITT2 or
F17_400. In (c) we can see two errors. Even though the
top region contains two different sub-regions, a line-art
and a halftone region, it is removed and encoded as one
region. In addition, some lines of text are included in the
region. Both of these errors occur because there was not
enough white-space between the regions. In (d) we can
see how part of the line art has remained with the text
region. These errors result in a small reduction in the
compression performance. Even though the image is
complicated, the segmentation works well, and
demonstrates how our method handles irregular shapes
and text regions with ease.

The encoding results for the image CCITT2 are shown
in Table 2. Although there is a small increase in
compression, there is a dramatic improvement in speed.
By reducing the number of symbols in the text analysis to

4,933 from 42,423, we achieve an increase in encoding
speed of almost 20 times.

Table 2. Encoding Performance for the
Image CCITT2 (F17_400)

Method
Number of
Symbols

Comp.
Ratio

Relative
Time

Generic - MMR - 1.6 : 1 1.0
Generic - MQ - 9.9 : 1 2.3
Symbol Region 42,423 9.0 : 1 41.0
Segmented 4,933 10.4 : 1 2.2

In almost all of the experiments we performed, we
obtained a compression gain (0-20%) over a generic or a
text-only encoder, and even in situations with a small
(<4%) compression loss, there was a large increase in
speed (>200%). We also found that completely reverse-
coloured text documents were detected automatically,
generating large improvements in compression
performance.

5. Conclusions

We have proposed a fast algorithm for segmenting an
image into text and non-text regions. Our algorithm is
specifically designed for a JBIG2 encoder, and takes

advantage of the segmenting structure supported in
JBIG2. Our algorithm does not have problems with
irregular shapes or skew, and has the additional feature of
detecting reverse-coloured text regions. Our algorithm is
significantly faster than a standard text-based encoder,
and generally achieves higher compression rates than
straightforward generic and text encoders.

6. References

[1] JBIG Committee, ISO/IEC JTC1/SC29/WG1 (ITU-T SG8)
WD14492. November 1998.

[2] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, W.
Rucklidge, F. Ono, “The Emerging JBIG2 Standard”, IEEE
Transactions on Circuit and Systems for Video Technology, Vol.
8, No. 5, September 1998.

[3] A. Jain, B. Yu, “Document Representation and Its
Application to Page Decomposition”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 20, No. 3,
March 1998.

[4] I. H. Witten, A. Moat, and T. C. Bell, Managing
Gigabytes: Compressing and Indexing Documents and Images,
New York: Van Nostrand Reinhold, 1994.

[5] T. Saitoh, T. Pavlidis, “Page Segmentation without
Rectangle Assumption”, Proceedings of the 11th International
Conference on Pattern Recognition, Saint Malo, France. 1991.

(a) (b) (c) (d)

Figure 4. Fast Segmentation Algorithm. The Original Image (a) contains 42,423 symbols. The image
is reduced (b) and now contains only 717 symbols. Two of the symbols are detected as a non-text and their
corresponding regions are removed (c). The remaining image (d) can now be easily compressed as a text
region, with only 4,933 symbols. This process increases compression (25%) and significantly reduces
execution time (20 times) over a text-only approach.

