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Abstract

In Boolean logic, a formula is satisfiable if a variable assignment exists that will make the formula

equivalent to true, and the propositional satisfiability problem (SAT) is to determine if a given

formula is satisfiable. SAT is one of the most fundamental problems in computer science, and since

many relevant combinatorial problems can be encoded into SAT, it is of substantial theoretical and

practical interest. A popular and successful approach to solving combinatorial problems such as

SAT is Stochastic Local Search (SLS). In this dissertation we focus on SLS algorithms for SAT,

which can find satisfying variable assignments effectively, but cannot determine if no satisfying

variable assignment exists.

Our primary goal is to advance the state-of-the-art for SLS algorithms for SAT. We accomplish

this goal explicitly by developing new SLS algorithms that outperform the existing algorithms on in-

teresting benchmark problems, and implicitly by advancing the understanding of current algorithms

and introducing tools for developing new algorithms. The prevalent theme of our work is Dynamic

Local Search (DLS), where DLS algorithms use their search history to dynamically change their

behaviour.

The cornerstone of this dissertation is UBCSAT, a software framework we developed for effi-

ciently implementing and empirically evaluating SLS algorithms for SAT. We present the SCALING

AND PROBABILISTIC SMOOTHING (SAPS) algorithm, which is amongst the state-of-the-art SLS

algorithms for SAT. We provide an in-depth study of a class of DLS algorithms, analyze their

performance and significantly advance the understanding of their behaviour. We also advance the

understanding of the role of random decisions in SLS algorithms, by providing an empirical an-

alysis on both the quality and quantity of random decisions. The capstone of this dissertation is

a new conceptual model for representing and designing SLS algorithms for SAT. We introduce a

new software design architecture that implements our model and is specifically designed to lever-

age recent tools to automate many of the tedious aspects of algorithm design. We demonstrate that

by following our new algorithm design approach, we have achieved significant improvements over

previous state-of-the-art SLS algorithms for SAT on encodings of software verification benchmark

instances.
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Glossary

> true

⊥ false

∨ Boolean OR operator (disjunction). (x∨ y) is false if and only if x

and y are both false.

∧ Boolean AND operator (conjunction). (x∧ y) is true if and only if x

and y are both true.

¬ Boolean NOT operator. ¬x is true if and only if x is false.

a priori from what comes before

a.k.a. also known as

algorithm variant An algorithm variant is a modified version of an existing algorithm.

The variant may be a slight modification of the algorithm or be the

same algorithm with different implementation details.

|C| number of clauses in a formula

|C>| number of currently satisfied clauses

|C⊥| number of currently unsatisfied clauses

|c j| clause length: number of literals (variables) in clause c j

CPU time The CPU time is the amount of computer processor time required to

complete a single task in a multi-tasking computing environment, as

opposed to the wall clock time that measures the total time elapsed.

cutoff The cutoff specifies the number of search steps at which a run is

terminated.
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cv The coefficient of variation (cv) is a measure of the variance in a

distribution and is the standard deviation divided by the mean.

de facto by the fact

domination Algorithm A dominates algorithm B on an instance set c if for all

instances of c a configuration of A exists that, on average, can solve

the instance faster than any configuration of B.

e.g. exempli gratia (for example)

et al. et alii (and others)

evaluation function An evaluation function maps a variable assignment for a formula to

numerical a value (see Section 2.3). The intrinsic evaluation func-

tion is the number of unsatisfied clauses in the formula for the given

variable assignment.

|F | number of literals in a formula (i.e., the size of a the formula)

flip A flip is when the value of the variable is negated, or changed from

true to false or vice-versa. We often use the term flip to correspond

to a search step of an SLS algorithm.

i.e. id est (that is)

improving step An improving step is a search step that results in a decrease in the

evaluation function.

Kolmogorov-Smirnov

distance

The Kolmogorov-Smirnov distance is a measure of distance between

two distributions of sampled data.

n.a. not applicable

ncvi number of clauses a variable vi appears in

scli sum of the clause lengths for all clauses in which a variable vi appears

Pearson correlation

coefficient (r)

The Pearson correlation coefficient (r) is a measure of correlation

between two sets of values.

per se in itself
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qα qα corresponds to the α-quantile of a distribution. In this disserta-

tion, we use quantiles to extract specific run-lengths from a distribu-

tion of run-lengths. For example, the q0.50 run-length corresponds to

the median run-length.

restart A restart occurs within a run and is a re-initialization of the algo-

rithm.

run An independent run of an algorithm on an instance is a sequence of

search steps that terminates either successfully when a solution has

been found or unsuccessfully when a cutoff or timeout occurs. To

distinguish from other notations that are common in the literature, a

restart does not terminate a run, and several restarts can occur within

a single run.

run-length The run-length is the number of search steps that occurred in a run.

run-time The run-time is the amount of CPU time that occurred during a run.

search step A search step is one iteration of an SLS algorithm, and typically

corresponds to a single variable flip.

sideways step A sideways step is a search step that results in no change in the eval-

uation function.

s.f. The speedup factor (s.f.) is the ratio of two performance measures.

timeout The timeout specifies the number of elapsed seconds (CPU time) at

which a run is terminated.

|V | number of variables in a formula

vs versus

wall clock time The wall clock time is the conventional measure of time. In a multi-

tasking computing environment it is the total amount of time elapsed

for a task to complete, even though the CPU time may be much

smaller.

worsening step A worsening step is a search step that results in an increase in the

evaluation function.
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Preface

It’s been such a long time, I think I should be goin’.
Time doesn’t wait for me, it keeps on rollin’.

— Boston. “Foreplay / Long Time”

This dissertation contains work that spans eight years. Every graduate student has short periods of

inactivity, and I had my fair share; however, I have had some exceptionally long breaks as well.

I have taken two separate formal year-long leaves of absence in addition to an informal two year

hiatus. The primary reasons for my absences were personal and health related, and in the following

Acknowledgments Section, I thank the individuals that helped me through those times.

The core concepts and experimental results in each of the non-perfunctory chapters correspond

to work originally presented in anonymously peer-reviewed conference proceedings, with the ex-

ception of our work in Chapter 5, which is presented here for the first time and has not yet been

submitted for publication. In this dissertation we re-present the experimental results from our pub-

lications with expanded and updated text. We endeavored to strike a balance between retaining

the essential elements of our prior work and presenting this entire dissertation with a cohesive nar-

rative. We present this dissertation in a logical progression of concepts and ideas, rather than in

chronological order.

In chronological order, the work in Chapter 4 was completed in 2002 and then published at the

2002 Constraint Programming Conference [61]. In 2004, we presented and published work [112]

at the 2004 Artificial Intelligence and Mathematics Symposium; the two concepts from that work

became the genesis for Chapter 5 (warped landscapes) and Chapter 6 (random decisions). The work
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in Chapter 3 was originally presented at the 2004 SAT Conference and published in the formal

proceedings in 2005 [113]. In 2006, we revisited and extended our preliminary work on random-

ization from 2004 [112] and published new work (Chapter 6) that won the best paper award at the

2006 Canadian Conference on Artificial Intelligence [114]. The experiments in Chapter 5, which

extended the warped landscapes from 2004 paper [112], were conducted in 2006 and early 2007.

Finally, our most recent work in Chapter 7 was presented and published at the 2010 SAT confer-

ence [115].

http://www.cs.ubc.ca/~davet/gradbert
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4.01

HEY WALLY...
CAN YOU HAND
ME THAT FLUX
CAPACITOR?

OR BETTER YET...
WHY NOT JUST GO

TO THE FUTURE 

BUT IF YOU GO TOO
FAR IN THE FUTURE,
APES WILL RULE THE
PLANET, SO YOU'D...

AND GET A COPY OF YOUR
COMPLETED THESIS?

OR GET SOME STOCK TIPS
AND LOTTERY NUMBERS SO

YOU CAN LIVE IN LEISURE!

SURE...
BUILDING A TIME

MACHINE, EH?

ARE YOU GOING TO
GO BACK IN TIME
AND ACTUALLY GET

WORK DONE THIS SUMMER?

OR MAYBE GO BACK AND
TELL A YOUNGER YOU WHAT
TO FOCUS YOUR THESIS ON?

FORGET ABOUT THE
APES.  IT WILL ONLY
GO INTO THE PAST...

HEY WALLY...
CAN YOU HAND
ME THAT FLUX
CAPACITOR?

SURE...
BUILDING A TIME

MACHINE, EH?

AND THERE'S A
STRANGE BUG IN
THE SYSTEM SO IT
WILL ONLY GO BACK
FIVE "UNITS"...

BUT HOW LONG IS
A "UNIT"? AN HOUR?
A DAY? A YEAR? A...
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Chapter 1

Introduction

I’ve got something to tell ya. . .
I’ve got news for you. . .

— The Vengaboys. “We Like To Party”

In this chapter, we motivate our dissertation and identify our major contributions in Section 1.1.

Then, in Section 1.2, we provide a brief outline of our dissertation. For those readers not familiar

with our field of study, we provide background information in Chapter 2.

1.1 Motivation
The basic axioms of logic that form the backbone of the Propositional Satisfiability Problem (SAT)

have been known for over a millennium. Over a century ago, George Boole formalized logic and

gave us an algebra. Almost four decades ago, Stephen Cook established SAT as one of the most

fundamental problems in computer science [18]. Despite its long history, the study of solving SAT

is still a prominent and active area of research that spans many disciplines. We were drawn to

SAT because of its purity, elegance and versatility. Many relevant combinatorial problems can be

encoded into SAT, so by solving SAT we effectively solve a multitude of problems. In the forward

of the recently published Handbook of Satisfiability, Turing Award winner Edmund Clarke states

“clearly, efficient SAT solving is a key technology for 21st century computer science” [13].

In this dissertation, we focus on Stochastic Local Search (SLS) methods of solving SAT. SLS

algorithms are an exciting and active area of research, and there are problem instances in numerous

domains (including SAT) where SLS algorithms are the most effective approach for finding a solu-

tion. As with SAT, we are attracted to the SLS paradigm because of its simplicity and flexibility,

and we believe it closely resembles the way problems are solved in nature. Often a straightforward

SLS algorithm that can be described in a sentence or two can exhibit sophisticated behaviour and
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solve large and hard problems surprisingly effectively and robustly [55]. In addition, SLS tech-

niques developed for solving SAT can often be easily and effectively transferred to other problem

domains.

Our primary goal was to advance the state-of-the-art for SLS-based SAT solving. We accom-

plished this goal explicitly by developing new SLS algorithms that outperform the current state-of-

the-art SLS-based SAT solvers on interesting benchmark problems, and implicitly by advancing the

understanding of current SAT solvers and introducing development tools for the next generation of

SAT solvers. More specifically, our contributions are as follows:

1. We developed UBCSAT, a framework for efficiently implementing and empirically evaluat-

ing SLS algorithms. UBCSAT is the cornerstone of our dissertation, and the framework from

which we conducted most of our experiments (Chapter 3).

2. We created the SCALING AND PROBABILISTIC SMOOTHING (SAPS) algorithm, which be-

longs to the class of SLS algorithms for SAT we refer to as Dynamic Local Search with Clause

Penalties (DLS-CP). We demonstrated that SAPS dominates the performance of its DLS-CP

predecessor, the EXPONENTIATED SUBGRADIENT (ESG) algorithm [97], and is amongst

the state-of-the-art SLS algorithms for SAT (Chapter 4).

3. We provided an in-depth study of DLS-CP algorithms, advancing our understanding of their

behaviour. We discovered that there are interesting examples of instances where DLS-CP

algorithms can identify problem clauses that can be weighted to make solving the instance

easier, but we demonstrated that this behaviour is rare and not how DLS-CP algorithms solve

most instances in practice. We concluded that typically only the very short-term memory of

DLS-CP algorithms is useful, and primarily for escaping local minima (Chapter 5).

4. We studied the role of random decisions in SLS algorithms, and performed an empirical

analysis on both the quality and quantity of random decisions. We concluded that SLS al-

gorithms are very robust with respect to the quality of their randomness source, and that

widely available Pseudo-Random Number Generators (PRNGs) are of sufficient quality for

implementing SLS algorithms. We presented evidence that even highly randomized SLS al-

gorithms can be derandomized in a straightforward manner without significantly changing

their behaviour. We observed an interesting phenomenon where, by making only one or two

changes in their initial variable assignment, derandomized algorithms can exhibit the same

full variability in run-time observed for randomized algorithms. (Chapter 6).

5. We introduced a new conceptual model for representing and designing new SLS algorithms

with variable expressions. We developed the DESIGN ARCHITECTURE FOR VARIABLE EX-

PRESSIONS (DAVE), an extension of UBCSAT that implements our model. DAVE was
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designed to leverage the use of recent automated algorithm configuration tools for the auto-

mated development of new algorithms. DAVE is the capstone of our dissertation, and we

demonstrated that by following our new algorithm design approach, we achieved significant

improvements over previous state-of-the-art SLS-based SAT solvers on software verification

benchmark instances (Chapter 7).

Throughout this dissertation, the prevalent theme is the study of how SLS algorithms for SAT

incorporate elements of history into their search. We refer to algorithms that incorporate history

into their search as Dynamic Local Search (DLS) algorithms, as they dynamically change their

behaviour throughout the search. We revisit this theme throughout this dissertation and discuss it

further in Chapter 8.

1.2 Overview
The remainder of this dissertation is structured as follows. First, in Chapter 2, we provide a general

background on topics that are pervasive throughout this dissertation; for topics that are more relevant

to a single chapter we present that background material in the chapter as needed. Next, in Chapter 3,

we motivate and introduce our highly successful UBCSAT software. Then, in Chapter 4, we present

our SAPS algorithm, and introduce the basic concepts behind Chapter 5 and Chapter 6. Next, in

Chapter 5, we conduct a comprehensive study of DLS-CP algorithms, providing many insights into

their behaviour. Then, in Chapter 6, we present our award-winning work on the impact of random

decisions in SLS algorithms. Next, in Chapter 7, we present our most recent work on our new

conceptual model and its highly flexible software implementation (DAVE). Finally, in Chapter 8,

we summarize our contributions and propose several areas where our work can be extended.
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Chapter 2

Background

I can’t get no satisfaction. . .
’Cause I try, and I try, and I try, and I try.

— The Rolling Stones. “Satisfaction”

In this chapter, we provide background information and work related to this dissertation as a whole.

In the subsequent chapters, we provide additional background material that is more specifically

related to the content of those chapters. The remainder of this chapter is structured as follows. First,

in Section 2.1, we introduce the propositional satisfiability problem (SAT), which is the focus of this

dissertation. Next, in Section 2.2, we discuss the sources of SAT instances. Then, in Section 2.3,

we describe general approaches to solving SAT, including Stochastic Local Search (SLS). Next, in

Section 2.4, we introduce the technical notations we used throughout this dissertation to describe

SLS algorithms. In Section 2.5, we outline some of the more popular SLS algorithms for solving

SAT. Finally, in Section 2.6, we describe Dynamic Local Search (DLS) approaches to solving SAT.

2.1 The Propositional Satisfiability Problem
In Boolean logic, a formula is satisfiable if, and only if, a variable assignment exists that will make

the formula equivalent to true, and the propositional satisfiability problem (SAT) is to determine

whether a given formula is satisfiable. The only goal of this decision variant of the problem is

to determine if a variable assignment exists, whereas the goal of the model-finding variant of the

problem is to also find such a variable assignment if it does exist. A variable assignment that

satisfies a formula is called a solution. The process of finding a solution of a given formula is

referred to as solving the formula, and an algorithm designed to find solutions of a given formula is

referred to as a SAT solver.

The propositional satisfiability problem only requires that the formula be well-formed, but in
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practice it is convenient to require that the formula be in Conjunctive Normal Form (CNF). A

formula in CNF is a conjunction of clauses, where clauses are disjunctions of literals, and a literal

is either positive (a variable) or negative (the negation of a variable). An example of a formula in

CNF is:

F = (x1∨ x2)∧ (¬x1∨ x2)∧ (x1∨¬x2)∧ (¬x3∨ x4)∧ (¬x3∨ x5)∧ (¬x1∨¬x2∨ x3). (2.1)

The SAT formula in Equation 2.1 has five variables and six clauses, where the first clause (x1∨ x2)

has two positive literals. If, for a particular variable assignment, a literal is equivalent to true then the

literal is satisfied. If at least one of the literals in a clause is satisfied, then the clause is satisfied, and

if all clauses in the formula are satisfied then the formula is satisfied and a solution has been found.

The formula in Equation 2.1 has a single solution, in which all variables are assigned the value true.

Throughout this dissertation, when we refer to SAT, we are referring to the model-finding variant

of the propositional satisfiability problem with formulae in CNF. An instance in the SAT domain is

a Boolean formula in CNF.

If the maximum clause length in a formula is k, the formula is referred to as a k-SAT formula.

It has been established that 2-SAT formulae can be solved in linear time [6], while the problem of

solving 3-SAT (and higher) formulae belongs to a complexity class known as NP-complete [18].

If any NP-complete problem can be solved in polynomial time, then all problems in NP can also

be solved in polynomial time. The question of whether or not an algorithm exists that can solve

3-SAT in guaranteed polynomial time remains an open problem, and is beyond the scope of this

dissertation. Since SAT is both conceptually straightforward and in NP-complete, it is of substantial

theoretical and practical interest and plays an important role in many areas of computing.

The Maximum Satisfiability Problem (MAX-SAT) is the model-finding optimization variant of

the propositional satisfiability problem, where the objective is to find a variable assignment that sat-

isfies the maximal number of clauses. In weighted MAX-SAT, a weight is assigned to each clause,

and the objective is to find a variable assignment that maximizes the sum of the satisfied clause

weights. The focus of this dissertation is not on MAX-SAT, although we discuss it in Section 3.6

and Section 5.2.

2.2 Sources of SAT Instances
To empirically study SAT solvers, we need SAT instances to solve. Throughout this dissertation we

often refer to specific instances or sets of instances we have used in our experiments, and we provide

brief descriptions and references for those instances in Appendix B. In this section, we provide a

general overview of SAT instances.

One of the reasons SAT is a popular area of research is that it is often straightforward to encode

an instance from another NP problem domain into SAT [36, 89]. As an example, we will study
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an encoding of the All-Interval Series (AIS) problem, and we will refer back to this encoding in

Section 5.2.

The AIS problem is of theoretical interest [104] and also has applications in music theory [50].

The ais-N problem is to arrange the integers 1 . . .N such that the set of differences between adjacent

values (the intervals) consists of all the numbers ranging from 1 . . .(N− 1). For this example, we

consider ais10, for which one solution is 10 1 9 2 8 3 7 4 6 5. For this encoding, we use two types

of variables and six types of clauses. First, we use N ·N = 100 Boolean variables (xn,p) to indicate

if the number n occupies position p. For the solution above, x10,1 and x9,3 are true, whereas x9,1 is

false. Next we use (N− 1) · (N− 1) variables yi,p to indicate if the interval i occurs between the

numbers in positions p and (p+ 1). For the solution above, y9,1 is true. The first type of clause

ensures that each number appears at most once; for example, the number 10 cannot occupy both

positions 5 and 6 and the clause (¬x10,6 ∨¬x10,5) ensures this is true. The second type of clause

ensures that each number occupies at least one position. For example, the number 3 must occupy

at least one position, so the clause (x3,1 ∨ x3,2 ∨ . . .∨ x3,10) ensures this is true. Together, these

two types of clauses ensure that each number appears once and only once. The next two types of

clauses are nearly identical to the first two, and ensure that each interval also appears once and only

once. The fifth type of clause is similar to the first, but instead ensures that each position is filled

by no more than one number. Finally, the sixth type of clause maps the number positions to the

intervals; for example, if the first number is 10 and the second is 1, the first interval will be 9 and

the clause (¬x10,1 ∨¬x1,2 ∨ y9,1) ensures this is true. In total, this encoding of the ais10 instance

has 181 variables and 3151 clauses. As with most encodings into SAT, there are several different

methods available to perform this encoding [89], and there are publications that study this particular

encoding [1, 38].

To empirically compare the performance of different algorithms, we rely on benchmark in-

stances, which are widely available and known to other researchers. Two popular sources of in-

stances are the SATLIB library (hosted at [138]) [54] and the quasi-annual SAT Competition (hosted

at [137]). SAT benchmark instances have been typically grouped into three categories: random,

application and crafted (e.g., these are the three main categories in the most recent competition)

where crafted and application instances are also loosely referred to as structured instances. Each of

the three categories of instances have advantages and disadvantages for empirical study.

Random instances are generated using a randomized source such as a Pseudo-Random Number

Generator (PRNG). The most common and well-studied class of random instances is known as the

unforced random (uf) instances, where for each clause three unique variables are selected uniformly

at random and then randomly negated. The hardness of a uf instance depends on the clause to

variable ratio: instances with too few clauses are trivially easy, and instances with too many clauses

are unsatisfiable. There is a so-called phase transition between these two extremes where the hardest

problems are obtained [15, 82]. All of the uf instances we use in experiments are situated in this
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phase transition. Random instances are scalable, easy to generate, well studied and can have large

variation in hardness. One possible drawback of experimenting exclusively with random instances

is that the results may not generalize to instances encountered in practical applications.

Application instances (a.k.a. industrial instances) arise from scenarios where the source of the

encoding is a so-called real world problem, such as a software verification or scheduling. Encodings

of these problems are typically very structured and can have clauses similar in structure to those in

the ais encoding example above. In Chapter 7, our focus is on the industrial software verification

sets cbmc and swv. Whereas it is reasonably straightforward to generate large random instance sets

with a desired property (such as hardness), it is more difficult to obtain application instance sets of

the same size and quality.

The ais example above is a crafted instance, where crafted instances (a.k.a. handmade instances)

are constructed to solve a particular class of problem, often with the purpose to obtain instances with

a specific structural property. Crafted instances are often encodings from other domains. Examples

of such crafted instances include the qg and flat instances. Crafted instances may include some

source of randomness, typically introduced in the original domain (before encoding), so the resulting

SAT instance has elements of both the encoding structure and the original randomness. Crafted

instances are often designed to expose weaknesses in SAT solvers.

2.3 Methods of Solving SAT
Before we introduce Stochastic Local Search (SLS), we first describe the most popular alternative

approach to solving SAT, a constructive backtracking method referred to as a DPLL-based approach

(named for the authors Davis, Putnam, Logemann and Loveland) [20, 21]. DPLL-based solvers

can be described as recursive procedures, where at each level in the recursion a variable from the

formula is selected and assigned a value of either true or false. Once a variable is assigned a value, a

new simplified formula can be generated by removing the resulting satisfied clauses and unsatisfied

literals. Additional simplification methods are typically used, including unit propagation. Unit

propagation occurs when a clause has only a single literal remaining, causing the corresponding

variable to be assigned the value that satisfies the literal and the clause. During simplification,

additional variables can be assigned values, causing further simplification; once simplification is

exhausted, there are three possible outcomes for the new simplified formula. If the new formula

is empty (i.e., all the clauses are true), a solution has been found and the procedure terminates.

If the new formula contains an empty clause (i.e., all literals are false), a contradiction has been

found. Otherwise, if there is neither a solution nor a contradiction, the new formula is tested for

satisfiability by recursively calling the DPLL-based procedure. If the new formula is unsatisfiable

or there was a contradiction found, the truth value of the variable is negated and a new simplified

formula is generated and tested. If both variable assignments generate a formula that is unsatisfiable

or contain a contradiction, the given formula is unsatisfiable and the procedure backtracks to the
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previous recursion level or terminates the procedure if it is at the highest recursion level (i.e., the

original formula is unsatisfiable).

In this dissertation, we do not focus on DPLL-based approaches, but we make occasional ref-

erence to the approach for comparisons. A large body of research has been developed to improve

DPLL-based solvers, including: methods to select the variables and assignment at each recursion,

methods for non-chronological backtracking to different recursion levels, methods of learning new

clauses as the search progresses to aid in the search, randomization techniques and restart strate-

gies [13]. DPLL-based algorithms are the most effective methods currently known for solving large

structured instances, especially application instances. Two examples of DPLL-based solvers that

performed well in the 2009 SAT Competition [137] were PRECOSAT [133] and GLUCOSE [8].

The approach we focus on is known as Stochastic Local Search (SLS), where an SLS algorithm

starts with a complete variable assignment (instead of constructing a solution variable-by-variable

as in a DPLL-based approach). The complete variable assignment is known as a candidate solution.

The fundamental approach of SLS algorithms is to iteratively generate and evaluate candidate solu-

tions until a solution is found. The largest distinction between two SLS algorithms is their method

of selecting the next candidate solution at each iteration. By definition and in practice, random de-

cisions are an essential ingredient of most SLS algorithms, and we empirically analyze the role of

randomness in these algorithms in Chapter 6. SLS-based algorithms are the most effective methods

currently known for solving satisfiable random instances [137] as well as many crafted problems

(e.g., graph colouring instances [70]).

In Figure 2.1, we provide pseudo-code for a typical SLS algorithm for SAT. The algorithm starts

by initializing the search, which includes determining an initial, complete assignment of truth values

for all variables in the given SAT formula. Then, in each search step, unless a restart condition has

been met, a set of variables is selected to have their truth values changed from true to false or

vice versa. Each change of a single variable’s truth value is called a variable flip. Almost all SLS

algorithms perform exactly one variable flip in each search step, but there are cases in which a given

SLS algorithm may flip no variables in a given search step (a so-called null-flip), or several variables

at once (a multi-flip). The search process is terminated when a termination condition is met; this

is typically the case when either a solution (satisfying assignment) has been found or when a given

bound on the execution time, often measured in search steps or CPU time, has been reached or

exceeded. To overcome or avoid search stagnation, many SLS algorithms for SAT make use of a

restart mechanism that re-initializes the search process whenever a restart condition is met. While

restart mechanisms are crucial for the performance of some SLS algorithms for SAT, they have been

found to be ineffective in other cases [55: p. 225], and in this dissertation we do not focus on restart

conditions. The entire search process from start to finish in Figure 2.1 is a run of an algorithm on

an instance. Throughout the run, we maintain a count of how many search steps have occurred. The

total number of steps that occurred in the run is the run-length, and the amount of CPU time that
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Algorithm TYPICALSLS

Input: SAT formula
Output: solution or no solution found

initialize search
while not solution found and not termination conditions met do

if restart conditions met then
re-initialize search

else
select the variable(s) to flip
flip the variable(s)

end
end
if solution found then

return solution
else

return no solution found
end

Figure 2.1: Typical SLS algorithm for SAT. Included in the search initialization is the as-
signment of truth values to all variables in the SAT formula.

elapsed is the run-time.

SLS algorithms traverse what is known as a search landscape defined by a neighbourhood graph

and an evaluation function. The neighbourhood graph is a graph whose vertices are all possible

candidate solutions and whose edges are defined by a neighbourhood relation. For a formula with

|V | variables, there are 2|V | possible candidate solutions (or points) in the search space. Most SLS

algorithms for SAT use the so-called one-flip neighbourhood relation (i.e., at each step at most one

variable is flipped) under which candidate solutions are direct neighbours if, and only if, they differ

only in the truth value assigned to one variable. In Figure 2.2, we present the one-flip neighbourhood

graph for the instance described in Equation 2.1.

An evaluation function maps a candidate solution to a numerical value. SLS algorithms for SAT

use a wide variety of evaluation functions, but the most obvious and common evaluation function,

which we shall refer to as the intrinsic evaluation function, is the number of unsatisfied clauses for

the given variable assignment. In other words, a solution to the formula has a intrinsic evaluation

function value of zero, and a common goal of SAT solvers is to minimize the intrinsic evaluation

function. In the context of the search landscape, the value of the evaluation function intuitively

corresponds to the height of each point in the landscape. We often refer to a search step in the

context of the change in height that occurs during the step; the terms improving step, sideways step

and worsening step correspond to steps that have respectively lower, equal, or greater evaluation
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Figure 2.2: SAT neighbourhood graph. The neighbourhood graph for the instance described
in Equation 2.1. Each node corresponds to a unique variable assignment (i.e., the node
labeled "00001" corresponds to the assignment with all variables equal to false except
for x5). In addition to the variable assignment, each node contains the number of false
clauses under that assignment. With five variables there are 25 = 32 nodes in the graph,
with each node connected to five neighbours that differ in exactly one variable’s assigned
value.

function values. When there are no improving steps possible from a location, the location is a local

minimum, and if there are only worsening steps possible, then the location is a strict local minimum.

In Figure 2.3, we reproduce the neighbourhood graph of Figure 2.2 as a search landscape, arranging

the variable assignments by the value of the intrinsic evaluation function value for that assignment

(height).

Now that we have briefly described both SLS algorithms and DPLL-based algorithms for SAT,

we can see one of the main distinctions between the two is that DPLL-based algorithms are con-

sidered complete (i.e., they can determine if an instance is unsatisfiable), whereas a typical SLS

algorithm cannot. However, in practice, this theoretical distinction is not as significant as it may

appear because SLS-based solvers can be rendered complete with a straightforward extension [24],

and DPLL-based solvers that cannot solve an instance within a specified amount of time are essen-

tially incomplete. Another distinction between the two approaches is that for satisfiable instances

there is a known worst-case bound on the time required for DPLL-based solvers to find a solu-

tion (i.e., O(2|V |)), whereas no such bound exists for SLS-based solvers, and for some SLS-based

10



Figure 2.3: SAT search landscape. The neighbourhood graph from Figure 2.2 with the nodes
in the graph (variable assignments) arranged by height to correspond to the solution
quality (number of false clauses) of the assignment.

solvers there is no guarantee that a solution will be found. However, many SLS algorithms are Prob-

abilistically Approximate Complete (PAC) and will solve a satisfiable instance with arbitrarily high

probability when allowed to run long enough [55: p. 153]. There are numerous other distinctions

between DPLL-based algorithms and SLS algorithms that we do not explore here, with advantages

and disadvantages to each approach [31].

2.4 Modelling SLS Algorithms for SAT
Throughout this dissertation we use our own pseudo-code syntax for describing and representing

SLS algorithms. Our goal is to be clear and concise, while providing enough technical detail for

practical analysis and discussion. Our approach will be familiar and easy to understand for indi-

viduals with a computer science or programming background. We will describe the features of our

syntax as they are introduced.

We use objects, similar in nature to classes in Object-Oriented Programming (OOP), where

objects are simply a collection of properties. A property can be a single value, another object, or

a list (array) of objects. In OOP parlance, a property encompasses both data fields (members) and

methods that return a value. We will not be concerned with OOP-related issues of distinguishing

between an object and an instance of an object, an object and a reference (or pointer) to an object,

or if a property is a data field or a method.

In Figure 2.4, we describe the minimal set of objects required by an SLS algorithm to represent

a SAT formula. We can see that a formula object has two properties: one is a list of clause objects
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Object formula

property: Clauses[ ] is list of clause objects
All clauses that appear in the formula.

property: Variables[ ] is list of variable objects
All variables that appear in the formula.

Object variable

property: value is Boolean
Current (run-time) assignment for the variable.

Object clause

property: Literals[ ] is list of literal objects
All literals that appear in the clause.

Object literal

property: var is a variable object
The corresponding variable of the literal.

property: negated is Boolean
If the variable in the literal is negated (¬x) this property is true.

Figure 2.4: Representation of a CNF SAT formula for SLS algorithms.

and the other a list of variable objects. The clause object has a property that is the list of literal

objects for the clause, where the literal object has a var and a negated property. During execution,

an SLS algorithm dynamically assigns Boolean values to the variables, which are stored in the value

property of the variable object. The objects and properties in Figure 2.4 represent the minimal set

of objects and properties required by an SLS algorithm. In practice, it is convenient for algorithms

to define and add their own properties.

Some property values can be calculated and are the result of a sequence of instructions, as

demonstrated in Figure 2.5, where we add a satisfied property for clause and formula objects. We

use a function-like syntax that returns a value to describe how calculated properties are determined.

As can be seen in Figure 2.5, we use the notation object.property to refer to the property of a specific

object. We ignore the reference to the formula object where it is obvious (i.e., Clauses[ ] is really

formula.Clauses[ ]).

We will now introduce the simplest SLS algorithm for SAT, which we refer to as UNIFORM
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Object clause Property satisfied is Boolean
This property is true if the clause is currently satisfied.

foreach literal l in Literals[ ] do
if l.var.value xor l.negated then return true

end
return false

Object formula Property satisfied is Boolean
This property is true if the formula is currently satisfied.

foreach clause c in Clauses[ ] do
if not c.satisfied then return false

end
return true

Figure 2.5: The satisfied property of clause and formula objects.

RANDOM WALK (URWALK), although it is known by other names. Almost all SLS algorithms

for SAT (including URWALK) initialize the variables by assigning each variable either true or false

uniformly at random. At each search step, the URWALK algorithm simply selects a variable uni-

formly at random and flips it. To describe URWALK, we use three procedures, where a procedure

in our syntax is simply a sequence of instructions, a concept similar in nature to subroutines or

functions that return no value. In our syntax, we are not concerned with the inputs and outputs of

procedures. All objects and properties are globally available to all procedures, and procedures can

create global properties to share information with other procedures. The three procedures required

to implement the URWALK algorithm are presented in Figure 2.6, along with pseudo-code for

URWALK. Note that in this figure, and for the remainder of this dissertation, we have simplified

our pseudo-code representation of an algorithm by omitting restarts and early termination criteria.

Because of their stochastic nature, the number of search steps (run-length) required by an SLS

algorithm to find a solution of an instance is a random variable with a distribution that is specific to

the algorithm and the instance. The URWALK algorithm is straightforward enough that we could

construct a mathematical model to predict the run-length distribution, but for the majority of the

algorithms in this dissertation, it is infeasible to analytically derive such a model. To determine

the run-length distribution of an algorithm on an instance, we need to measure the distribution

empirically by performing multiple runs of the algorithm on the instance. In Figure 2.7, we present

a Run-Length Distribution (RLD) of 10000 runs of URWALK on the formula from Equation 2.1.

The distribution in Figure 2.7 closely matches an exponential distribution, which is common for

well-behaved SLS algorithms [55: p. 189]. All empirically measured RLDs are discrete. This is
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Procedure InitializeVariables

foreach variable v in Variables[ ] do
v.value := select from {true,false } uniformly at random

end

Procedure PickVariableURWALK

flipVariable := select variable from Variables[ ] uniformly at random

Procedure FlipVariable

flipVariable.value := not flipVariable.value

Algorithm URWALK

Input: formula
Output: solution

InitializeVariables
while not formula.satisfied do

PickVariableURWALK
FlipVariable

end
return solution (stored in Variables[ ].value)

Figure 2.6: The URWALK algorithm.

especially visible in Figure 2.7 because the instance is very small, it can be solved in very few search

steps. In the figure we can observe evidence for the PAC property of the URWALK algorithm,

where the probability of success approaches one as time increases.

In general, we measure the median of the run-length distribution as the single statistic to measure

the performance of the algorithm on the instance. The median run-length corresponds to the q0.50

quantile of the distribution, and we occasionally refer to other quantiles. In addition to the median

run-length, we frequently report the median run-time, which requires an execution environment for

context. In Appendix C, we provide details of all of our experimental execution environments and

procedures, and we refer to that appendix when describing experiments.

Throughout this dissertation, we often need to refer to the size of the formula or the time com-

plexity of a procedure with respect to the size of the formula. The symbols we use are listed in

Figure 2.8.
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Figure 2.7: Empirical measurement of URWALK performance. Run-length distribution
from 10000 runs of URWALK on the formula from Equation 2.1. The median run-
length is highlighted (27 search steps).

|C| number of clauses in a formula
|C>| number of currently satisfied clauses
|C⊥| number of currently unsatisfied clauses
|c j| clause length: number of literals (variables) in clause c j

|V | number of variables in a formula
|V⊥| number of variables that currently appear in false clauses

ncvi number of clauses a variable vi appears in
ncvi := |{c j : vi ∈ c j}|

scli sum of the clause lengths for all clauses in which a variable vi appears
scli := ∑c j:vi∈c j |c j|

|F | number of literals in a formula (i.e., the size of a the formula)

Figure 2.8: Symbols for representing the size of a SAT formula.

15



Object variable

property: make is Integer
Number of clauses that become satisfied if this variable is flipped.

property: break is Integer
Number of clauses that become unsatisfied if this variable is flipped.

property: score is Integer
Net change in the intrinsic evaluation function if this variable is flipped
(break - make).

Procedure PickVariableGSAT

flipVariable := select variable from Variables[ ] with minimum score (BTR)

Figure 2.9: The score variable property. BTR is short for Breaking Ties Randomly.

2.5 Existing SLS Algorithms for SAT
In this section, we briefly describe some of the more prominent SLS algorithms for SAT we refer

to throughout this dissertation. In Appendix A, we provide an index listing all of the algorithms we

reference, along with citations and additional implementation details.

The GREEDY SEARCH FOR SAT (GSAT) algorithm by Selman et al., one of the oldest SLS

algorithms for SAT, is arguably the most well-known [100]. The GSAT algorithm adds a new score

property to the variable objects, which we define in terms of two other variable properties: make

and break. We describe the three new properties in Figure 2.9. As we discussed in Section 2.3

with search landscapes, flipping a variable with a negative, zero or positive score corresponds to an

improving, sideways or worsening step. Once the score property is introduced, the GSAT algorithm

is rather straightforward; at each search step, GSAT simply selects the variable with the minimum

score to flip, Breaking Ties Randomly (BTR). In Figure 2.9, we also include the PickVariableGSAT

procedure. Note that aside from the PickVariable procedure, the GSAT algorithm is identical to

the URWALK algorithm described in Figure 2.6. Unlike the URWALK algorithm, the GSAT

algorithm is not PAC, and can become stuck in regions of the search space known as traps. For the

simplest example of a trap, consider two local minima in a search space that each have no possible

improving steps, and only one sideways step possible that leads to the other location. If the GSAT

algorithm were to fall into such a trap, it would simply alternate between the two local minima [49].

For this reason, GSAT requires restarts to solve most interesting instances. The original GSAT

algorithm has a maxFlips parameter, where periodic restarts occur every maxFlips steps.

To address the issue of GSAT’s tendency to become stuck in traps, Selman and Kautz developed

the GSAT WITH RANDOM WALK (GWSAT) algorithm [98]. The GWSAT algorithm adds a
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random walk step to GSAT, where for each search step with some probability wp, a variable is

selected uniformly at random to be flipped, otherwise a regular GSAT search step occurs. The

GWSAT algorithm uses a unique approach, where the random walk does not select the variable

uniformly at random from all variables, but rather only from those variables that currently appear

in false clauses. This method was inspired by the theoretical results of the CONFLICT-DIRECTED

RANDOM WALK (CRWALK) algorithm [85].

In the CRWALK algorithm (a.k.a. Papadimitriou’s Algorithm), at each search step a currently

unsatisfied clause is selected uniformly at random, then one of the variables that appears in that

clause is selected uniformly at random to be flipped. Papadimitriou demonstrated that CRWALK

can solve an arbitrary satisfiable 2-SAT instance in O(|V |2) steps with a probability arbitrarily close

to one [85]. SCHÖNING’S ALGORITHM is very closely related to CRWALK, and adds a periodic

restart every (3 · |V |) steps. SCHÖNING’S ALGORITHM was shown to be able to solve an arbi-

trary satisfiable 3-SAT instance in O(1.334|V |) expected steps [94]. Iwama and Tamaki extended

SCHÖNING’S ALGORITHM to improve this bound to O(1.324|V |) [64].

After GSAT, perhaps the next most well-known SLS algorithm for solving SAT is WALK-

SAT/SKC, named for its authors: Selman, Kautz and Cohen [99]. WALKSAT/SKC was inspired

by the CRWALK algorithm in that it starts each search step by selecting an unsatisfied clause uni-

formly at random. In general, we refer to this strategy as the WALKSAT strategy, and algorithms

that adopt this strategy are in the WALKSAT family of algorithms. After the clause is selected,

the WALKSAT/SKC algorithm checks if any of the variables in the selected clause have a break

property equal to zero; if any such freebie variables exist, one is selected to be flipped uniformly at

random. If no freebies exist, then with probability wp, one of the variables in the selected clause

is flipped uniformly at random. Otherwise, the variable with the lowest break property is flipped,

breaking ties uniformly at random.

The NOVELTY algorithm by McAllester et al. [80] is from the WALKSAT family. NOVELTY

uses the age property of a variable, which we define in Figure 2.11 along with a lastChange prop-

erty, where the age of a variable is the number of search steps since the variable was last flipped.

NOVELTY determines the two variables in the clause with the minimal score as in GSAT, breaking

ties in favour of the variables with the larger age. The NOVELTY algorithm is novel in its approach

when the best variable is also the youngest variable (with the smallest age property), in which case,

with a given probability (which we call noveltyNoise), it will select the second best variable. The

variable selection procedure of NOVELTY is shown in Figure 2.11.

Hoos showed that NOVELTY is not PAC by demonstrating that for some formulae, such as the

one in Equation 2.1, under certain initial conditions, NOVELTY will never reach a solution [49].

Hoos introduced the NOVELTY+ algorithm that added a second random walk parameter wp, where

at each step with probability wp a variable from the selected clause is flipped uniformly at random.

In practice, the value of wp can be very small and a value of 0.01 is common. After demonstrating

17



Object variable

property: freebie is Boolean
true if (break = 0), otherwise false

Procedure PickVariableSKC

selectedClause := select currently unsatisfied clause uniformly at random
if exists variable in selectedClause.Vars[ ] with freebie = true then

flipVariable := select variable from selectedClause.Vars[ ] with freebie = true (BTR)
else

with probability wp
flipVariable := select variable from selectedClause.Vars[ ] uniformly at random

otherwise
flipVariable := select variable from selectedClause.Vars[ ] with min. break (BTR)

end
end

Figure 2.10: Variable selection in the WALKSAT/SKC algorithm.

Object variable

property: lastChange is Integer
The search step count at which this variable was most recently changed

property: age is Integer
The current search step counter minus lastChange

Procedure PickVariableNovelty

selectedClause := select currently unsatisfied clause uniformly at random
bestVariable := select variable from selectedClause.Vars[ ] with minimum score (BTA)
secondBestVariable := next best variable (using the same criteria)
youngestAge := minimum age from selectedClause.Vars[ ].age
flipVariable := bestVariable
if bestVariable.age = youngestAge then

with probability noveltyNoise
flipVariable := secondBestVariable

end
end

Figure 2.11: Variable selection in the NOVELTY algorithm. BTA is short for Breaking Ties
by Age (i.e., in favour of the variable with the largest age property, otherwise ties are
broken uniformly at random).
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that the performance of the NOVELTY+ algorithm was very sensitive to the noveltyNoise parameter,

Hoos developed the ADAPTIVE NOVELTY+ algorithm that adjusts noveltyNoise automatically as

the search progresses [51]. This adaptive scheme was based on the progress of the algorithm and

increased and decreased noveltyNoise accordingly (see [51] for further details). Li and Huang intro-

duced the NOVELTY++ algorithm where, instead of a walk probability wp to flip a random variable,

a diversification probability dp is used to flip the oldest variable in the selected unsatisfied clause.

The NOVELTY algorithm uses the age property in its variable selection. Another popular

method for considering the age of a variable is known as a tabu strategy [41]. There is exten-

sive literature on tabu search strategies in other domains [42], but in this dissertation we are only

concerned with simple tabu search. In simple tabu search, after a variable is flipped it is then consid-

ered tabu and cannot be flipped until the age property of the variable is greater than the tabuTenure,

a parameter of the algorithm. Several SLS algorithms for SAT use a simple tabu strategy, including

the WALKSAT/TABU [80] algorithm, which we discuss in Section 3.2.

The GSAT WITH HISTORY (HSAT) algorithm was the first algorithm to use the flips property

(a.k.a. flipCount) in its variable selection, where the flips property is simply the number of times

the variable has been flipped [39]. HSAT is nearly identical to GSAT, but uses the flips property

as a tie-breaker. The HSAT WITH RANDOM WALK (HWSAT) algorithm added a random walk

mechanism similar to the one we described in NOVELTY+ [40].

The GRADIENT-BASED GREEDY WALKSAT (G2WSAT) algorithm by Li and Huang can be

seen as a hybrid between the GSAT and WALKSAT approaches and introduced a new promising

variable property [76]. The promising property is Boolean, and is true if the variable has a negative

score property, unless the negative score was a result of flipping the variable when it had a non-

negative score. If a non-promising variable’s score is negative after being flipped, the variable

can only become promising if its score becomes non-negative and then negative again as a result

of flipping other variables. If promising variables exist, then G2WSAT is greedy like GSAT and

selects the promising variable with the lowest score (breaking ties by age), otherwise G2WSAT

behaves like a WALKSAT algorithm. In the G2WSAT algorithm, the WALKSAT algorithm selected

is NOVELTY++, although there are several different G2WSAT variants that use different WALKSAT

algorithms.

We must note that some of the SLS algorithms for SAT we have introduced in this section (e.g.,

GSAT and CRWALK) have very poor performance in practice and were introduced to provide

background information. Of the algorithms we introduced, the two most prominent state-of-the-art

algorithms are ADAPTIVE NOVELTY+ and G2WSAT.

2.6 Dynamic Local Search for SAT
Before we discuss Dynamic Local Search (DLS) algorithms in general, we first describe a class of

DLS algorithms we refer to as Dynamic Local Search with Clause Penalties (DLS-CP), which will
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Object clause

property: penalty is Real
Dynamic penalty (or weight) assigned to this clause.

Object variable

property: penMake is Real
Sum of the clause penalty values for clauses that become satisfied if this
variable is flipped.

property: penBreak is Real
Sum of the clause penalty values for clauses that become unsatisfied if this
variable is flipped.

property: penScore is Real
Net change in the penalized evaluation function if this variable is flipped
(penBreak - penMake).

Figure 2.12: The clause penalty property and corresponding variable scoring properties.

require us to explain clause penalties.

The clause penalties we describe in this dissertation are more often known as clause weights in

the literature (including some of our own publications [61]). However, we use the term penalties

to avoid any confusion with the clause weights in the weighted MAX-SAT problem, the weighted

instances we study in Section 5.2 and the weighted algorithms we describe in Section 3.6 and

Section 5.1.

In our parlance, each clause simply has a penalty property that is assigned a value that can

change dynamically during the search. In many SLS algorithms for SAT without clause penalties,

such as GSAT, the intrinsic evaluation function is used, and the variable score property corresponds

to the change in this evaluation function that would occur if the variable were flipped. Typical

DLS-CP algorithms use a penalized evaluation function, which is the sum of the clause penalty

values over all unsatisfied clauses for a given variable assignment. Accordingly, a variable property

named penScore measures the change in this penalized evaluation function, and is described in

Figure 2.12. There are some subtle differences in the ways DLS-CP algorithms use their penalty

properties, which we explore in more detail in Chapter 4.

As an example of how DLS-CP algorithms operate, we describe the BREAKOUT algorithm, one

of the earliest and most influential DLS-CP algorithms [83]. The variable selection in BREAKOUT

is very similar to the variable selection in GSAT with two notable differences. The first difference is

that instead of selecting the variable with the best score property, it selects the variable with the best
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penScore property that optimizes the aforementioned penalized evaluation function. The second

difference is that BREAKOUT only allows improving steps, and if no improving step is possible

(i.e., the algorithm is in a local minimum), the clause penalty values are updated until the algorithm

is no longer in a local minimum. In other words, the algorithm can break out of a local minimum. As

with most DLS-CP algorithms, the BREAKOUT InitializeClausePenalties procedure initializes

all penalty values to one. As we will demonstrate in Chapter 4, often the largest difference between

DLS-CP algorithms is how they dynamically update their clause penalty values. In the case of

BREAKOUT, the UpdateClausePenalties procedure increments the clause penalty values of all

unsatisfied clauses. The effect of this increase is that all the penMake values are increased, whereas

the penBreak values remain the same, so eventually the penScore property (equivalent to penBreak

minus penMake) will become negative for at least one variable, resulting in a possible improving

step. We refer to this general approach, where clause penalties are updated at a local minimum, as a

BREAKOUT strategy. We describe the BREAKOUT algorithm in Figure 2.13. We must note that the

BREAKOUT algorithm is not considered a state-of-the-art DLS-CP algorithm, and we will discuss

more prominent DLS-CP algorithms, including our SCALING AND PROBABILISTIC SMOOTHING

(SAPS) algorithm in Chapter 4.

When we first introduced the term Dynamic Local Search (DLS) to the SAT community in 2002

with our SAPS algorithm, we were exclusively referring to DLS-CP algorithms, and the way they

dynamically changed their evaluation function via clause penalties. As our work progressed, we

embraced a more general definition of DLS that includes all SLS algorithms for SAT that incorporate

history into the search. For example, GSAT and WALKSAT/SKC are non-dynamic or stationary

algorithms, in that their behaviour at some search step j is only depends on the current variable

assignment, and is completely independent of what occurred in steps 1 . . .( j− 1). Conversely, the

NOVELTY algorithm uses the age property, and therefore its behaviour depends on the actions taken

in previous steps.

The concepts of history and memory are closely related. Fundamentally, memory is required

to record history, so DLS algorithms require additional space to store the historical information.

DLS algorithms do not typically record their entire search history, and instead capture only certain

aspects of the search (e.g., the age property). In the SLS literature, the duration or scope of historical

information is also expressed in terms of memory, using memory in the more traditional use of the

word [25, 41, 108]. For example, the age property is a short-term memory property because for each

variable it only records information regarding the most recent flip. The flips property is a long-term

memory property because it records the total number of times the variable has been flipped (i.e.,

since the beginning of the search).

Throughout this dissertation we explore DLS in many different ways, and we return to this

discussion in Section 8.2.
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Procedure InitializeClausePenalties

foreach clause c in Clauses[ ] do
c.penalty := 1

end

Procedure PickVariableBreakout

bestPenScore := minimum penScore from Variables[ ].penScore
if bestPenScore < 0 then

flipVariable := select variable from Variables[ ] with minimum penScore (BTR)
else

flipVariable := null
end

Procedure UpdateClausePenaltiesBreakout

foreach clause c in Clauses[ ] do
if not c.satisfied then c.penalty := c.penalty + 1

end

Algorithm BREAKOUT

Input: formula
Output: solution

InitializeVariables
InitializeClausePenalties
while not formula.satisfied do

PickVariableBreakout
if flipVariable is null then

UpdateClausePenaltiesBreakout
else

FlipVariable
end

end
return solution (stored in Variables[ ].value)

Figure 2.13: The BREAKOUT algorithm.
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Chapter 3

UBCSAT

Work it harder. . . make it better. . . do it faster. . . makes us stronger.
More than ever. . . hour after. . . our work is. . . never over.

— Daft Punk. “Harder, Better, Faster, Stronger”

In this chapter, we lay the cornerstone of our dissertation by introducing UBCSAT, a software

framework for efficiently implementing and evaluating SLS algorithms for SAT. We started the

UBCSAT project with the following six design principles and goals:

1. include highly efficient, conceptually simple and accurate implementations of a wide range

of prominent SLS algorithms for SAT and MAX-SAT;

2. facilitate the development and integration of new algorithms (and algorithm variants);

3. provide support for advanced empirical analysis of the performance and behaviour of SLS

algorithms without compromising implementation efficiency;

4. provide explicit support for algorithms designed to solve the weighted and unweighted MAX-

SAT problems;

5. provide an open-source software package that is publicly available to the academic commu-

nity; and

6. implement the project in a platform-independent way, avoiding non-standard programming

language extensions.

The remainder of this chapter is structured as follows. First, in Section 3.1, we provide some

time complexity analysis and design considerations for implementing SLS algorithms for SAT. Sec-

ond, in Section 3.2, we give an overview of the UBCSAT architecture and illustrate the fundamental
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Algorithm URWALK

Input: formula
Output: solution

InitializeVariables Θ(|V |)
while not formula.satisfied † do

SelectRandomVariable Θ(1)
FlipVariable Θ(1)

end
return solution (stored in Variables[ ].value)

† formula.satisfied, when implemented as described in Figure 2.5, completes in Θ(|F |) time
in the worst case.

Figure 3.1: The URWALK algorithm with time complexity. For this implementation of
URWALK, the worst-case time to complete a search step is Θ(|F |), because of the time
required to determine if formula.satisfied is true in the while statement above.

concept of triggered procedures, which lies at the core of UBCSAT’s efficient, yet highly flexible,

design and implementation. Next, in Section 3.3, we outline the collection of SLS algorithms for

SAT that are currently implemented within UBCSAT and compare their performance against that

of the respective native reference implementations. Then, in Section 3.4, we demonstrate how new

algorithms are implemented within UBCSAT. Next, in Section 3.5, we discuss the importance of

empirical analysis in SLS research, and how UBCSAT can help facilitate empirical analysis. In

Section 3.6, we describe how UBCSAT supports SLS algorithms for weighted and unweighted

MAX-SAT. In Section 3.7, we describe related work. Finally, in Section 3.8, we summarize our

contributions.

3.1 Implementing SLS Algorithms Efficiently
Before we introduce UBCSAT, we explore some of the time complexity and practicality issues

involved with implementing an SLS algorithm for SAT. In Figure 3.1, we reproduce the UR-

WALK algorithm described in Figure 2.6 with additional time complexity notations added. The

InitializeVariables procedure completes in Θ(|V |) time, but in general we are not concerned

with initialization procedures and only focus on the procedures that occur in every search step. The

other two procedures in URWALK (SelectRandomVariable and FlipVariable) are both straight-

forward and can be completed in Θ(1) time. In this example, the operation in each search step that

requires the most amount of time is determining the satisfied property of the formula object, which,

when implemented as described in Figure 2.5, completes in Θ(|F |) time in the worst case.
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Object formula Property FalseClauses[ ] is list of clause objects Θ(|F |)
List of all clauses that are currently unsatisfied

FalseClauses[ ] := empty Θ(1)
foreach clause c in Clauses[ ] do

if not c.satisfied then Θ(|c|)
add c to FalseClauses[ ] Θ(1)

end
end
return FalseClauses[ ]

Figure 3.2: The FalseClauses[ ] property of the formula object.

To demonstrate how the implementation and data structures affect the run-time performance of

an SLS algorithm, we improve the URWALK by adding a new FalseClauses[ ] property to the

formula object. We describe the new property in Figure 3.2. We assume that the operations required

to add to, remove from, determine the length of, and check membership in a list can all be completed

in Θ(1) (constant) time. One advantage of adding the FalseClauses[ ] property to the formula object

is that to determine if the formula is satisfied, we can simply determine if the FalseClauses[ ] list

is empty. Unfortunately, this advantage is not realized if we consider that the worst-case time to

determine the FalseClauses[ ] property, as implemented in Figure 3.2, is also Θ(|F |).
To improve upon the time complexity of URWALK, we use an approach we generally refer to as

bookkeeping of state information, a.k.a. incremental updates or delta evaluations [55: p. 48], where

we maintain in memory important information about the state of the algorithm. To use bookkeeping

on the FalseClauses[ ] property, we require two procedures: one to initialize the list of false clauses,

and one to update the list when necessary, which for this example is whenever a variable is flipped.

We use procedures to implement bookkeeping in our syntax, and in Figure 3.3 we provide the two

procedures InitializeFalseClauses and UpdateFalseClauses necessary for this example.

In Figure 3.4 we present the new URWALK algorithm variant with bookkeeping. The worst-

case time to complete a search step (flipping variable vi) has improved from Θ(|F |) (as implemented

in Figure 3.1) to Θ(scli) (as implemented in Figure 3.4), where scli is the sum of the clause lengths

for all clauses in which variable vi appears. This change is an improvement since typically variables

tend to occur in relatively small fractions of the clauses of a given formula, i.e., scli � |F |. We

provided this example to illustrate how bookkeeping can affect the run-time performance of an

algorithm in practice, without changing the step behaviour of the original algorithm. This example

is also interesting because there is nothing in the URWALK algorithm to suggest that a list of false

clauses would be useful, unlike the CRWALK and WALKSAT algorithms where a list is required

for the algorithm.
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Procedure InitializeFalseClauses Θ(|F |)
To occur after the variables have been initialized

FalseClauses[ ] := empty Θ(1)
foreach clause c in Clauses[ ] do

if not c.satisfied then Θ(|c|)
add c to FalseClauses[ ] Θ(1)

end
end

Procedure UpdateFalseClauses Θ(scli)
To occur after a variable vi has been flipped

foreach clause c in flipVariable.AppearClauses[ ] do
if c.satisfied then Θ(|c|)

if c in FalseClauses[ ] then remove c from FalseClauses[ ] Θ(1)
else

if c not in FalseClauses[ ] then add c to FalseClauses[ ] Θ(1)
end

end

Figure 3.3: Bookkeeping for the FalseClauses[ ] property. To maintain the FalseClauses[ ]
property of the formula object we require two additional procedures. The variable prop-
erty AppearClauses[ ] is a list of clause objects that the variable appears in. For Up-
dateFalseClauses, we provide the worst-case time of Θ(scli) for a given flip variable
vi, where scli is the sum of the clause lengths for all clauses in which variable vi appears.
For a variable that appears in every clause, scli is equivalent to |F |.

We note that in practice, URWALK can be optimized even further with bookkeeping procedures

that maintain a numFalseClauses property of the formula object, and a numTrueLiterals property

for each clause. Such an implementation of URWALK completes a search step (flipping variable

vi) in Θ(ncvi) time, where ncvi is the number of clauses that variable vi appears in.

The bookkeeping approach we have described in Figure 3.3 is a straightforward example and

may suggest that bookkeeping can always improve performance, but special care must be taken

when implementing algorithms to test the empirical results. To demonstrate this, we briefly consider

the bookkeeping required to maintain the make and break properties in a typical implementation

of an SLS algorithm. For example, after a variable is flipped, for each clause that has become

unsatisfied as a result of the flip, the make property is incremented for each of the variables in the

selected clause. There are numerous additional changes required, and the time to update the make
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Algorithm URWALK

Input: formula
Output: solution

InitializeVariables Θ(|V |)
InitializeFalseClauses Θ(|F |)
while not FalseClauses[ ] is empty do

SelectRandomVariable Θ(1)
FlipVariable Θ(1)
UpdateFalseClauses Θ(scli)

end
return solution (stored in Variables[ ].value)

Figure 3.4: The URWALK algorithm variant with the FalseClauses[ ] property. For this
implementation of URWALK, the worst-case time to complete a search step flipping a
variable vi is Θ(scli). In this example, we replaced the conditional in the while statement
from (not satisfied) to (not FalseClauses[ ] is empty) to highlight the difference.

and break properties (after flipping variable vi) is:

Θ(scli) = Θ

(
∑

c j:vi∈c j

|c j|

)
. (3.1)

As an alternative to maintaining the bookkeeping for the make and break properties, they can

be calculated when needed. The time to calculate the make and break properties of a variable

vi in a standard SLS implementation (i.e., the numTrueLiterals property is available) is Θ(ncvi).

In a WALKSAT algorithm that uses both make and break (e.g., NOVELTY), the properties must

be calculated for each of the variables that appear in the selected clause. Therefore, the time to

complete a search step where the properties are calculated for each variable (vi) in the selected

clause (c j) is:

Θ

(
∑

vi:vi∈c j

ncvi

)
. (3.2)

For typical variables and an average clause length, we would expect Equation 3.1 to be the same as

Equation 3.2, and for an instance with a fixed clause length and fixed distribution of variables they

are identical. From this evidence it would appear that there is no difference between the bookkeep-

ing variant of NOVELTY and the non-bookkeeping variant. However, in our experiments we found

that NOVELTY was significantly faster on 3-SAT without bookkeeping (see also, [55: p. 273]).

Fukunaga discovered the same result independently in his experimentation [33]. There are other

examples where the best bookkeeping option to be used on an instance depends on the structure of
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the instance.

One of the goals of this section was to identify the importance of implementing bookkeeping

strategies and the requirement to test them empirically. The UBCSAT framework we describe in

the following section has been specifically designed to support multiple methods of bookkeeping

for empirical testing.

3.2 The UBCSAT Architecture
One of the challenges of developing the UBCSAT project was to build a flexible, feature-rich

environment without compromising algorithmic efficiency. To achieve our goals, UBCSAT has

been designed according to what we have named a triggered procedure architecture. The main ideas

underlying this architecture are closely related to certain concepts from object- and event-oriented

programming.

The UBCSAT software is structured around a set of event points that occur throughout the

execution of an SLS algorithm for SAT. For each event point, a list of procedures is maintained that

are executed whenever the event point is reached; this list is called the triggered procedure list of

the event point and its elements are called the triggered procedures. We present the straightforward

eventPoint object in Figure 3.5. A trigger is simply a mapping of a software procedure to an event

point. When a trigger is activated, its associated procedure is added to the triggered procedure list

of the corresponding event point.

Initially, the triggered procedure lists for all of the event points are empty. It is only when

triggers are activated that procedures become executed when an event point is reached. For exam-

ple, you may have an elaborate procedure for displaying the real-time status of an algorithm as it

searches. You can create a trigger that maps your procedure to update the display at an appropriate

event point, perhaps at the end of each search step. Whenever you want to have the real-time status

displayed you can activate your trigger, which will execute your procedure at the end of each search

step. However, if you do not wish to have the status displayed then you do not have to do anything;

your trigger will not be activated, no procedure will be added to a triggered procedure list and your

algorithm will not be slowed down by your status display procedure.

In addition to its associated procedure, event point and activation status, a trigger can have a

dependency list and a deactivation list, which are lists of other triggers that are activated or de-

activated (respectively) when the trigger is activated. The dependency list is used, for example,

to ensure that when the procedure of a trigger relies on the existence of some data structures, the

triggers for the procedures that create and update those data structures are also activated. In addi-

tion, the dependency list ensures that any triggers that occur at the same event point are executed

in the correct order. The deactivation list is intended for advanced UBCSAT users, and can be

used to override default routines and avoid conflicts between incompatible routines. In practice,

deactivation lists are used in UBCSAT to improve implementation efficiency by combining the
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Object eventPoint
Execution Point in an SLS Algorithm

property: Procedures[ ] is list of Procedures
A list of procedures that are to be executed at the event point.

Object trigger
A mapping of a procedure to an event point

property: proc is procedure
Instructions for the trigger.

property: event is eventPoint object
The event point where the procedure is to be executed.

property: activated is Boolean
Activation status of the trigger.

property: DependencyTriggers[ ] is list of trigger objects
Additional triggers to be activated if this trigger is activated.

property: DeactivationTriggers[ ] is list of trigger objects
Triggers to be deactivated if this trigger is activated.

Object containerTrigger
A trigger object that is a collection of other trigger objects , grouped together for
convenience.

property: SubTriggers[ ] is list of trigger objects
Collection of trigger objects to be activated if this trigger is activated.

Figure 3.5: The UBCSAT eventPoint and trigger objects.

functionality of multiple procedures. For example, consider triggers a and b that have procedures

UpdateA and UpdateB, but when both triggers are activated it would be significantly more efficient

if the functionality of procedures UpdateA and UpdateB were combined into one procedure. In this

case, a new procedure UpdateAB could be created and assigned to a trigger ab which would include

a and b in its deactivation list and be available to algorithms that require the functionality of both a

and b. UBCSAT detects and produces a warning if deactivated triggers are somehow reactivated,

which might indicate a flaw in the design of an SLS algorithm that is being developed within the

UBCSAT framework.

There is also a special type of trigger called a container trigger that has no associated proce-

dure. Instead, it has a list of secondary triggers that are activated whenever the container trigger is

activated. Container triggers are used as convenient shortcuts for activating groups of triggers that
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are used simultaneously. Conceptually, container triggers are very similar to dependency lists; by

activating one trigger several others are also activated. While dependency lists are an important part

of ensuring the triggered procedure architecture works properly, container triggers simply provide

shortcuts for added convenience. A description of the two types of trigger objects is provided in

Figure 3.5.

In the previous section, we described an efficient bookkeeping mechanism for maintaining the

FalseClauses[ ] property that required an InitializeFalseClauses and an UpdateFalseClauses

procedure. We have not yet mentioned an additional procedure, CreateFalseClauses, required in

practice to allocate the memory for the property. In UBCSAT, many properties require these three

types of triggers to operate properly: one to create the data structure, one to initialize it and one to

update it. A container trigger is typically created to activate all three of these triggers simultane-

ously.

UBCSAT has hundreds of triggers, most of which have associated procedures that fall into one

of the following four categories: heuristic selection (e.g., of variables), property state information

bookkeeping, report and statistic data collection, and file I/O. Triggers are activated based on the

SLS algorithm to be run, the reports or statistics requested and other command line parameters. In

the UBCSAT implementation, the triggered procedure lists are simply arrays of function pointers.

Therefore, when each event point is reached, it is very efficient to call its triggered procedures.

Figure 3.6 shows a pseudo-code representation of UBCSAT that indicates the event points in

UBCSAT version 1.0. Returning to the example of the FalseClauses[ ] property, the three proce-

dures (CreateFalseClauses, InitializeFalseClauses, UpdateFalseClauses) would each have

a corresponding trigger that would map to the event points (CreateStateInfo, InitStateInfo, UpdateS-

tateInfo), respectively. For convenience, all three triggers would be contained in a FalseClauseList

container trigger. The following example further illustrates the use of event points and the concept

of triggered procedures.

Let us consider WALKSAT/TABU, a well-known high-performance SLS algorithm for SAT that

is based on the WALKSAT architecture [80]. As in most WALKSAT-based algorithms, WALK-

SAT/TABU starts each search step by uniformly selecting a clause from the set of currently unsatis-

fied clauses (FalseClauses[ ]). The variable in the selected clause with the best score property that

is not tabu is selected as the flip variable (breaking ties randomly). A variable’s tabu property is true

if it has been flipped within the last tabuTenure search steps, where tabuTenure is a parameter of

the WALKSAT/TABU algorithm. If all of the variables in the selected clause are tabu, then no flip

occurs at that step.

In the UBCSAT implementation of WALKSAT/TABU, the main heuristic procedure is Pick-

WalksatTabu, and a trigger of the same name exists which maps the procedure to the ChooseCandi-

date event point. Most algorithms in UBCSAT also activate the DefaultProcedures trigger, a con-

tainer trigger that includes triggers for handling common tasks, such as keeping track of the current
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UBCSAT

Setup UBCSAT
Parse Parameters
Activate Algorithm Triggers
Activate Report Triggers

run procedures PostParameters
run procedures ReadInInstance
run procedures CreateData
run procedures CreateStateInfo
run procedures PreStart

while run < numRuns do
while (step < cutoff) and (not solutionFound) and (not terminateRun) do

run procedures PreStep
run procedures CheckRestart
if (step = 1) or (restart) then

run procedures InitData
run procedures InitStateInfo
run procedures PostInit

else
run procedures ChooseCandidate
run procedures PreFlip
run procedures FlipCandidate
run procedures UpdateStateInfo
run procedures PostFlip

end
run procedures PostStep
run procedures StepCalculations
run procedures CheckTerminate

end
run procedures RunCalculations
run procedures PostRun

end
run procedures FinalCalculations
run procedures FinalReports

Figure 3.6: An Overview of UBCSAT.
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CreateDefaultStateInfo()

WalkSAT/TABU

Triggers

CreateFalseClauseList()

FalseClauseListDefaultProcedures

CreateStateInfo

PickWalksatTabu VarLastChange

CreateVarLastChange()

DefaultInitVars()InitData

InitDefaultStateInfo() InitFalseClauseList()InitStateInfo InitVarLastChange()

PickWalksatTabu()ChooseCandidate

DefaultFlip()FlipCandidate

UpdateFalseClauseList() UpdateVarLastChange()PostFlip

Event Points Triggered Procedures

Figure 3.7: The WALKSAT/TABU algorithm in UBCSAT. The WALKSAT/TABU algo-
rithm and the triggered procedures that appear in the event point triggered procedure
lists. The dashed arrows illustrate how the VarLastChange procedures were added to
the triggered procedure lists by the activation of the PickWalksatTabu trigger. Note that
some procedures and event points are not listed, including a few additional procedures
triggered by DefaultProcedures.

truth assignment and reading the formula into memory. Efficient implementations of WALKSAT-

based algorithms require the FalseClauses[ ] property to be available and, as mentioned previously,

a FalseClauseList container trigger will activate the three triggers required to create, initialize and

update the data structure.

The WALKSAT/TABU algorithm needs to keep track of when each variable was last flipped to

determine its tabu status. This requires adding a lastChange property to the variable object that

is the search step of the last time the variable changed (see Figure 2.11). Like FalseClauses[ ],

lastChange requires three procedures with three corresponding triggers which can be grouped into

one container trigger we call VarLastChange (see Figure 3.7).

The primary advantage of the triggered procedure architecture lies in the fact that of the many

procedures needed to realize the many SLS algorithms and report formats supported by UBCSAT,

only those required in any given run are activated and used. The remaining inactive or non-triggered

procedures do not affect UBCSAT’s performance. A secondary advantage is that different algo-

rithms and reports can share the same data structures and procedures, saving much programming

effort. Potential drawbacks stem from the implementation overhead of registering all triggers, and
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in this framework, algorithms are typically split into many rather small procedures, which can lead

to decreased performance compared to more monolithic implementations. However, we have found

that these disadvantages are far outweighed by the advantages of UBCSAT’s triggered procedure

architecture. As we will demonstrate in the following section, the performance of UBCSAT is very

competitive with native reference implementations of the respective SAT algorithms.

To achieve our goals of a platform-independent and highly efficient implementation, UBC-

SAT has been developed in strict ANSI C and tested on some of the most popular operating sys-

tems (Linux, Windows, SunOS, Mac OS X). We have incorporated the Mersenne Twister Pseudo-

Random Number Generator (PRNG) [78] to provide a state-of-the-art and platform-independent

source of pseudo-random numbers. UBCSAT is publicly available for academic (non-commercial)

use without restriction to encourage free and open use throughout the SAT research community.

3.3 A Collection of Efficient Algorithm Implementations
One of the goals of UBCSAT is to be a large reference collection of SLS algorithms. By integrat-

ing algorithms into the UBCSAT framework, several advantages can be realized when compared to

the reference native implementations. First, by using a single executable with a uniform interface,

working with different algorithms becomes easier and more convenient. From an implementation

point of view, different algorithms share common data structures and procedures, which reduces

implementation effort and the likelihood of programming errors. Finally, from an empirical algo-

rithmics point of view, comparing two algorithms is facilitated by the fact that UBCSAT allows

fairer comparisons between algorithms that share components and use the same statistical calcula-

tions, input and output formats.

The UBCSAT software package version 1.0 implemented the following SLS algorithms for

SAT:

• ADAPTIVE NOVELTY+ [51]

• DERANDOMIZED SAPS (SAPS/NR) [114]

• GSAT WITH HISTORY (HSAT) [39]

• HSAT WITH RANDOM WALK (HWSAT) [40]

• ITERATED ROTS (IROTS) [105]

• GREEDY SEARCH FOR SAT (GSAT) [100]

• GSAT WITH RANDOM WALK (GWSAT) [98]

• GSAT WITH TABU (GSAT/TABU) [79]

• NOVELTY [80]

• NOVELTY+ [49]

• R-NOVELTY [80]

• R-NOVELTY+ [49]
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• REACTIVE SAPS (RSAPS) [61]

• ROBUST TABU SEARCH (ROTS) [107]

• SCALING AND PROBABILISTIC SMOOTHING (SAPS) [61]

• STEEPEST ASCENT MILDEST DESCENT (SAMD) [44]

• WALKSAT/SKC [99]

• WALKSAT/TABU [80]

Version 1.1, released in 2008, additionally supports the following algorithms:

• ADAPTIVE G2WSAT [77]

• ADAPTIVE G2WSAT+P [77]

• CONFLICT-DIRECTED RANDOM WALK (CRWALK) [85]

• DETERMINISTIC ADAPTIVE NOVELTY+ [114]

• DETERMINISTIC CRWALK (DCRWALK) [114]

• DIVIDE AND DISTRIBUTE FIXED WEIGHTS (DDFW) [63]

• GRADIENT-BASED GREEDY WALKSAT (G2WSAT) [76]

• NOVELTY++ [76]

• NOVELTY+P [77]

• PURE ADDITIVE WEIGHTING SCHEME (PAWS) [111]

• RESTARTING GSAT (RGSAT) [114]

• UNIFORM RANDOM WALK (URWALK)

• VARIABLE WEIGHTING SCHEME I (VW1) [88]

• VARIABLE WEIGHTING SCHEME II (VW2) [88]

Several of these algorithms have more than one variant (e.g., a variant that uses an alternative book-

keeping mechanism).

UBCSAT is designed to support weighted MAX-SAT variants (see also Section 3.6) as well as

variants that may differ in their behaviour or implementation from the basic version of a given algo-

rithm. Consequently, each algorithm within UBCSAT is identified as a triple (algorithm, variant,

weighted) where the variant name can be empty and the weighted option is a Boolean option that

has a default value of false. An algorithm is specified in UBCSAT on the command line as:

ubcsat -alg algorithm [-v variant] [-w].

For each of the previously listed algorithms, we ensured that the UBCSAT implementation

behaves identically to the respective original reference implementation, taking into consideration the

stochastic nature of the algorithms. This is illustrated in Figure 3.8, in which run-time distributions

for the UBCSAT implementations of GWSAT and WALKSAT/SKC are compared to the original

GSAT (version 41) and WALKSAT (version 43) implementations.
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Figure 3.8: Comparison of behaviour for original and UBCSAT implementations. Fig-
ures are quantile-quantile plots of the run-length distributions for 5000 runs. In (a), the
algorithm is GWSAT and the instance is uf200-easy. In (b), the algorithm is WALK-
SAT/SKC and the instance is bw-large-a. All algorithms were executed with default
parameters as described in Appendix A.

At the same time, the UBCSAT versions of all algorithms were optimized for efficiency, with

the goal of matching or exceeding the run-time performance of the respective reference implemen-

tations. As we discussed in Section 3.1, we have implemented numerous bookkeeping mechanisms

for a wide variety of properties. We strove to use data structures and incremental updating schemes

that are efficient, yet reasonably straightforward to understand and implement. As we demonstrated

with the two URWALK algorithm variants, the UBCSAT architecture supports functionally iden-

tical algorithm variants implemented using different bookkeeping methods, which makes it easy to

implement new developments in this area.

The performance of the UBCSAT implementations of all supported algorithms in version 1.0

were tested against that of the respective reference implementations to ensure that the run-times

of the former are at least as efficient as the latter. More importantly, for GSAT and WALKSAT

algorithms, the UBCSAT implementations have been shown to be significantly faster (see Table 3.1

for representative results).
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uuf100-01 uuf400-01

Algorithm time [seconds]
s.f.

time [seconds]
s.f.

Original UBCSAT Original UBCSAT

WALKSAT/SKC 144.7 97.7 1.48 150.3 98.5 1.53
NOVELTY 151.6 117.1 1.29 153.4 114.5 1.34
GSAT 305.0 106.7 2.86 316.5 114.1 2.77
GWSAT 590.1 172.1 3.43 768.2 266.8 2.88

jnh202 rg-200-2000-4-11

Algorithm time [seconds]
s.f.

time [seconds]
s.f.

Original UBCSAT Original UBCSAT

WALKSAT/SKC 217.2 134.0 1.62 310.7 142.1 2.19
NOVELTY 230.8 168.4 1.37 323.0 159.5 2.02
GSAT 1541.6 202.3 7.62 397.8 233.0 1.71
GWSAT 1894.7 254.3 7.45 1354.5 541.5 2.50

Table 3.1: Original implementations vs UBCSAT implementations. Total run-times are
given in seconds for 100000000 search steps on unsatisfiable instances. Note by choosing
unsatisfiable instances for this speed comparison we ensured that in all cases exactly the
same number of search steps have been performed. The speedup factor (s.f.) shows the
software speedups of the UBCSAT implementation over the original implementations
(GSAT version 41 and WALKSAT version 43). See Appendix B for instance information.
Execution environment: UBC BETA cluster (Section C.2). Unless otherwise noted, all
algorithms executed with default parameters as described in Appendix A.

3.4 A Framework for Developing New Algorithms
As discussed in the previous section, the UBCSAT environment includes a wide variety of algo-

rithms and data structures. To facilitate the development and integration of new SLS algorithms,

UBCSAT has been designed so that new algorithms can easily re-use the existing procedures and

data structures from other algorithms. The basis for this is provided by the triggered procedure

architecture discussed in Section 3.2.

To illustrate how new algorithms are added to UBCSAT, we present the pseudo-code required to

add a new WALKSAT/TABU algorithm variant to UBCSAT in Figure 3.9. We have named the new

variant WALKSAT/TABU-NONULL, and it differs from the regular WALKSAT/TABU algorithm

in only one detail: if all of the variables in the selected clause are tabu, then a variable will be

selected from the clause at random and flipped. This variant is interesting from a practical point

of view, since WALKSAT/TABU is one of the best-performing WALKSAT algorithms, but often
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suffers from search stagnation as a consequence of null-flips.

Within UBCSAT, the original WALKSAT/TABU algorithm is identified as the triple:

("walksat-tabu", "", false),

and our new algorithm variant will be identified as a triple:

("walksat-tabu", "nonull", false);

it differs from the already supported WALKSAT/TABU only in its variable selection procedure,

which has a trigger we name PickWalksatTabuNoNull. An algorithm can explicitly specify the data

structure procedures required, or it can inherit them from another algorithm. In this case, we simply

inherit everything from regular WALKSAT/TABU. When an algorithm requires algorithm-specific

command-line parameters (such as the tabuTenure parameter in WALKSAT/TABU) they must be

defined or optionally inherited from an existing algorithm. In addition to creating and registering

the new trigger in the system, its associated procedure (here also called PickWalksatTabuNoNull)

has to be implemented, which in this example simply calls the regular WALKSAT/TABU variable

selection procedure and then handles the special case when a null-flip occurs. While this example

illustrates a particularly simple variant of an existing algorithm, the process of adding implementa-

tions of new SLS algorithms to UBCSAT is typically similarly straightforward.

3.5 An Empirical Analysis Tool
Empirical analysis plays an important role in the development and successful application of SAT

algorithms. To characterize or measure the behaviour of an SLS algorithm, data typically needs to

be collected from multiple independent runs of the algorithm. We note that each run corresponds

to a complete execution of an SLS algorithm, as outlined in Figure 2.1, whereas the pseudo-code

of Figure 3.6 performs multiple runs. As an example, consider the run-time data shown in Fig-

ure 3.8, which is based on 5000 independent runs of each algorithm involved in the respective

experiment. To facilitate the advanced empirical analysis of the SLS algorithms it implements,

UBCSAT provides support for measuring and reporting basic descriptive statistics over multi-

ple runs and strongly supports the analysis of Run-Time Distributions (RTDs) and Run-Length

Distributions (RLDs) [55: p. 159]. In particular, UBCSAT can measure and report RTDs and RLDs

in a format that can be easily plotted (see Figure 2.7) and be further analyzed with specialized

statistical software.

Reports currently implemented in UBCSAT include the satisfying assignments found in each

run, detailed information about the search state at each search step, flip statistics for individual vari-

ables and many others. In UBCSAT, statistics are special objects that are used to collect and sum-

marize data for the default reports. Statistics can be shown for each individual run, or summarized
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Procedure AddWalksatTabuNoNull

CreateAlgorithm("walksat-tabu"; "nonull", false /* new algorithm triple */
"WALKSAT/TABU without null-flips", /* description */
"McAllester, Selman, Kautz [AAAI 97] (modified)", /* authors */
PickWalksatTabuNoNull, /* heuristic trigger(s) */
. . . ) /* minor details omitted */

InheritDataTriggers("walksat-tabu", "", false)
InheritParameters("walksat-tabu", "", false)
CreateTrigger(PickWalksatTabuNoNull, /* trigger name */

ChooseCandidate, /* event point */
PickWalksatTabuNoNull, /* procedure */
. . . )

Procedure PickWalksatTabuNoNull
PickWalksatTabu
if flipVariable is null then

flipVariable := select random variable from selectedClause.Vars[ ]
end

Figure 3.9: The WALKSAT/TABU-NONULL algorithm in UBCSAT.

over all runs. Additional reports and statistics can easily be added to UBCSAT in a straightforward

manner similar to the way in which new algorithms are added. Reports can be in any format and are

implemented based on a list of triggered procedures that collect and output the required information.

We created a column object that will calculate the average of the age property for flipped vari-

ables during a run, as shown in Figure 3.10. We also added a formula property curVarAge that is

determined by the current step, and the lastChange property of the variable that is to be flipped. The

curVarAge property requires a procedure UpdateCurVarAge to update the property value, which re-

quires a corresponding trigger UpdateCurVarAge to map the procedure to the event point PreFlip.

The trigger UpdateCurVarAge depends on the trigger VarLastChange (see Figure 3.7), so if the al-

gorithm already collects this data (e.g., WALKSAT/TABU) then the statistic will simply share the

existing variable property data. If the algorithm does not normally require this data, the trigger

will ensure that the property is available. Because this column statistic has been identified as a

TypeMean (average over all search steps of a run), an additional trigger is automatically activated

to collect the statistical data at the end of each search step. Like many statistics added to UBC-

SAT, this age statistic is now available to all algorithms (that use a single-flip strategy). UBCSAT

facilitates comparisons between algorithms on statistics such as these, which can help further our

understanding of how SLS algorithms behave.
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Object formula

property: curVarAge is Integer
Age of the most recently flipped variable.

Procedure AddAgeStat

AddColumn("agemean", /* column name */
"Mean Age of Variables when flipped", /* description */
curVarAge, /* property to monitor */
UpdateCurVarAge, /* trigger to activate */
TypeMean, /* type of statistic to measure */
. . . )

CreateTrigger(UpdateCurVarAge, /* trigger name */
PreFlip, /* event point */
UpdateCurVarAge, /* procedure */
VarLastChange, /* trigger dependency */
. . . )

Procedure UpdateCurVarAge

curVarAge := step - flipVariable.lastChange

Figure 3.10: The agemean statistic in UBCSAT.

3.6 Weighted Algorithms for MAX-SAT
One area where SLS algorithms have been very successful and have defined the state-of-the-art for

more than a decade, is in solving the MAX-SAT problem, and in particular, the weighted MAX-SAT

problem [55: p. 315]. For this reason, supporting MAX-SAT was one of our goals in the UBCSAT

project.

Although there are interesting differences between the state-of-the-art SLS algorithms for SAT

and MAX-SAT, at the conceptual and implementation level, there are many similarities. Un-

weighted MAX-SAT can be seen as a special case of weighted MAX-SAT where all clauses have

uniform weight properties. Therefore, in the following discussion, we focus on the weighted MAX-

SAT problem. It should be noted that in terms of implementation, SLS algorithms for unweighted

MAX-SAT are much more closely related to SLS algorithms for SAT. In UBCSAT, unweighted

MAX-SAT algorithms are therefore typically equivalent to the corresponding SAT algorithm, while

weighted MAX-SAT algorithms are implemented separately, facilitating conceptually simpler and

highly efficient implementations for both cases.

Many existing SLS algorithms for SAT can be generalized easily and naturally to weighted
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algorithms by simply replacing their standard evaluation function with a weighted alternative, in

a manner similar to penalized evaluation functions described in Section 2.6. For example, the

WEIGHTED GSAT algorithm can simply add a new weightedScore variable property and select

the variable with the smallest weightedScore. Often weighted algorithm variants are designed so

that if one clause has twice the weight of another clause, then it should have the same relative effect

on the algorithm as having an extra copy of the clause in the formula. For example, in WALKSAT

algorithms, the random clause selection is no longer uniform, but instead the probability of selecting

each unsatisfied clause is proportional to the clause weight value.

The main differences between SAT and MAX-SAT is that the optimal solution quality (i.e., max-

imal total weight of satisfied clauses) for a given problem instance is often unknown. Hence, the

best assignment encountered during the search, the so-called incumbent assignment, is memorized

and returned at the end of the search. This memorization of the incumbent assignment is accom-

plished in UBCSAT via a report. Typically, SLS algorithms for MAX-SAT are not guaranteed to

find optimal solutions (i.e., maximal weight assignments), but many state-of-the-art SLS algorithms

for MAX-SAT have the PAC property that if they search long enough, the probability of finding

an optimal solution approaches one [49]. In many practical cases, assignments that are provably

optimal or believed to be optimal can be found within reasonable run-times. UBCSAT supports

termination criteria that end a run whenever a user-specified solution quality (e.g., the known op-

timal solution quality for the given problem instance) is reached or exceeded. Alternatively, when

dealing with instances whose optimal solution quality is unknown, UBCSAT can be configured

with advanced criteria to determine when to terminate a run.

Currently, UBCSAT includes implementations of two dedicated algorithms for MAX-SAT,

SAMD [44] and IROTS [105], and weighted MAX-SAT variants for many of the SLS algorithms

listed in Section 3.3. The mechanism for implementing new MAX-SAT algorithms within UBC-

SAT is exactly the same as described for the case of SAT in Section 3.4. For unweighted MAX-SAT

instances, the same DIMACS (.cnf) file format as for SAT is used. For weighted MAX-SAT

instances, UBCSAT currently supports a straightforward extension of the this format known as

the weighted CNF file format (.wcnf). To support the empirical analysis of the behaviour and

performance of SLS algorithms for MAX-SAT, in addition to the statistics and reports mentioned

in Section 3.5, UBCSAT supports advanced analysis methods for stochastic optimization algo-

rithms. In particular, the following types of empirical performance characteristics can be easily

measured [55: p. 162]:

• Qualified Run-Time Distributions (QRTDs)– empirical probability distributions of the run-

time required for reaching or exceeding a specific target solution quality measured over mul-

tiple runs of the algorithm;

• Solution Quality Distributions (SQDs)– empirical probability distributions of the best solution
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quality reached within a given amount of run-time, measured in terms of search steps or CPU

time over multiple runs of the algorithm; and

• Solution Quality over Time (SQT) statistics – the development of descriptive statistics (such

as quantiles) of the SQDs as run-time increases.

QRTDs, SQDs, and SQTs are determined from so-called solution quality traces, which contain

information on every point in time the incumbent solution was updated during a given run of the

algorithm. The solution quality traces are collected by UBCSAT with minimal overhead during the

run of any MAX-SAT algorithm. While for the SAT problem there is no notion of solution quality,

solution quality traces can also be useful to analyze the behaviour of SAT algorithms.

3.7 Related Work
In this section we discuss three projects similar to UBCSAT: COMET and OPENSAT preceded it,

and SAT4J was developed afterward.

COMET [116] is an OOP language that supports a constraint-based architecture for local

search. The COMET language is very sophisticated and can model SLS algorithms for solving

complex constraint satisfaction problems, but it does not offer explicit support for SAT or MAX-

SAT, nor provide tools for advanced empirical evaluation. While in principle both of these issues

could be addressed by realizing the respective functionality within COMET, implementing UBC-

SAT in COMET seemed to pose the risk that in order to take full advantage of UBCSAT, users

would have to understand both the idiosyncrasies of COMET as well as the architecture and inter-

face of UBCSAT. We believed that as a consequence, UBCSAT would have been less accessible

to its main target group, namely researchers interested in SAT and MAX-SAT. While there is ev-

idence that COMET algorithm implementations are quite efficient, we do not have any insight as

to how these would compare with the native reference implementations of the state-of-the-art SLS

algorithms covered by UBCSAT.

The OPENSAT project [7] was developed as a Java-based open source project for DPLL-based

solvers. A primary goal of OPENSAT was to make the advanced techniques and data structures

used by state-of-the-art DPLL-based solvers openly available in order to accelerate the develop-

ment of new SAT solvers. Generally, the architecture and implementation of DPLL-based solvers

differs considerably from that of SLS-based SAT algorithms, and traditionally there has been very

little overlap between the algorithmic and implementation details used in these two types of SAT

solvers. Therefore, using OPENSAT as the basis for achieving the previously stated goals, while

not completely infeasible, appeared to be problematic. Given the difficulty of supporting the devel-

opment and implementation of SLS algorithms in a straightforward way, the current lack of support

for MAX-SAT solvers, and the fact that OPENSAT does not provide dedicated support for the ad-

vanced empirical analysis of SAT algorithms, it is somewhat questionable whether its Java-based
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implementation makes it possible to achieve performance that is competitive with the native refer-

ence implementations of high-performance SLS algorithms such as WALKSAT/SKC or SAPS.

The SAT4J project [136] is similar to the OPENSAT project, but is targeted at end users who

wish to solve SAT instances in a black box manner without concern for the implementation details.

SAT4J implements the popular MINISAT software package [23]. SAT4J has been included in the

eclipse open source IDE [125], giving SAT solving capabilities to millions of users. At one point

there was an initiative at the SAT4J project to convert UBCSAT into Java and include it in the

SAT4J distribution. Unfortunately that initiative has been abandoned.

3.8 Conclusions
We advanced the state-of-the-art for SLS algorithms for SAT (and MAX-SAT) by conceptualizing

and developing the UBCSAT software package. UBCSAT meets all of the design goals we stated

at the start of this chapter:

1. we included highly efficient, conceptually simple and accurate implementations of a wide

range of prominent SLS algorithms for SAT and MAX-SAT;

2. we facilitated the development and integration of new algorithms (and algorithm variants);

3. we provided support for advanced empirical analysis of the performance and behaviour of

SLS algorithms without compromising implementation efficiency;

4. we provided explicit support for algorithms designed to solve the weighted and unweighted

MAX-SAT problems;

5. we provided an open-source software package that is publicly available to the academic com-

munity; and

6. we implemented the project in a platform-independent way, avoiding non-standard program-

ming language extensions.

Overall, the UBCSAT project has been very successful. It has been well cited, has been used

in numerous scientific experiments and has provided the framework for the development of new

state-of-the-art SAT solvers. We will discuss its success and impact further in Chapter 8. UBCSAT

provided the framework for most of the experiments in this dissertation. In the next chapter, we

introduce our SCALING AND PROBABILISTIC SMOOTHING (SAPS) algorithm, one of the most

successful algorithms included in UBCSAT.
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Chapter 4

Scaling and Probabilistic Smoothing

So, Annie are you okay? Are you okay Annie?
You’ve been hit by. . . you’ve been struck by. . . a smooth criminal.

— Michael Jackson. “Smooth Criminal”

In this chapter, we advance the state-of-the-art for SLS algorithms for SAT by developing the SCAL-

ING AND PROBABILISTIC SMOOTHING (SAPS) algorithm. Our primary goal for this chapter was

to develop a new algorithm that would reduce both the conceptual and computational complexity of

the existing EXPONENTIATED SUBGRADIENT (ESG) algorithm, and exceed its performance on the

same benchmark instances that established ESG as a state-of-the-art algorithm. Our secondary goal

was to advance the understanding of the behaviour of ESG and our new algorithm. Chronologically,

SAPS was the first body of work we completed in this dissertation, and as we will demonstrate, it

was the genesis of our interest in Dynamic Local Search (DLS), which is the prevalent theme of our

dissertation.

The remainder of this chapter is structured as follows. First, in Section 4.1, we provide back-

ground information on the research leading up to our SAPS algorithm, which we introduce in

Section 4.2. Next, in Section 4.3, we present experimental results evaluating SAPS on benchmark

instances and discuss the search behaviour of SAPS. Then, in Section 4.4, we review subsequent

related work. Finally, in Section 4.5, we summarize our work.

4.1 Background and Previous Related Work
In Section 2.6, we introduced the class of algorithms that use Dynamic Local Search with Clause

Penalties (DLS-CP), and described the penalty clause property (Figure 2.12). We explained how, in

typical (non-DLS-CP) SLS algorithms for SAT, the evaluation function is the intrinsic evaluation

function (i.e., the number of unsatisfied clauses), whereas for typical DLS-CP algorithms the pe-
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nalized evaluation function is the sum of the clause penalty values for all unsatisfied clauses. Thus,

when all of the clause penalty values are identical and positive, the penalized evaluation function is

equivalent to the intrinsic evaluation function. This is the initial behaviour for all of the DLS-CP

algorithms we describe below, with all penalty values initialized to one, unless otherwise noted.

One property of this penalized evaluation function we exploit in Section 4.2 is that multiplying all

clause penalty values by a (positive) constant does not materially affect the evaluation function.

Some algorithms use a slightly different notation where the weights are initialized to zero and the

evaluation function includes the intrinsic evaluation function with an added term corresponding to

the weights. For example, the GLSSAT and DLM algorithms described below were designed to

have zero-based clause weights (λ ) and our definition of a clause penalty value is equivalent to

(1+λ ). To aid in the understanding of the algorithms, we describe all DLS-CP algorithms with our

clause penalty value notation.

The general approach of all DLS-CP algorithms is the same. They use a penalized evaluation

function, and throughout the search, the clause penalty values are updated. How and when those up-

dates occur is the largest distinction between the DLS-CP algorithms and is our focus in this section.

We also identify other interesting aspects of the DLS-CP algorithms and identify key contributions

to the field.

The earliest known DLS-CP algorithm for SAT is the GSAT+CW algorithm by Selman and

Kautz [98]. In GSAT+CW, the penalty values are only updated during a restart, where restarts oc-

cur after maxTries search steps (maxTries is a parameter of the algorithm). When the restart occurs,

the variable assignment is re-initialized and the penalty values of all unsatisfied clauses are incre-

mented. Selman and Kautz demonstrated that this method improved the performance dramatically

over regular GSAT on instances with hidden asymmetries, such as gerrymandered graph colouring

encodings, which we discuss in Section 5.2. They suggested that this method of DLS-CP was used

to “fill in local minima” [98].

We described the BREAKOUT algorithm by Morris in Section 2.6 [83]. Whereas GSAT+CW

updates clause penalties at restarts, BREAKOUT updates clause penalties whenever a local minimum

is encountered. Morris described his method within the context of the search landscape topography,

and suggested that BREAKOUT was raising the height of the current point in the search space. He

acknowledged that changing the height at one point in the search space also affected the height at

other points, and he discussed the theoretical FILL algorithm, where the height of only a single point

in the search landscape would be changed. He argued that this FILL algorithm would be guaranteed

to find a solution, but be infeasible in practice.

Frank developed two DLS-CP algorithm variants he named WGSAT and WGSAT WITH DE-

CAY [29, 30], but we refer to them as GSAT+LR and GSAT+LR+D to avoid any confusion with

the WEIGHTED GSAT algorithm. Unlike GSAT+CW or the BREAKOUT method, GSAT+LR up-

dates penalty values after each search step, and if a restart occurs, all penalty values are reset to one.
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The GSAT+LR clause update procedure, as with GSAT+CW and BREAKOUT, only applies to un-

satisfied clauses, but instead of incrementing (i.e., increasing by one) the penalty values it increases

them by a learning rate parameter δ :

penalty := penalty+δ . (4.1)

The GSAT+LR+D algorithm adds a decay mechanism to GSAT+LR and was the first DLS-CP to

introduce a reduction in clause penalty values. GSAT+LR+D adds a second stage to the penalty

updates where a decay multiplier p (0 < p≤ 1) is applied to all clauses:

penalty := p ·penalty. (4.2)

Frank suggested that GSAT+LR could achieve learning as it searches, and that the GSAT+LR+D

algorithm could also “forget” some of its learning to ensure that clause penalties have only a short

term effect. This was motivated by the observation that for long search trajectories clause penalty

values can become large, so incremental changes to clause penalties become increasingly insignif-

icant. Frank also addressed the issue that GSAT+LR search steps are more complex than simpler

algorithms (such as GSAT), and that it can be misleading to measure algorithm performance by

search steps alone.

Mills and Tsang adapted the proven Guided Local Search (GLS) approach from other domains

to SAT with the GLSSAT algorithm [81]. The variable selection in GLSSAT is unique, in that

it selects the oldest variable that can achieve any improvement in the evaluation function, or if no

improvement is possible, the oldest variable that is a sideways move. A clause penalty update occurs

if a specified number of sequential sideways moves are taken or there is a strict local minimum (no

sideways or improving moves possible). The clause penalty update mechanism is also unique,

only incrementing the unsatisfied clauses with the minimal penalty value. An additional variant of

GLSSAT with a decay mechanism was introduced (GLSSAT2) where after 200 penalty updates the

clause penalty values of all clauses were updated as:

penalty =
4
5
· (penalty)+

1
5
. (4.3)

Several DISCRETE LAGRANGIAN METHOD (DLM) algorithms have been developed that were

motivated by Lagrange multipliers for continuous and discrete domains [102, 118, 119]. The authors

model clause weights as Lagrangian multipliers, and suggest the strong mathematical foundation be-

hind Lagrangian methods are the reason DLS-CP algorithms are so effective. However, many of the

desired theoretical properties of Lagrangian methods are not realized in DLM because of the numer-

ous modifications to the underlying strategy that are necessary to make the algorithms efficient in

practice [56: p. 152]. As we mentioned previously, in our parlance, the Lagrange multipliers (λ ) are
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equivalent to the clause penalty values minus one. Shang and Wah introduced the first DLM algo-

rithm, which is now referred to as DLM-98-BASIC-SAT [102]. The algorithm combines a clause

penalty evaluation function with a simple tabu strategy, where a unique stagnation criteria is used

and the clause penalty update procedure depends on algorithm parameters (θ1,θ2,δo,δd). For every

θ1 steps in which no improvement has been made (i.e., after θ1 sideways moves), an adjustment

step occurs where the unsatisfied clause penalty values are increased by δo. After θ2 adjustment

steps, the clause penalty values for all clauses are decreased by δd . The DLM-99-SAT algorithm

by Wu and Wah adds an additional special increase mechanism that can increase the penalty value

for a clause by an additional δs if the clause is frequently unsatisfied in local minima (see [118] for

details). DLM-2000-SAT [119] uses the same clause penalty updates as DLM-98-BASIC-SAT,

and introduced changes to the Lagrangian evaluation function to incorporate a history of recently

visited search locations to avoid backtracking.

The SMOOTHED DESCENT AND FLOOD (SDF) algorithm by Schuurmans and Southey [95,

96] uses an advanced smoothing (flooding) mechanism, and it was the first DLS-CP algorithm to

introduce multiplicative updates. The SDF algorithm incorporates a novel evaluation function that

takes into account not just whether or not a clause is satisfied, but also how many variables satisfy

each clause, thus reducing the number of ties and plateaus in the search space (i.e., allowing for

a smoother descent – see [95] for details). SDF uses the BREAKOUT strategy and has different

update procedures for satisfied and unsatisfied clauses. We only provide a high-level description of

the SDF algorithm here, which uses mechanisms to ensure that the sum of all clause penalty values

remain constant (see [96] for details). For unsatisfied clauses, the penalty values are multiplied by

a constant α∗ that is calculated at each update to make the smallest penScore for all variables equal

to (−δ ), where δ is a parameter of SDF. For satisfied clauses, the penalty values are first updated

by multiplying by a constant β∗:

β∗ = (1−α∗ ·∑⊥)/∑>, (4.4)

where ∑> and ∑⊥ are the sum of the clause penalties for satisfied and unsatisfied clauses, respec-

tively. The satisfied clauses penalty values are subsequently smoothed toward their mean value

( ∑>
|C>|):

penalty := ρ ·penalty+(1−ρ) · ∑>
|C>|

. (4.5)

An interesting observation made by Schuurmans and Southey is that SDF is almost completely

deterministic, since ties are rare. We were fascinated by this observation, and explore this concept

further in Chapter 6.

Schuurmans et al. followed up on SDF by introducing their EXPONENTIATED SUBGRADIENT

(ESG) algorithm where the term exponentiated comes from the penalty value update mechanism

(see below) and the term subgradient refers to a local search approach in Lagrangian parlance. Two
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stated objectives of Schuurmans et al. were to generalize SDF and develop a domain-independent

Lagrangian approach for solving Binary Linear Programs (BLPs). This unfortunately resulted in

(their words) some overbearing terminology. We refrain from introducing some of that terminology

and present a very simplified version of what is described in the paper [97]. ESG uses a BREAKOUT

strategy, enhanced with a random walk parameter η where when a local minimum is reached a

random variable is flipped with probability η , otherwise, clause penalties are updated. In the ESG

paper the greedy search steps are primary steps and the clause penalty updates are dual steps. This

should not be confused with the following two stages of clause updates. In the first stage, all satisfied

clause penalty values are updated as:

penalty := α
−1/2 ·penalty, (4.6)

and all unsatisfied clause penalty values are updated as:

penalty := α
+1/2 ·penalty, (4.7)

where α is an algorithm parameter. In the second stage, all clause penalties, as opposed to just

satisfied clauses in SDF, are smoothed back to their mean value penalty according to a smoothing

parameter ρ:

penalty := ρ ·penalty+(1−ρ) ·penalty. (4.8)

As we discuss in the following section, the authors’ software implementation differs from the de-

scription in their paper.

When introduced, the performance of the ESG algorithm was impressive, with results showing

ESG could dominate the performance of SDF and was competitive with state-of-the-art SLS algo-

rithms for SAT. Encouraged by the performance of ESG, we developed our SAPS algorithm that

led to much of the work in this chapter.

4.2 The Scaling and Probabilistic Smoothing Algorithm
Before we introduce the SAPS algorithm, we will briefly review some implementation details of

the ESG algorithm. In the previous section we introduced the ESG algorithm and stated that the

authors’ software implementation (version 1.4) was different than the algorithm described in the

paper [97]. Instead of multiplying the satisfied clause penalty values by α−1/2 and the unsatisfied

clause penalty values by α1/2, only the unsatisfied values are multiplied by αraw, where

αraw := 1+α · |V |
|C|

, (4.9)
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and |V | is the number of variables in the formula and |C| is the number of clauses (see Figure 2.8 for

further symbol definitions). Setting aside the difference between α and αraw, the change to modify

only unsatisfied clause penalty values does not change the ESG algorithm, since multiplying all

clauses by a positive constant (i.e., α1/2) does not materially affect the evaluation function (although

it does highlight the peculiarity of the original design). The smoothing in the ESG implementation

was also changed by replacing the mean penalty value (penalty) with the constant value of one.

This simplification altered the ESG algorithm, but was made to allow for a lazy update scheme

to be feasible, where clause penalty values were only updated after one hundred updates (to avoid

floating point numerical drift) or when necessary for calculations.

The lazy update scheme was implemented in ESG because in a straightforward implementation,

the clause penalty update procedure is computationally expensive when compared to the search

steps where no update is required. In a straightforward implementation, the time to complete an

ESG search step, without a penalty update (flipping variable vi) is:

Θ(|V⊥|)+Θ(scli), (4.10)

where the first term is the time to determine the variable to flip, and the second term is the time

to maintain the bookkeeping for penScore (see Equation 3.1). The worst-case time to complete a

search step with a penalty update is:

Θ(|V⊥|)+Θ(|C|)+Θ(|F |), (4.11)

where the first term is the time of the (failed) variable selection, the second term is the time of the

clause penalty update, and the third term is the time to maintain the bookkeeping for penScore.

The difference in the time performance between the two types of search steps arises because for a

typical variable vi, scli� |F |.
In Table 4.1, we compare ESG and NOVELTY+ on instances from the ESG paper. We selected

NOVELTY+ for this experiment because at the time it was a well-known state-of-the-art SLS algo-

rithm for SAT [55: p. 278]. The run-length performance of ESG is rather impressive for a variety of

problem instances; for some instances it outperforms NOVELTY+ by more than an order of magni-

tude. Typically, ESG’s run-time performance is somewhat better than that of NOVELTY+, but even

with the aforementioned software optimizations, ESG does not always outperform NOVELTY+.

Hence, it seems that the time of the penalty updates in the ESG implementation is limiting its

performance.

The impact of the clause penalty update on the overall time complexity depends on the percent-

age of search steps that are update steps (i.e., steps in local minima). In Table 4.1, we show the

percent of steps in local minima range from around 7% (for flat instances) to more than 40% per-

cent (for the ais instance). The results for logistics-c are especially illuminating, as the run-length
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NOVELTY+ ESG
Problem nov. steps time tot. steps % pen. time
Instance noise ×103 [sec] αraw ρ η ×103 updates [sec]

bw-large-a 0.40 7.0 0.014 3.0 0.995 0.0015 2.7 10.3 0.016
bw-large-b 0.35 125.3 0.34 1.4 0.99 0.0005 31.6 14.6 0.28
bw-large-c 0.20 3 997.1 16.00 1.4 0.99 0.0005 1 625.7 11.9 38.10
logistics-c 0.40 101.7 0.226 2.2 0.99 0.0025 14.4 32.4 0.229
flat100-med 0.55 7.6 0.008 1.1 0.99 0.0015 7.5 15.5 0.013
flat100-hard 0.60 84.0 0.089 1.1 0.99 0.0015 22.9 12.2 0.037
flat200-med 0.60 198.4 0.21 1.01 0.99 0.0025 104.2 7.3 0.24
flat200-hard 0.60 18 147.7 18.86 1.01 0.99 0.0025 2 725.2 7.9 5.89
uf100-hard 0.55 30.0 0.046 1.15 0.99 0.001 2.9 22.3 0.006
uf250-med 0.55 9.9 0.015 1.15 0.99 0.003 8.4 16.4 0.020
uf250-hard 0.55 1 817.7 2.75 1.15 0.99 0.003 192.0 13.9 0.46
uf400-med 0.55 100.4 0.16 1.15 0.99 0.003 110.3 9.1 0.32
uf400-hard 0.55 14 419.9 22.30 1.15 0.99 0.003 3 297.8 8.6 9.76
ais10 0.40 1 332.2 4.22 1.9 0.999 0.0004 22.8 42.8 0.14

Table 4.1: NOVELTY+ vs ESG performance. Bold text indicates the CPU time of the faster
algorithm. For all runs of NOVELTY+, wp = 0.01. ESG steps include clause penalty
value updates (at local minima) where no flip occurs, with the percent of steps with updates
shown. Parameter values for NOVELTY+ were obtained by ad-hoc testing. ESG parameter
values were obtained from the original ESG paper [97]. Software versions: ESG v1.4,
NOVELTY+ (WALKSAT) v36. Execution environment: UBC BETA cluster (Section C.2).
Median run-lengths and run-times are reported, obtained from 100 runs. See Appendix B
for instance information.

for ESG is approximately 14% that of NOVELTY+, yet the run-time is approximately the same. In

our empirical analysis of the ESG software, we found that despite the lazy update scheme, the time

complexity of the clause penalty updates severely limited the performance of ESG, which has been

a general criticism of DLS-CP algorithms in general [30].

Our goal for developing a new algorithm was to reduce both the conceptual and computational

complexity of ESG while maintaining the excellent run-length performance. We decided to leave as

much of the original ESG design (which itself has remnants of the SDF design) unchanged in order

to highlight the impact of our changes. For example, the random walk mechanism in ESG is not

very effective, but we chose to use the same mechanism to provide a more meaningful comparison.

The only change we made to the ESG algorithm was the clause penalty update procedure. To help

better illustrate the mechanisms involved in clause penalty value updates we divide the procedure

into two separate stages: scaling and smoothing.

For the scaling stage, we avoided the Lagrangian notations introduced in the ESG paper and
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adopted the practice used in the ESG software of multiplying the penalty values of unsatisfied

clauses by a simple parameter αraw. However, we chose to use a simple constant value of α in lieu

of the calculated α∗ in SDF or the αraw calculations introduced in the ESG software (Equation 4.9).

To summarize, the scaling step from ESG

penalty := α
±1/2 ·penalty (4.12)

that applied to all clauses was simplified to

penalty := α ·penalty (4.13)

for only unsatisfied clauses. This straightforward change in the scaling procedure changes the worst-

case time for a straightforward implementation of the scaling stage from

Θ(|C|)+Θ(|F |) (4.14)

to

Θ(|C⊥|)+Θ(|V⊥|), (4.15)

where |C⊥| is the number of false clauses, |C⊥| � |C|, |V⊥| � |F |, and as the search progresses,

|C⊥| and |V⊥| both approach zero.

For the smoothing step, we made two changes. The first minor change is related to the obser-

vation we made previously that a uniform scaling of all clause penalties has no effect on the search

algorithm, so we reduced the smoothing step from:

penalty := ρ ·penalty+(1−ρ) ·penalty, (4.16)

to:

penalty := penalty+(1−ρ) ·penalty. (4.17)

This change does not affect the time complexity significantly, but in practice the difference was

measurable and it made the required bookkeeping more straightforward. However, we feel that this

change makes a significant conceptual difference that highlights the simple yet fundamental differ-

ence between the two stages: scaling is simple multiplication and smoothing is simple addition1.

We note that the term (1− ρ) · penalty could be replaced by a simple constant, but as mentioned

previously we wanted to keep the general structure of ESG to highlight the most significant change

made, namely probabilistic smoothing.

Due to our straightforward scaling procedure, the relative time complexity of the smoothing

1At one point in our development, we were considering alternate names for SAPS that reflected this multiplication
and addition duality, but SAPS was determined to be more appealing and reflective of our contribution.
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stage was now much more significant. As a result, we conducted experiments where we performed

smoothing less frequently and with greater intensity and observed that it did not significantly affect

the overall run-length performance of the algorithm. The procedure we eventually developed was

called probabilistic smoothing, where for every scaling stage a smoothing stage was performed with

probability ps. With probabilistic smoothing, the overall probabilistic worst-case time to perform a

clause penalty update becomes:

with probability (1−ps) : Θ(|C⊥|)+Θ(|V⊥|)
otherwise : Θ(|C|)+Θ(|F |).

(4.18)

Obviously, there are other ways of achieving the same effect. For instance, similar to the mech-

anism found in DLM, smoothing could be performed deterministically after a fixed number of

scaling stages. However, the probabilistic smoothing mechanism has the theoretical advantage of

preventing the algorithm from getting trapped in cyclic behaviour (see also [51]). The other im-

portant distinction between our mechanism and those of other DLS-CP algorithms such as DLM is

that our strategy is designed to reduce the time complexity of our approach, as opposed to a delayed

decay mechanism. We present the core procedures of the SAPS algorithm in Figure 4.1.

Like the authors of ESG, our software implementation of the SAPS algorithm differs slightly

from the published version. In the description in Figure 4.1, we describe the SAPS variant that

corresponds to the UBCSAT software implementation of SAPS used in practice and note that

the UBCSAT software also includes a variant that strictly implements SAPS as described in our

paper [61]. There are three differences that exist between our software implementation and the

version of SAPS we originally described. First, in the PickVariableSAPS procedure shown in

Figure 4.1, a threshold parameter ε is introduced, where a change in the penScore is only considered

an improving step if it exceeds this threshold. The second change was illustrated in the change from

Equation 4.16 to Equation 4.17, where the penalty values are no longer multiplied by ρ . The

removal of this multiplication caused the penalty values to increase over time, so to avoid numerical

drift we introduced the third change, a normalization stage at the UpdateClausePenaltiesSAPS

procedure as shown in Figure 4.1.

When we introduced SAPS, our co-author, Frank Hutter, developed the RSAPS algorithm.

RSAPS adjusts the ps value during the search in a manner similar to the mechanism used by

ADAPTIVE NOVELTY+, which we discussed in Section 2.3. We do not discuss RSAPS further

in this dissertation, and our original paper can be consulted for further details [61].

4.3 Experimental Results
To evaluate the performance of SAPS against ESG and NOVELTY+, we conducted computational

experiments on widely used benchmark instances for SAT. The results of this are presented in
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Procedure PickVariableSAPS

bestPenScore := minimum penScore from Variables[ ].penScore
if bestPenScore <ε then

flipVariable := select variable from Variables[ ] with minimum penScore (BTR)
else

with probability wp
flipVariable := select random variable from Variables[ ]

otherwise
flipVariable := null

end
end

Procedure UpdateClausePenaltiesSAPS

if flipVariable is null then
foreach clause c in FalseClauses[ ] do

c.penalty := c.penalty · α
end
with probability ps

avgPenalty := average of all Clauses[ ].penalty values
smoothPenalty := (1 - ρ)· avgPenalty
foreach clause c in Clauses[ ] do

c.penalty := c.penalty + smoothPenalty
end

end
maxPenalty := maximum penalty from FalseClauses[ ].penalty
if maxPenalty > MAXPEN then

foreach clause c in Clauses[ ] do
c.penalty := c.penalty / MAXPEN

end
end

end

Figure 4.1: Variable selection and penalty updates in the SAPS algorithm. In the UBC-
SAT implementation if SAPS, ε is a parameter defaulting to (−0.1), and MAXPEN =
1000.
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Table 4.2. SAPS achieves superior performance over ESG and NOVELTY+ with default values of

α and ps with one exception. SAPS exhibited poor performance on the instance bw-large-c, despite

some manual adjustment of the α parameter. We note that the aforementioned RSAPS algorithm

was faster than both NOVELTY+ and ESG on this instance. In Table 4.1, the instance logistics-

c was identified as problematic for ESG, and we can see that the SAPS run-time outperforms

ESG by a factor of six. For smaller instances, such as uf100-hard, the time is roughly the same;

SAPS is never slower than ESG. Furthermore, for all problem instances considered in the ESG

paper [97] where DLM outperformed ESG, SAPS (and RSAPS) outperform ESG by a greater

margin. When comparing SAPS to NOVELTY+, the performance differences are more apparent

and the run-time performance of SAPS is often more than an order of magnitude superior. We

note that since performing these experiments, we have collected evidence that there are numerous

instances (e.g., g125.17 and g125.18) where NOVELTY+ performs substantially better than SAPS.

In the previous section, we described how the time complexity of a smoothing step is propor-

tional to the problem size. This suggests that performance differences between ESG and SAPS

should also increase with problem size. To avoid complications arising from different implementa-

tions, we use a variant of SAPS with ps = 1 to illustrate these differences. We refer to this variant

as SAPS/ESG. The performance of this variant is very similar to ESG for small instances and is

marginally better for larger instances. To demonstrate this proportional behaviour with respect to the

problem size, we conducted experiments with SAPS/ESG, NOVELTY+ and SAPS with ps = 0.05

on the instance sets uf100 and uf400. We present the results of these experiments in Figure 4.2 and

Figure 4.3. We see impressive results for SAPS/ESG on uf100 (Figure 4.2 (a)), whereas its perfor-

mance degrades for the instances in uf400 (Figure 4.3 (a)). The performance of SAPS is similar to

SAPS/ESG on uf100 (Figure 4.2 (b)). However, for the larger instances in uf400 (Figure 4.2 (b)) it

becomes obvious that the performance of SAPS can be far superior to that of SAPS/ESG.

The experimental results in Table 4.2, Figure 4.2 and Figure 4.3 were originally presented

with the introduction of SAPS in 2002 [61]. Subsequently, the SAPS algorithm has been a stan-

dard benchmark algorithm with numerous publications and algorithms measuring their performance

against SAPS. More recent DLS-CP algorithms, such as PAWS (see Section 4.4), can outperform

SAPS on a wide variety of instance domains. However, with the possible exception of SATEN-

STEIN [70], we are not aware of an SLS algorithm that has demonstrated the ability to dominate

SAPS. The comparison to SATENSTEIN is unique, since SATENSTEIN subsumes SAPS and can

itself be configured to behave as SAPS (see [70] and Section 7.5 for more details). A configura-

tion of SATENSTEIN known as SATENSTEIN[FAC] is the best-known SLS algorithm for the fac

benchmark set, where SAPS (with default settings) was identified as the strongest known competi-

tor. In Figure 4.4, we demonstrate that an optimized configuration of SAPS can outperform the

published settings of SATENSTEIN on the fac test set. This improvement is possible because the

overhead of SAPS is marginally smaller than SATENSTEIN, and because SAPS has a much smaller
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NOVELTY+ ESG SAPS
Problem time time tot. steps % pen. time
Instance [sec] [sec] α ρ ×103 updates [sec] s.f.

bw-large-a 0.014 0.016 1.3 0.8 2.6 12.9 0.009 1.56
bw-large-b 0.34 0.28 1.3 0.8 32.7 9.8 0.18 1.56
bw-large-c 16.00 38.10 1.1 0.6 2 131.0 12.4 37.88 0.42

logistics-c 0.226 0.229 1.3 0.9 8.7 25.5 0.037 6.10

flat100-med 0.008 0.013 1.3 0.4 6.6 17.1 0.008 1.00
flat100-hard 0.089 0.037 1.3 0.8 25.6 13.7 0.032 1.16
flat200-med 0.21 0.24 1.3 0.4 59.9 7.8 0.09 2.39
flat200-hard 18.86 5.89 1.3 0.4 2 169.9 9.9 3.05 1.93

uf100-hard 0.046 0.006 1.3 0.8 3.8 21.5 0.006 1.00
uf250-med 0.015 0.020 1.3 0.4 6.6 17.5 0.011 1.36
uf250-hard 2.75 0.46 1.3 0.7 170.4 15.5 0.29 1.58
uf400-med 0.16 0.32 1.3 0.4 53.0 10.4 0.10 1.55
uf400-hard 22.30 9.76 1.3 0.2 1 033.8 12.9 1.97 4.95

ais10 4.22 0.14 1.3 0.9 19.9 32.4 0.05 2.73

Table 4.2: SAPS vs NOVELTY+ and ESG. The columns for NOVELTY+ and ESG are re-
peated from Table 4.1. Bold text indicates the CPU time of the faster algorithm. For all
runs of SAPS, ps= 0.05 and wp= 0.01. SAPS steps include clause penalty value updates
(at local minima) where no flip occurs, with the percent of steps with updates shown. Pa-
rameter values for SAPS were obtained manually via ad-hoc testing. The speedup factor
(s.f.) is the lesser of the NOVELTY+ and ESG time divided by the SAPS time. Software
versions: SAPS v1.0, Execution environment: UBC BETA cluster (Section C.2). Median
run-lengths and run-times are reported, obtained from 100 runs.

number of parameters and is easier to optimize. However, our intent is not to claim that SAPS out-

performs SATENSTEIN (a futile exercise because of the aforementioned subsumed behaviour), but

rather demonstrate that despite the several years since SAPS was introduced, it is still relevant and

able to outperform the current best-known state-of-the-art SLS algorithms for SAT on an interesting

instance class from the literature.

We motivated our probabilistic smoothing approach with our observation that less frequent

smoothing did not affect the run-length performance of the algorithm, and we provide evidence

of this behaviour in Figure 4.5. In Figure 4.5, we illustrate the effect of varying the smoothing

probability (ps) on the performance of SAPS, while simultaneously decreasing the smoothing pa-

rameter (ρ) to achieve an equivalent amount of smoothing overall. From Figure 4.5 (a), it is clear

that smoothing less frequently and with greater intensity can achieve nearly identical run-length

54



10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

S
A

P
S

/E
S

G
 [

se
c]

Novelty
+
 [sec]

(a) ps = 1 (ESG)

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

S
A

P
S

 [
se

c]

Novelty
+
 [sec]

(b) ps = 0.05

Figure 4.2: SAPS on uf100: smoothing vs no smoothing. The speedup factor (s.f.) is (a)
2.03 and (b) 2.79. For NOVELTY+, the noveltyNoise parameter is 0.55. For SAPS,
the parameters in both plots are (α,wp) = (1.3,0.01). For (a), (ps,ρ) = (1.0,0.99),
for (b), (ps,ρ) = (0.05,0.8). (Each point corresponds to an instance in the set uf100
(100 instances). Median run-times obtained from 100 independent runs per instance.
Execution environment: UBC BETA cluster (Section C.2). See Section C.5 for general
correlation plot details.)

performance, while in Figure 4.5 (b) we can see the improvement in run-time performance achieved

from smoothing less frequently.

When we introduced the SAPS algorithm, we were seeking to gain a deeper understanding of

the role of the parameters α , ρ and ps, and we analyzed the evolution of clause penalty values over

time. This analysis is the basis of the work we continue in Section 5.3. We provide an extended

version of our original analysis in the following.

To illustrate the effect of the clause penalty values on the search evaluation function, we consider

a very simple search sequence example that isolates three clauses (a, b, c) where two of the clauses

are each unsatisfied for different search steps. Table 4.3 illustrates the changes in penalty values

to these three hypothetical clauses. Because of the scaling and smoothing mechanism, we can see

that although clause a and b were scaled the same number of times, the clause that was scaled more

recently (b) has a larger penalty value. This example illustrates how scaling and smoothing can

be seen as a mechanism for ranking the clauses by their history. Interestingly, these effects can

be interpreted as that of a soft tabu mechanism on clauses, where recently unsatisfied clauses with

higher weights are more tabu (i.e., likely to stay satisfied longer).
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Figure 4.3: SAPS on uf400: smoothing vs no smoothing. The speedup factor (s.f.) is (a)
0.84 and (b) 5.50. For both plots, NOVELTY+ noise parameter is 0.55, SAPS parameters
(α,wp) = (1.3,0.01). For (a), (ps,ρ) = (1.0,0.97), for (b), (ps,ρ) = (0.05,0.4). (Each
point corresponds to an instance in the set uf400 (100 instances). Median run-times
obtained from 100 independent runs per instance. Execution environment: UBC BETA
cluster (Section C.2). See Section C.5 for general correlation plot details.)

We believe that the observed multiplication and addition duality in scaling and smoothing and

its historical effect on search behaviour illustrated by this example helps conceptualize one of the

mechanisms that makes SAPS (and by extension ESG and SDF) effective SAT solvers. Ignor-

ing issues of numerical precision and representation, these solvers have a very long-term history

(i.e., the clause penalty values reflect the entire history of the clause). By introducing probabilistic

smoothing, we are essentially making the history more coarse, grouping all scaling activity that

happens between two smoothing steps into the same period of search history. Scaling activity in the

current period of history will have the most weight, then the previous period of history, and so on.

The parameters of SAPS (α,ρ,ps) clearly affect the clause penalty values dynamically during

the search, and to illustrate their behaviour we examine Clause Penalty value Distributions (CPDs).

To generate a CPD, we take a snapshot of the clause penalty values at a specific time during the

search trajectory, normalize the values so that the minimum value is one, and finally sort the normal-

ized values. Figure 4.6 shows typical CPDs for a given SAT instance after 400 scaling steps. In our

experience, after a certain number of local minima, the CPD converges to a specific distribution that

is determined by the problem instance and the parameter settings. We hypothesize that the shape

of the CPD for a given problem instance determines the performance of SAPS. In Figure 4.6, we
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Figure 4.4: SAPS vs SATENSTEIN on fac. The speedup factor (s.f.) is 1.10. The SATEN-
STEIN parameters are the same as used in the SATENSTEIN paper [70]. The SAPS pa-
rameter settings of (α,ps,ρ,wp) = (1.11,0.025,0.82,0) were obtained manually. (Each
point corresponds to an instance in the set fac (1000 instances). Median run-times ob-
tained from 25 independent runs per instance. Execution environment: UBC arrow clus-
ter (Section C.1). See Section C.5 for general correlation plot details.)

Description a.penalty b.penalty c.penalty

Initialization 1 1 1

Scaling step affecting a α 1 1

Scaling step affecting none α 1 1
Smoothing step (see below) α + k 1+ k 1+ k

Scaling step affecting b α + k α + k ·α 1+ k

Table 4.3: Scaling and smoothing example. The sequence of events in this example is as
follows: Clause a is unsatisfied at a local minimum causing a scaling step, then another
clause is unsatisfied at a local minimum (not shown here) causing a scaling step and a
probabilistic smoothing step, and then finally clause b is unsatisfied at a local minimum
causing another scaling step. The value of k is a positive constant not material to the
discussion equal to (1−ρ) ·penalty, where penalty is the mean of all penalty values after
the second local minimum. The value of α is greater than one.
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Figure 4.5: The effect of smoothing on SAPS performance. The smoothing parameter (ρ)
and ps were adjusted to achieve an equivalent amount of smoothing overall. (Each con-
figuration of SAPS was run on the instance ais10 1000 times. Execution environment:
UBC arrow cluster (Section C.1). Unless otherwise noted, all algorithms executed with
default parameters as described in Appendix A.)

can see directly the effect of changing the parameters on the CPDs. For example, in Figure 4.6 (b)

the smoothing parameter ρ has a significant impact on the shape of the CPD. Intuitively, the SAPS

search procedure will place greater emphasis on satisfying and keeping satisfied the clauses with

higher clause weights. For smaller values of ρ (i.e., more smoothing), fewer clauses have high

weights, leading to a greedier, more intensified search. Conversely, less smoothing leads to a more

diversified search.

One of our more interesting observations was that if two different (α,ρ,ps) triplets result in

nearly identical CPDs, they will also yield nearly identical performance results. Two such triplets

are (1.3,0.99,1.0) and (1.3, 0.818,0.05), where we demonstrated in Figure 4.5 they achieve similar

run-length performance; as can be seen in Figure 4.6, the respective CPDs are very similar. Clearly,

the parameters of SAPS are not independent, and studying CPDs could provide a way of modelling

the dependency between the parameters to reduce the total number of parameters. Finally, this sug-

gests that another DLS-CP algorithm, which produces CPDs similar in shape to the CPDs of SAPS

and ESG, could achieve similar run-length performance with potentially less run-time complexity.

One final observation about the nature of the SAPS algorithm, originally observed by Schu-

urmans and Southey [95] on their SDF algorithm, is that as the search progresses, the variable
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Figure 4.6: SAPS clause penalty distributions. Each configuration of SAPS was terminated
after 400 scaling operations on the instance uf150-hard. For each plot only one parameter
was modified, with the (α,ρ,ps) parameters set to the values of (1.3,0.99,1.0), and all
other parameters set to defaults as described in Appendix A. The base configuration is
identical for each plot and is highlighted. (Clause penalty values were normalized, i.e.,
the penalty value of an always satisfied clause is one.)
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Figure 4.7: Approximately equivalent CPDs for two configurations of SAPS. (Each con-
figuration of SAPS was terminated after 400 scaling operations on the instance uf150-
hard. The values of (ρ,ps) are set as indicated in the plot, and all other parameters set
to defaults as described in Appendix A. Clause penalty values were normalized, i.e., the
penalty value of an always satisfied clause is one.)

selection in SAPS essentially becomes deterministic. We will explore this further in Chapter 6,

where we will introduce the deterministic SAPS/NR algorithm.

4.4 Subsequent Related Work
In this section, we briefly discuss the prominent DLS-CP algorithms that have been developed

since SAPS was introduced in 2002. Since numerous experiments in the following chapter will be

conducted with PAWS and DDFW, we will discuss those algorithms in more detail.

The PURE ADDITIVE WEIGHTING SCHEME (PAWS) algorithm by Thornton et al. [111] was

developed as a response to SDF, ESG and SAPS and demonstrated that multiplicative clause

penalty value updates are not always necessary and that a straightforward additive scheme can be

quite effective. The PAWS clause penalty value update mechanism is to increment all unsatisfied

clause penalty values, then (similarly to DLM) after every maxInc updates, all clause penalty values

greater than one are decremented. Where PAWS differs from all previous DLS-CP algorithms is

that it introduces a novel mechanism for taking random sideways steps. PAWS will always update

the clause penalty values when a strict local minimum is encountered (i.e., no sideways moves are

possible), but when a sideways move is possible, PAWS will allow a sideways step with probability

pflat. The final interesting mechanism in PAWS is that for tie-breaking between variables (either

for an improving or a sideways step) it uses a unique Multiple Inclusion roulette selection scheme
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whereby variables that appear in more than one false clause are proportionately more likely to be

selected.

Thornton followed the original PAWS paper [111] with a publication studying the differences

between PAWS and SAPS [109]. He conducted thorough empirical experiments to isolate the

individual effects of the SAPS and PAWS algorithm mechanisms. He introduced five SAPS vari-

ants (SAPS+M, SAPS+R, SAPS+D, SAPS+A, SAPS+T) and four PAWS variants (PAWS+M,

PAWS+R, PAWS+D, PAWS+A) that represent various hybrids or intermediate steps from SAPS

to PAWS. His primary conclusion from his experiments was that while PAWS does not dominate

SAPS, an additive strategy tends to perform better than a multiplicative one, particularly on the

larger and more difficult problems. Thornton made additional interesting conclusions (e.g., the

negligible effect of multiple inclusion) and the full text can be consulted for further details [109].

Ferreira Jr. and Thornton developed a PAWS variant they named PAWS WITH USUAL SUS-

PECTS (PAWS+US) which allows for two different classes of clauses and penalizes them differ-

ently. PAWS+US will be discussed in Section 5.6.

The DIVIDE AND DISTRIBUTE FIXED WEIGHTS (DDFW) algorithm by Ishtaiwi et al. [63]

takes a very unique approach to updating clause penalty values. To increase the penalty value of

one clause, the penalty value of another clause has to be decreased by the same amount. As with

the SDF algorithm, the sum of the clause penalties in DDFW remains constant. Aside from the

clause penalty value updates, DDFW is identical to PAWS. For the DDFW algorithm, we set aside

our convention that all clause penalty values are initialized to one, and initialize them to the value

of the parameter Winit, where the default value is 8. In DDFW clause penalty value updates, each

unsatisfied clause is increased and a satisfied source clause is selected to be decreased. If the source

clause penalty value is greater than Winit, the change in penalty values is two, otherwise the change

is one. To select the source clause, the satisfied neighbouring clause with the highest penalty value is

selected. Two clauses are neighbours if they share a literal with the same variable and polarity. In the

event that no such clause exists, a random clause with a penalty value greater than Winit is selected.

Although not mentioned in the paper, the software version of DDFW provided by the authors also

adds an additional noise parameter TL such that even if a satisfied same sign neighbouring clause is

found, with probability (1−TL) a random clause with penalty value greater than Winit is selected

instead. The UBCSAT implementation of DDFW that we use in our experiments includes this

additional behaviour, which we found necessary to avoid search stagnation. Because of the need

to search for the neighbouring clause with the highest penalty, the search steps in DDFW can take

longer than search steps in SAPS or PAWS. In practice, the difference is often not significant, and

DDFW can outperform those algorithms on numerous instances.

Ishtaiwi et al. followed up DDFW with DDFW+ [62], which added an adaptive mechanism

to DDFW to reduce the sensitivity of DDFW to the Winit parameter. The full text should be con-

sulted for specific details, but essentially when stagnation is detected (more than |V | steps without
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improvement) the algorithm alternates between a mechanism to increase the penalty values and a

mechanism to reset the penalty values.

The RLS algorithm by Pullan and Zhao [91] migrated the technique of clause resolution from

DPLL-based SAT algorithms to SLS methods successfully. RLS uses a DLS algorithm technique

that we do not explore in this dissertation, namely the dynamic addition of clauses during search;

however, RLS also uses clauses penalty values and a DLS-CP scoring function. Pullan and Zhao

addressed not only the issue of assigning penalties to the clauses in the problem instance, but also

assigning penalties to new learned clauses resulting from clause resolution.

Anbulagan et al. introduced the R+ family of algorithms [2] that included several R+ variants of

DLS-CP algorithms (e.g., R+SAPS, R+PAWS). The R+ variants do not actually change the under-

lying algorithm, but rather use a resolution-based pre-processor on the instance before attempting

to solve the instance.

The VW1 and VW2 algorithms [88] by Prestwich use variable weight properties instead of

clause penalty values and implement a smoothing mechanism for those variables. While VW1 and

VW2 are not DLS-CP algorithms per se, they incorporated DLS-CP smoothing mechanisms. We

will discuss VW2 in detail in Chapter 7.

Pham et al. introduced the GNOVELTY+ algorithm [87] that has demonstrated excellent perfor-

mance. In brief, GNOVELTY+ can be seen as a hybrid of the G2WSAT and ADAPTIVE NOVELTY+

algorithms with a DLS-CP scoring function that updates clause penalty values when there are no

promising variables. The penalty value update mechanism is very straightforward, with a simple

(additive) increment of unsatisfied clause penalty values and a SAPS-like probabilistic mechanism

to decrement (smooth) all clause penalty values.

The most recent DLS-CP algorithm of note that we are aware of is the IPAWS algorithm by

Thornton and Pham, which adds a sophisticated simulated annealing-based self-tuning mechanism

to control a maxThres parameter, where clause penalty values are decremented when the total num-

ber of false clauses and penalized clauses each are greater than maxThres (see [110] for details).

4.5 Conclusions
We made two significant contributions toward advancing the state-of-the-art for SLS algorithms

for SAT. First, we introduced SAPS, a new DLS-CP algorithm that dominates the performance

of its predecessor, the ESG algorithm, and is still amongst the state-of-the-art SLS algorithms for

SAT. Second, we provided a unique perspective of how SAPS and ESG behave, advancing our

understanding of DLS-CP algorithms. As with the UBCSAT project we described in Chapter 3,

SAPS has been very successful and has had a great impact on the academic community; it has

been well cited, has been well studied, has led to several new advancements and has been used

as a benchmark state-of-the-art algorithm in several publications, which we will discuss further in

Chapter 8.
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Chapter 5

Clause Penalties

What I’ve got’s full stock of thoughts and dreams that scatter.
You pull them all together, and how, I can’t explain.

— Hall & Oates. “You Make My Dreams”

In the previous chapter, we introduced the SCALING AND PROBABILISTIC SMOOTHING (SAPS)

algorithm, a member of the class of algorithms known as Dynamic Local Search with Clause

Penalties (DLS-CP). We made several interesting observations on the behaviour of SAPS, and in

this chapter we extend this work by exploring the behaviour of SAPS and other prominent DLS-CP

algorithms in more depth. Our goals for this chapter were to:

1. explore how clauses in an instance can be weighted to make the instance easier to solve;

2. follow up our study of clause penalties from Chapter 4 with a more comprehensive analysis

of their behaviour;

3. investigate the dynamic landscapes generated by DLS-CP algorithms and the role they play

in solving SAT instances; and

4. examine how clause penalty history affects the performance of DLS-CP algorithms.

This chapter is structured as follows. First, in Section 5.1, we motivate the algorithms and in-

stances we use in our experiments throughout this chapter. Next, in Section 5.2, we introduce the

concept of statically weighted instances and demonstrate the performance potential of SLS algo-

rithms on those instances. Then, in Section 5.3, we examine the dynamic properties of the clause

penalties during DLS-CP algorithm search trajectories. In Section 5.4, we combine the work from

Section 5.2 and Section 5.3 to explore if DLS-CP algorithms weight their instances to render them

easier to solve. Next, in Section 5.5, we examine how clause penalty history affects the performance
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Feature SAPS PAWS DDFW

Unsatisfied clause penalty Multiplication Addition Addition
update strategy ×α +1 +1 or +2

penalty Decay strategy Probabilistic Periodic Distributive
Smoothing Subtraction Subtraction

+(1−ρ) ·penalty −1 −1 or −2

Clause penalty domain Real Integer Integer

Initial clause penalty value 1 1 Winit

Allow sideways steps No with probability pflat with probability pflat

Tie-breaking Random Multiple Inclusion Multiple Inclusion

Random walks at local min with probability wp No No

Table 5.1: Algorithmic comparison of SAPS, PAWS and DDFW.

of DLS-CP algorithms. Then, in Section 5.6, we discuss related work. Finally, in Section 5.7, we

summarize our work.

5.1 Background
In this section we motivate our selection of algorithms and instances that we use throughout this

chapter. To study the behaviour of DLS-CP algorithms, and the behaviour of their clause penalty

values, we selected three prominent and representative algorithms: SAPS [61], the PURE ADDI-

TIVE WEIGHTING SCHEME (PAWS) [111] and the DIVIDE AND DISTRIBUTE FIXED WEIGHTS

(DDFW) algorithm [63]. We introduced SAPS in Section 4.2, and we described PAWS and

DDFW in Section 4.4. We use these state-of-the-art DLS-CP algorithms because each has a dif-

ferent clause penalty update mechanism, and most prominent DLS-CP algorithms use mechanisms

that are similar to one of these three algorithms. We summarize the differences between the three

algorithms in Table 5.1.

In this chapter we conduct experiments that require a non-penalty-based weighted SLS algo-

rithm. For those experiments we selected the prominent and state-of-the-art algorithms WEIGHTED

ADAPTIVE NOVELTY+ [51] and WEIGHTED G2WSAT [76]. We described the original (un-

weighted) ADAPTIVE NOVELTY+ and G2WSAT algorithms in Section 2.5. We note that both

algorithms use the score property to guide their search, which measures changes in the intrinsic

evaluation function. We briefly described how weighted variants are developed in Section 3.6. The

primary difference between the weighted and unweighted variants is that for weighted variants, the

weightedScore is used (instead of score) to select variables and to determine if a variable is promis-

ing. In addition, instead of selecting unsatisfied clauses uniformly at random, the probability of
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selecting an unsatisfied clause is proportional to its clause weight value.

For experiments in Section 5.4, we created a new algorithm we call GSAT WITH NO WORSEN-

ING STEPS (GSAT/NW). GSAT/NW behaves the same as GSAT except that it does not perform

any worsening steps and will terminate if it is in a strict local minimum. GSAT/NW is not very

effective and is of interest solely because it behaves like the greedy search in BREAKOUT-based

DLS-CP algorithms (i.e., BREAKOUT without clause penalty updates). WEIGHTED GSAT/NW is

a straightforward weighted implementation of GSAT/NW.

For the experiments in this chapter, we created a new instance set that we have named anp10m.

This set contains 1931 instances and includes all structured (non-random) instances available on

SATLIB where ADAPTIVE NOVELTY+ has a median run-length between 103 and 107 steps. We

selected these instances and this range to provide a reproducible and interesting set that includes a

wide range of instance types and hardness without being prohibitively difficult to provide a thorough

analysis. The majority of the instances are encodings of graph colouring problem instances, as

they are the most abundantly available, and include instances from flat and swgcp. There are 19

additional types of instances in the set, including those from ais, bw-large, logistics, ii and parity.

We study structured instances in this chapter because, in our preliminary experiments, we ob-

served some unusual and interesting behaviour for a small number of structured instances. The

behaviour we observed for the majority of structured instances was consistent with our observa-

tions for random instances, so we believe our general observations and conclusions hold for both

structured and random instances.

In our experiments we characterize behaviour over all instances in the set anp10m, but we also

study individual instances. We selected the instance flat125-94 as a representative instance from

the set anp10m. This instance was selected because it was the instance with median behaviour in

Figure 5.14 (a). For the figures in Section 5.3 that present results for all of the instances in anp10m,

we have identified where flat125-94 appears in the figure.

In this chapter, we perform experiments to better understand the general behaviour of DLS-CP

algorithms by measuring changes in their run-length performance. We do not attempt to compare

algorithms or claim superiority of one algorithm over another. We do not make any attempts to

optimize the parameter settings of the algorithms, and use default settings for all algorithms as de-

scribed in Appendix A. On the other hand, since we use the SAPS, PAWS, DDFW, ADAPTIVE

NOVELTY+ and G2WSAT algorithms throughout this chapter, it is useful to observe how the per-

formance of these algorithms compare on anp10m. We compared the run-length performance of

ADAPTIVE NOVELTY+ to the DLS-CP algorithms and present the results in Figure 5.1.

The most prominent feature of each of the plots is a cluster of instances for which ADAPTIVE

NOVELTY+ significantly outperforms the three DLS-CP algorithms. This cluster corresponds to the

swgcp instances. Other significant outliers where ADAPTIVE NOVELTY+ significantly outperforms

all of the DLS-CP algorithms include all instances from the sets bitadd and the sgi sets, by factors
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Figure 5.1: ADAPTIVE NOVELTY+ vs DLS-CP algorithms on anp10m (run-length).
(Each point corresponds to an instance in the set anp10m (1931 instances). Median
run-lengths were obtained from 100 independent runs per instance. All algorithms were
executed with default parameters as described in Appendix A. See Section C.5 for gen-
eral correlation plot details.)
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Figure 5.2: ADAPTIVE NOVELTY+ vs DLS-CP algorithms on anp10m (run-time). (Each
point corresponds to an instance in the set anp10m (1931 instances). Median run-times
obtained from 100 independent runs per instance. Execution environment: UBC arrow
cluster (Section C.1). All algorithms were executed with default parameters as described
in Appendix A. See Section C.5 for general correlation plot details.)
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ranging from 2 to over 10000. Conversely, the three DLS-CP algorithms all significantly outperform

ADAPTIVE NOVELTY+ on all the instances from the qg set by factors ranging from 5 to 400. SAPS

and PAWS outperformed ADAPTIVE NOVELTY+ on all instances from the ais set by factors ranging

from 7 to 70, and in Section 5.2 we study this further. SAPS outperformed ADAPTIVE NOVELTY+

on the ii instances, as did PAWS and DDFW with a few exceptions. SAPS performed poorly

on some instances from the clus-1200 instances, whereas PAWS performed very well on these

instances. DDFW performed poorly on instances from the bw-large and ferry sets.

As we discussed in Chapter 2, comparing algorithms by run-length performance alone can be

misleading. For additional perspective we also provide the results measured by run-time perfor-

mance in Figure 5.2. From these figures we observe that for instances where the DLS-CP algorithms

have better run-length performance than ADAPTIVE NOVELTY+, the difference in run-time perfor-

mance is less significant. This is because ADAPTIVE NOVELTY+ does not perform penalty updates,

and has less complex search steps. However, as we mentioned previously, in this chapter we are not

comparing the run-time performance of different algorithms. In the remaining experiments in this

chapter, we study the run-length performance of algorithms, and more importantly, the changes that

occur in the run-length performance of an algorithm.

In Figure 5.3, we perform the same comparison as in Figure 5.1 with G2WSAT (the other non-

DLS-CP algorithm used in this chapter). In Figure 5.4, we compare the three DLS-CP algorithms

to each other. The cluster of swgcp instances is still clearly visible in Figure 5.3 (b) when com-

paring G2WSAT and PAWS, but is less pronounced for SAPS and DDFW. Otherwise, all of the

outliers are the same as those previously observed. One important observation is that none of these

algorithms completely dominates any of the other algorithms on anp10m.

5.2 Weighted Instances
In Section 2.1, we briefly described the weighted MAX-SAT problem and in Section 3.6, we de-

scribed how weighted MAX-SAT instances add a clause weight property. Just as DLS-CP algo-

rithms typically use a dynamic penScore property, weighted MAX-SAT algorithms typically use a

weightedScore property. The significant difference between the two approaches is that the clause

penalty values are dynamic and change during the search, whereas the weight properties are static.

The weightedScore property measures changes in the weighted evaluation function, which is the

sum of the clause weight values for all unsatisfied clauses. Traditionally, in weighted MAX-SAT,

the instances are unsatisfiable and the clause weight values are used to determine the optimal solu-

tion. In this section, we introduce satisfiable weighted instances, where the weight values do not

determine the optimal solution, but instead help guide weighted algorithm variants to a solution.

By changing the evaluation function, clause weights also change the search landscape (as de-

scribed in Section 2.3). For a particular SAT instance, we refer to the search landscape defined by

the unweighted instance as the natural landscape and the search landscape of a weighted instance

68



10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

S
A

P
S

 [
st

ep
s]

G
2
WSAT [steps]

(a) SAPS

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

P
A

W
S

 [
st

ep
s]

G
2
WSAT [steps]

(b) PAWS

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

D
D

F
W

 [
st

ep
s]

G
2
WSAT [steps]

(c) DDFW

Figure 5.3: G2WSAT vs DLS-CP algorithms on anp10m. (Each point corresponds to an
instance in the set anp10m (1931 instances). Median run-lengths were obtained from
100 independent runs per instance. All algorithms were executed with default parameters
as described in Appendix A. See Section C.5 for general correlation plot details.)
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(b) SAPS vs DDFW
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Figure 5.4: SAPS vs PAWS vs DDFW on anp10m. (Each point corresponds to an instance
in the set anp10m (1931 instances). Median run-lengths were obtained from 100 in-
dependent runs per instance. All algorithms were executed with default parameters as
described in Appendix A. See Section C.5 for general correlation plot details.)
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executed with default parameters as described in Appendix A.)

as the warped landscape. We propose that if (on average) a weighted algorithm variant can solve

a weighted instance in fewer search steps than the corresponding unweighted instance, then the

weighted instance is easier and the warped landscape is easier to search.

We will now provide an example of how a weighted satisfiable instance can be easier than the

unweighted instance. We use the ais10 instance we described in Section 2.2. After studying the

behaviour of DLS-CP algorithms on the ais instances, we found that of the six clause types, clauses

that ensure each number occurs at least once were most frequently unsatisfied and, on average, had

correspondingly larger clause penalties. We refer to these ten clauses of the ais10 instance as the

problem clauses.

We changed the clause weights for the problem clauses of ais10 and measured the effect on

WEIGHTED ADAPTIVE NOVELTY+ and WEIGHTED G2WSAT. The results are presented in Fig-

ure 5.5. We observed a dramatic improvement in the run-length performance of both algorithms

when the clause weights were increased to a value of three or more. Since the critical weight value

for the problem clauses for these algorithms is three and it is very straightforward to increase the

weight of a clause by an integer factor by simply adding additional copies of the clause to the for-

mula, we generated a new instance, ais10-problem3, with two duplicates of each of the ten problem

clauses. We then compared the run-length performance of several algorithms from UBCSAT on

the instances ais10 and ais10-problem3. The results are presented in Table 5.2. We observed that
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Algorithm ais10 ais10-problem3 s.f.

NOVELTY+ 1 213 750 14 094 86.1
ADAPTIVE NOVELTY+ 1 260 040 15 261 82.6
R-NOVELTY+ 1 233 370 15 493 79.6
G2WSAT 144 195 6 621 21.8
NOVELTY++ 212 699 15 882 13.4
SAMD 632 624 50 930 12.4
ROTS 404 993 43 556 9.3
GWSAT 760 716 244 586 3.1
WALKSAT/SKC 271 210 171 700 1.6
HWSAT 866 298 561 448 1.5

PAWS 84 317 63 878 1.3
SAPS/NR 20 822 18 422 1.1
DDFW 708 348 639 538 1.1
SAPS 19 841 18 134 1.1
RSAPS 21 150 19 408 1.1

Table 5.2: SLS algorithm performance on ais10 vs ais10-problem3. Performance values
correspond to the median run-length in search steps from 1 000 runs. The speedup factor
(s.f.) is the ratio of the median run-lengths from the ais10-problem3 instance and the ais10
instance. Note that ais10-problem3 is same as the ais10 instance, with the exception that
the 10 problem clauses have been duplicated twice each, for a total of 20 additional clauses
(see text for description). All algorithm settings are their default values in UBCSAT 1.1.

in all cases the run-length performance of the algorithms improved on the modified instance.

After studying this ais example, we expected to observe similar behaviour for other instances.

We hypothesized that all instances would have problem clauses that, when identified, could be used

to re-weight the instance to make it easier to solve. We also hypothesized that those problem clauses

could be found by examining the clause behaviour of DLS-CP algorithms, such as SAPS, on the

instance and identifying clauses that were frequently unsatisfied. However, when we investigated

further, we found that this phenomenon appears to be a rare. For most instances, identifying problem

clauses and a weighting scheme that make the instance easier is very difficult. Any performance

differences that occur on the weighted instance are often minor and not nearly as significant as these

results would suggest. In Section 5.3, we investigate identifying problem clauses, and in Section 5.4

we examine how weighting schemes can affect instance hardness.

This behaviour is observed on the ais instances because they contain what Selman and Kautz

describe as asymmetries, a characteristic they observed in crafted gerrymandered graph colouring

instances [98]. The gerrymandered instances were so-named because specific clauses are frequently
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Figure 5.6: Typical clause penalty behaviour throughout a run of SAPS. A clause penalty
value over time throughout a single run of SAPS on the instance flat125-94. (The clause
selected had the median clause penalty variance for this run. The run selected was the
median run from 25 independent runs. All algorithms were executed with default param-
eters as described in Appendix A.)

unsatisfied because they are often out-voted by other clauses. In the ais instances, the asymmetries

occur because there are several clauses that can restrict a number from appearing in a position,

whereas there is only one clause (i.e., a problem clause) requiring that the number appear in at least

one position. While the ais instances were not gerrymandered, the asymmetries resulting from the

encoding has the same effect on the hardness of the instance. Our results suggest that encodings

from other domains to SAT can avoid undesired asymmetries and become easier to solve by adding

duplicate clauses or alternatively weighting clauses.

5.3 Clause Penalty Behaviour
In this section we examine the behaviour of a single clause penalty throughout a single search run,

and expand our study until eventually we examine how all clause penalties behave across multiple

independent runs on different instances and for multiple DLS-CP algorithms.

To properly compare the clause penalties from different algorithms, and between different runs

of the same algorithm, we normalize our clause penalties. The clause penalties are normalized in

such a way that a clause penalty that is not further penalized after initialization has a value of one.

Because DDFW can decrease the penalty values of individual clauses, the normalized penalties can

have values less than one.

Individual clause penalties can change frequently throughout the search trajectory of a DLS-

CP algorithm. To demonstrate this behaviour we present, in Figure 5.6, a plot illustrating how a

typical clause penalty changes in SAPS over time throughout a search trajectory. For this typical
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instance from our anp10m instance set, the individual clause selected had the median variance in

penalty value in the run with the median run-length, suggesting this behaviour is representative.

Clause penalties can rapidly increase and decrease numerous times throughout a search trajectory.

We also observe that the clause penalty behaviour is typically stationary (i.e., its general pattern

of behaviour is no different near the end of the search than the middle). The duration for which

the clause penalties have a large value before they are decreased (or smoothed) is specific to the

algorithm parameters, but the fast decreases seen in the figure are very typical. The clause penalties

in PAWS and DDFW are integers and exhibit more discrete changes in penalty value, but their

general pattern of behaviour is very similar. We suggest that as the search progresses, individual

clauses become relevant locally and then become less relevant in other areas of the search space.

We explore this idea in more detail later in this chapter.

In Figure 5.6, we examined the behaviour of a single clause during a single run, where the clause

selected had the median variance in a particular run. We would expect that not all clauses have the

same amount of variation throughout a run. To study this effect quantitatively, we measured the

variation of all the clause penalties over a run. In Figure 5.7, we show distributions of the coefficient

of variation of individual clause penalties over the run. We observe from the figure that some clauses

exhibit a large variation in their clause penalty value, whereas others show very little.

After examining the variance of clauses over a run on flat125-94, we now aggregate over

anp10m. For each instance, we measured the coefficient of variation for each clause penalty over

a run and determined the mean value of those variations. In Figure 5.8, we show the cumulative

distribution of those means for all instances in the set anp10m. This measure is an indication of

how much fluctuation there is in the clause penalties of an instance, and this figure shows the dis-

tribution of that fluctuation. In Figure 5.8, we observe that across anp10m there is a reasonably

flat distribution of fluctuation, and each of the three algorithms have similar ranges of values. The

amount of fluctuation is loosely correlated with instance hardness, where longer runs tend to have

more variation. However, as per our previous observation on stationary clause penalty behaviour, it

would seem that other instance characteristics have a larger effect than the length of the search.

The results presented so far on clause penalty behaviour are not very surprising, but they help es-

tablish that individual clause penalties can vary considerably throughout search, with some clauses

varying more than others, and some instances fluctuating more than others. We now turn to the

actual clause penalty values, and examine snapshots of clause penalty values at a particular moment

in time during a search trajectory. In Chapter 4, we observed that for a given instance the distri-

bution of the clause penalties stabilized to a specific Clause Penalty value Distribution (CPD) (see

Section 4.3). We hypothesized that the performance of an algorithm on a particular instance was

determined largely by the CPD. When the SAPS scaling and smoothing parameters were changed,

the change in the performance of the algorithm was greatest when there was a change in the CPD.

Conversely, little difference was observed in algorithm performance when two different algorithm
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Figure 5.7: Clause penalty variation on flat125-94. For each clause in flat125-94 (1405
clauses), we measure the cv (coefficient of variation) of the clause penalty value over all
search steps in a run. (The run selected was the median run from independent 25 runs.
In Figure 5.7 (a) the clause featured in Figure 5.6 is highlighted. All algorithms were
executed with default parameters as described in Appendix A.)
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Figure 5.8: Mean clause penalty variation per instance on anp10m. For each instance in
anp10m (1931 instances), we measure the mean of the cv of the clause penalty values
as described in Figure 5.7. (The instance flat125-94 from Figure 5.7 is highlighted. All
algorithms were executed with default parameters as described in Appendix A.)
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parameter settings produced a similar CPD (see Figure 4.7). The study of CPDs is of interest from

an algorithm development perspective. If the CPD is the dominant factor in algorithm performance,

then more efficient methods of achieving similar distributions can be explored. In this chapter, our

focus is on what conclusions we can make from studying CPDs, instead of how the CPDs affect

algorithm performance.

In Section 4.3, we compared the CPDs from different configurations of SAPS on the same

instance, and we measured the clause penalty values after a fixed number of search steps for a

meaningful comparison. In this section, we measure clause penalty values from different algorithms

on multiple instances, so instead of measuring the penalty values after some arbitrary number of

search steps, we measure them at the end of a search trajectory (i.e., the final clause penalties). We

measured the final clause penalties of SAPS, PAWS and DDFW from four different runs on the

same instance, and present the results in Figure 5.9. From these figures we observe that the final

CPDs do somewhat stabilize to a fixed distribution shape. We note that the vertical axis in Figure 5.9

and that over half of the clause penalties are either equal to one (unchanged) or very close to one.

This observation is especially true for the PAWS algorithm, due to the aggressive decay mechanism

in the default parameter settings.

The clause penalties are heavily dependent on the instance, and in Figure 5.10 we explore the

CPDs for SAPS on three different instances from anp10m (ais10, par8-1-c and qg1-07). The scales

on the horizontal and vertical axes of these figures are different for the three instances, illustrating

the difference in the shapes of the distributions. The distribution on instance par8-1-c shows that

most of the clauses have been penalized and that the largest penalties approach values of 8, whereas

the distribution on instance qg1-07 shows only a small fraction of the clauses have been penalized

and the largest penalties approach values closer to 25. From these observations, and observations in

our previous work, we suggest that the CPDs are very similar between runs, and are specific to the

instance, the algorithm, and the algorithm settings.

In all instances we examined (not just those presented in Figure 5.9 and Figure 5.10) we ob-

served that the CPDs seem to be qualitatively very similar between runs. To quantitatively sum-

marize the distances between runs across anp10m, we present the data in Figure 5.11, where we

measure the Kolmogorov-Smirnov distance1 between the clause penalty distributions from the me-

dian and the longest runs. For PAWS, and to a lesser extent DDFW, we observe that most of the

instances do tend to have final CPDs that are close, although there are some instances where the

distance between the median and longest CPDs are significant. For SAPS, we observe that the

distribution is flatter with more variation in the distances between CPDs. The distributions in Fig-

ure 5.11 suggest that it is difficult to quantitatively substantiate our qualitative observations for all

of our algorithms and instances.

1We measure the distance between CPDs using the Kolmogorov-Smirnov distance function because it can be applied
to cumulative distributions across different distribution sizes, as opposed to the Kullback Leibler divergence measure
which cannot.
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Figure 5.9: Final clause penalty distribution for flat125-94. For each clause in flat125-94
(1405 clauses), we measure the final clause penalty value. Clause penalty distributions
from four runs are shown, corresponding to the q0.24, median, q0.76 and longest runs from
an experiment with 25 runs. (The distribution from the longest run is highlighted. All
algorithms were executed with default parameters as described in Appendix A. Clause
penalty values were normalized, i.e., the penalty value of an always satisfied clause is
one.)
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Figure 5.10: Additional SAPS final clause penalty distributions. Note that the axes ranges
on each plot are different. Final clause penalties were collected from runs of SAPS
on ais10 (3151 clauses), par8-1-c (254 clauses) and qg1-07 (68083 clauses). (see Fig-
ure 5.9 for details.)
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Figure 5.11: The distance between final CPDs from two runs. For each instance in anp10m
(1931 instances), we measure Kolmogorov-Smirnov distance between two CPDs (as
described in Figure 5.9). (The runs selected were the median and the longest runs from
25 independent runs. The value corresponding to the instance flat125-94 is highlighted.
All algorithms were executed with default parameters as described in Appendix A.)
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By observing these CPDs, we begin to see the larger picture of how clause penalties behave

during search. At any given time during search there are a proportion of clauses that have been

penalized more than the rest of the clauses. This could suggest that there are specific clauses that

are problematic for instances, and that the number of them and the severity of how problematic they

are is specific to the instance.

We have presented CPDs as cumulative distributions, abstracting away the values of individual

clauses. We now turn our attention to the clause penalty values of individual clauses. To test for

problem clauses, we first plot the final clause penalty values of one run against another run. In

Figure 5.12, we observe that for most clauses there is a weak correlation between the final clause

penalties of the two runs. The Pearson correlation coefficients between runs for SAPS, PAWS and

DDFW are 0.53, 0.11 and 0.28. There are a few outlying clauses that are correlated, most of the fi-

nal clause penalties show weak correlation. The lack of significant correlation shown in Figure 5.12

suggests that for these two particular runs on this particular instance there are no problem clauses,

which does not support our hypothesis.

In Figure 5.6, we observed that throughout a search trajectory, clauses with high penalty val-

ues were quickly reduced. This suggests that sampling the clause penalties at any single point in

time may not adequately capture problem clause behaviour. To better identify problem clauses, we

measured the mean penalty value for each clause over a complete search trajectory. We reproduced

our methodology used to generate the figures from Figure 5.12 using the mean clause penalty over

a run instead of the final clause penalty value, and present the results in Figure 5.13. The Pear-

son correlation coefficients for SAPS, PAWS and DDFW are 0.94, 0.82 and 0.90, as shown in

Figure 5.13. With the mean clause penalties we observe a much stronger correlation between the

individual clause penalties, which suggests that DLS-CP algorithms can indeed identify problem

clauses.

The results presented in Figure 5.12 indicate a low correlation in the final clause penalty val-

ues between two different runs, while Figure 5.13 suggests a very strong correlation between the

mean clause penalty values from these same two runs. To measure this behaviour across anp10m,

we measure the Pearson correlation coefficient2 between the final clause penalty values from two

runs (median and longest run) and the mean clause penalty values from those same two runs. In

Figure 5.14, we observe that there is a much stronger correlation for the mean clause penalties than

for the final clause penalties. The test instance (flat125-94) we have used throughout this section

is the instance with median change in the correlation coefficient between the final and mean clause

penalty values for SAPS. In other words, half of the instances in the set anp10m showed a stronger

change in the correlation between the median and final clause penalties, whereas the other half did

not.
2For our analysis we generally prefer the Spearman rank correlation coefficient (ρ) over the Pearson correlation

coefficient, but the ρ measure is problematic when there are multiple samples with equivalent values, such as in PAWS
and DDFW final clause penalty values.
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(b) PAWS
r = 0.11
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(c) DDFW
r = 0.28

Figure 5.12: Final penalty values from two runs on flat125-94. For each clause in flat125-
94 (1405 clauses), we measure the final clause penalty value for two independent runs.
(Clauses with identical final penalty values for both runs are hidden (multiplicity). The
runs selected were the median and the longest runs from 25 independent runs. The
Pearson correlation coefficient (r) is shown for each data set above. All algorithms
were executed with default parameters as described in Appendix A. Clause penalty
values were normalized, i.e., the penalty value of an always satisfied clause is one.)
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r = 0.94
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(b) PAWS
r = 0.82
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(c) DDFW
r = 0.90

Figure 5.13: Mean penalty values from two runs on flat125-94. For each clause in flat125-
94 (1405 clauses), we measure the mean clause penalty value over all search steps
in two independent runs. (The runs selected were the median and the longest runs
from 25 independent runs. The Pearson correlation coefficient (r) is shown for each
data set above. All algorithms were executed with default parameters as described
in Appendix A. Clause penalty values were normalized, i.e., the penalty value of an
always satisfied clause is one.)
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Figure 5.14: Correlation of penalty values from two runs: mean vs final. For each instance
in anp10m (1931 instances), we measure the Pearson correlation coefficient of the final
clause penalty values from two runs (as described in Figure 5.12) and the mean clause
penalty values from two runs (as described in Figure 5.13). (The value corresponding
to the instance flat125-94 is highlighted.)
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(a) SAPS and PAWS
r = 0.92
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(b) SAPS and DDFW
r = 0.91
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Figure 5.15: Mean penalty values from two different algorithms on flat125-94. For each
clause in flat125-94 (1405 clauses), we measure the mean clause penalty value over all
search steps in runs of two different algorithms. (The runs selected for each algorithm
were longest run from 25 independent runs. The Pearson correlation coefficient (r) is
shown for each data set above. All algorithms were executed with default parameters
as described in Appendix A. Clause penalty values were normalized, i.e., the penalty
value of an always satisfied clause is one.)

85



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n
 o

f 
In

s
ta

n
c
e
s

Pearson Correlation Coefficient

(a) SAPS and PAWS
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(c) PAWS and DDFW

Figure 5.16: Correlation of mean penalty values from two algorithms on anp10m. For
each instance in anp10m (1931 instances), we measure the Pearson correlation coef-
ficient of the mean clause penalty values from runs of two different algorithms (as
described in Figure 5.15). (The values from Figure 5.15 corresponding to the instance
flat125-94 are highlighted.)
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We have now seen evidence that for two different runs of the same algorithm there is a strong

correlation between the mean clause penalty values. This suggests the presence of problem clauses,

where the frequently penalized clauses are consistent from run to run. To explore whether or not

two different algorithms contain the same problem clauses, we measured the mean clause penalties

from a run (the longest run from 25 runs) on two different algorithms and measured the Pearson

correlation coefficient between those penalties. We repeated this for all instances in anp10m and

present the distribution of those correlation coefficients in Figure 5.16. In this figure, we observe

that there are many instances with a very high correlation in the mean clause penalties between two

different algorithms. This final piece of evidence strongly supports our hypothesis that instances

have problem clauses and that DLS-CP algorithms are identifying those clauses by penalizing them

more frequently.

5.4 Warped Landscapes
With DLS-CP algorithms for SAT, the penalized search landscape of a SAT instance is continuously

warped throughout the search trajectory. The landscape changes because each clause is assigned

a dynamic penalty value, which affects the evaluation function, and thus changes the height of

points in the search space. This process is typically repeated numerous times throughout the search,

warping the landscape as it progresses.

It has been suggested that the success of DLS-CP algorithms is a result of the fact that the clause

penalties represent accumulated ’learned’ knowledge about the search space [30]. In particular,

the hypothesis that the resulting warped landscape will be easier to search than the original space

appears to be widely accepted, even though there is little evidence to support it. Often, this reflects

back to a popular analogy that a DLS-CP algorithm ‘fills in the holes’ (i.e., the local minima),

of a given search landscape. To investigate the validity of this proposed explanation, we look at

the hardness of the landscapes generated by DLS-CP algorithms. We argue that if the warped

landscapes generated by the DLS-CP algorithms are indeed easier to search, then the algorithms are

warping the landscapes in an intelligent way. Moreover, this is a critical factor in explaining the

efficiency of DLS-CP algorithms.

To study these warped landscapes, we generate (statically) weighted instances, where the clause

weights are taken directly from the clause penalties of the DLS-CP algorithm. We then analyze

these weighted instances to determine if the corresponding warped landscape is indeed easier to

search.

A DLS-CP algorithm starts with the natural landscape and ends with the warped landscape that

was in place when the solution to the instance was found. Because this final landscape helped

guide the algorithm to the final solution, we look at the hardness of these final landscapes. If the

hypothesis that the algorithm is learning as it searches is true, then this final warped landscape will

encapsulate all of the information the algorithm had learned when it found the solution.
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Figure 5.17: WEIGHTED ADAPTIVE NOVELTY+: natural vs warped landscapes (final
penalty values). For each instance in anp10m (1931 instances), we measure the run-
length performance of WEIGHTED ADAPTIVE NOVELTY+ on the original instance
(natural landscape) and nine weighted instances (warped by DLS-CP algorithms). (The
weights for the nine weighted instances were obtained from the final clause penalty
values from nine runs. The nine runs correspond to the (q0.10,q0.20, . . .q0.90) runs from
100 independent runs. Median run-lengths were obtained from 100 independent runs
per instance. All algorithms were executed with default parameters as described in
Appendix A. See Section C.5 for general correlation plot details.)
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Figure 5.18: WEIGHTED G2WSAT: natural vs warped landscapes (final penalty values).
The run-length performance of WEIGHTED G2WSAT is measured, otherwise see Fig-
ure 5.17.
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In Figure 5.17 and Figure 5.18, we present the results from running WEIGHTED ADAPTIVE

NOVELTY+ and WEIGHTED G2WSAT on the weighted instances generated from the final clause

penalties from our three DLS-CP algorithms. As demonstrated in Section 5.3, the final clause

penalties are often uncorrelated, so we repeated each experiment nine times, taking the final clause

penalties from a different run each time. In Figure 5.17 and Figure 5.18 we observe that, in gen-

eral, the final DLS-CP algorithm-warped landscapes are actually harder than the natural landscapes;

however, there are exceptions. In Section 5.2, we demonstrated that the ais instances become signif-

icantly easier for WEIGHTED ADAPTIVE NOVELTY+ when there are larger weights assigned to the

identified problem clauses. While searching, the DLS-CP algorithms seem to quickly adopt high

penalty values for the problem clauses, and as such, the resulting landscape becomes significantly

easier. In addition to all of the ais instances, this phenomenon occurs for all of the qg instances

and for three quarters of the ii instances. Together, those three instance types account for all of the

statistically significant outliers seen by all three algorithms. The results of WEIGHTED G2WSAT

on PAWS- and DDFW-warped landscapes were very similar to those of WEIGHTED ADAPTIVE

NOVELTY+. However, WEIGHTED G2WSAT on the SAPS-warped landscapes also produced sta-

tistically significant outliers on two of the bw-large instances, approximately half of the runs on

parity instances, less 7% of the runs on the swgcp instances and less than 3% of the runs on the flat

instances. These exceptions do not detract from our original observation that the warped landscapes

are typically harder. From this evidence we conclude that making the landscapes easier cannot be

an essential ingredient in the success of DLS-CP algorithms, since it only occurs under rare circum-

stances.

To further explore this idea of making the landscapes easier, we will speculate about the effect

of run-length on the resulting warped landscape. If a DLS-CP algorithm is learning as it progresses,

one could conclude that the longer the algorithm ran, the easier the landscape should become. Con-

versely, one could argue that shorter runs might have easier landscapes because those landscapes

helped to find a solution faster. To test if there is any correlation between the length of the SAPS

run and the hardness of its landscape, we compared the performance of WEIGHTED ADAPTIVE

NOVELTY+ and WEIGHTED G2WSAT on SAPS-generated landscapes from short runs and long

runs. We present the results in Figure 5.19, where we observe that there is no clear bias for shorter

runs to be easier or harder than longer runs. Equivalent observations were also made for PAWS and

DDFW.

We have presented evidence that, for most instances, the final SAPS landscapes do not make the

instance easier than the natural landscape. While we have demonstrated that the landscapes were not

becoming easier in a global sense, we have not considered the possibility that these landscapes were

becoming easier in a local sense. To explore this concept we introduce the concept of a solution

basin.

If a run of a local search algorithm is fortuitously initialized at an actual solution of the given
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(a) WEIGHTED ADAPTIVE NOVELTY+

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8S

A
P

S
 W

ar
p
ed

 L
an

d
sc

ap
e 

q
0

.9
0
 [

st
ep

s]

SAPS Warped Landscape q0.10 [steps]

(b) WEIGHTED G2WSAT

Figure 5.19: Instances weighted by penalties from short vs long runs. For each instance
in anp10m (1931 instances), we measure the run-length performance of WEIGHTED

ADAPTIVE NOVELTY+ on two SAPS-weighted instances. (The weights for the
weighted instances were obtained from the final clause penalty values from the q0.10
and q0.90 runs from 100 independent runs. Median run-lengths were obtained from 100
independent runs per instance. All algorithms were executed with default parameters as
described in Appendix A. See Section C.5 for general correlation plot details.)

problem instance, then the algorithm will terminate immediately. When an algorithm is close to a

solution, it can be drawn directly toward the solution with a very high probability. However, if the

algorithm is initialized too far from the solution it will be pulled to numerous directions and there

is a much lower probability that it will proceed directly to a solution. We refer to this phenomenon

as the probabilistic solution basin of attraction for an instance or just solution basin for short.

We suggest that if one instance (or by extension, landscape) is easier than another, one reason

could very well be that it has a larger (or wider) solution basin. Although many practical SAT

instances have multiple solutions, in this section we only study instances that have a single solu-

tion, and therefore a single basin. This will make our analysis easier to interpret and avoid the

confusion of competing solution basins. Our solution basins are not just instance specific, but are

also algorithm specific and depend heavily on the greediness (or intensification) of the algorithm.

For example, the URWALK algorithm has a much narrower basin for an instance than a greedier

algorithm such as WALKSAT/SKC.

To measure the size and shape of a solution basin on a single solution instance, we use the
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(c) DDFW

Figure 5.20: Probabilistic basins of attraction for bw-large-a. Each plot shows the prob-
abilistic basin of attraction corresponding to the natural (not weighted) instance high-
lighted in addition to four probabilistic basins of attraction corresponding to weighted
instances from the q0.30, median, q0.70 and q0.90 runs from 100 runs of the DLS-CP algo-
rithms, as described in Figure 5.17. The fraction of successful WEIGHTED GSAT/NW
runs for a Hamming distance d is determined by measuring the number of successful
runs from 1000 runs of the WEIGHTED GSAT/NW algorithm when it is randomly ini-
tialized with a variable assignment that has d variables differing from the solution to the
instance. The d variables are independently determined for each run, and the Hamming
distance is normalized by the number of variables in the instance (|V |). All algorithms
were executed with default parameters as described in Appendix A.
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Figure 5.21: Probabilistic basins of attraction for par8-5. The instance is par8-5, otherwise
see Figure 5.20.
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GSAT/NW algorithm, where no worsening steps are allowed. The GSAT/NW algorithm is ideal

for this analysis because it mimics the behaviour of our three DLS-CP algorithms on a fixed land-

scape. We empirically sample the probability that the GSAT/NW algorithm will reach the solution

from a given initial Hamming distance from the solution. This is a probabilistic sample of the un-

derlying basin of attraction for this specific algorithm. In Figure 5.20 and Figure 5.21, we present

the GSAT/NW solution basins for three different algorithms on two different single solution in-

stances from anp10m. From this figure we observe the general shape of the GSAT/NW solution

basins is what we would expect: when very close to the solution, nearly all runs are successful, and

the proportion of successful runs drops as the Hamming distance increases. The more interesting

observation from Figure 5.20 is that the basins obtained from the warped landscapes narrow rather

than widen. This provides conclusive evidence that the landscapes do not make the instance easier

in a local sense.

The work presented in the section so far has been based on the final clause penalties from search

trajectories of DLS-CP algorithms. However, in Section 5.3, we saw that the mean clause penalties

between runs were more strongly correlated than the final clause penalties, which we interpreted as

evidence for the existence of problem clauses.

In Figure 5.22 and Figure 5.23 we present the results from running WEIGHTED ADAPTIVE

NOVELTY+ and WEIGHTED G2WSAT on the weighted instances generated by taking the mean

clause penalties from a run of our DLS-CP algorithms. As can be seen from the figure, the results

are very similar to those in Figure 5.17 and Figure 5.18, where most of these new weighted instances

are harder than the ones generated from final clause penalties. These weighted instances are arti-

ficial, in that the landscapes of these instances are essentially an aggregate of numerous individual

landscapes. The individual DLS-CP algorithms never actually encounter these mean landscapes

during their search, so they cannot exploit these landscape changes. However, this experiment

demonstrates that, in practice, identifying the problem clauses observed by DLS-CP algorithms and

weighting the instance does not make the instance easier.

Overall, based on our empirical results, there is no evidence to support the hypothesis that

the warped landscapes generated by DLS-CP algorithms are easier to search for any reasonably

powerful SLS algorithm. Hence, the clause penalties determined over successful runs of a DLS-CP

algorithm do not reflect any general knowledge on how to solve the given problem instance more

efficiently.

5.5 Long-Term Memory
In Chapter 2, we explained how in the SLS literature, the duration or scope of historical information

maintained by an SLS algorithm is expressed in terms of memory in the traditional use of the word

(e.g., short-term and long-term memory). In this section, we examine how long-term memory can

affect the performance of DLS-CP algorithms. In Section 4.3, we established that the penalty values

94



10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8S

A
P

S
 W

ar
p

ed
 L

an
d

sc
ap

e 
(m

ea
n

) 
[s

te
p

s]

Natural Landscape [steps]

(a) SAPS

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8P

A
W

S
 W

ar
p

ed
 L

an
d

sc
ap

e 
(m

ea
n

) 
[s

te
p

s]

Natural Landscape [steps]

(b) PAWS

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

D
D

F
W

 W
ar

p
ed

 L
an

d
sc

ap
e 

(m
ea

n
) 

[s
te

p
s]

Natural Landscape [steps]

(c) DDFW

Figure 5.22: WEIGHTED ADAPTIVE NOVELTY+: natural vs warped landscapes (mean
penalty values). For each instance in anp10m (1931 instances), we measure the run-
length performance of WEIGHTED ADAPTIVE NOVELTY+ on the original instance
(natural landscape) and a weighted instances (warped by a DLS-CP algorithm). (The
weights for the weighted instances were obtained from the mean clause penalty values
over the longest run from 25 independent runs. Median run-lengths were obtained from
100 independent runs per instance. All algorithms were executed with default parame-
ters as described in Appendix A. See Section C.5 for general correlation plot details.)
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Figure 5.23: WEIGHTED G2WSAT: natural vs warped landscapes (mean penalty val-
ues). The run-length performance of WEIGHTED G2WSAT is measured, otherwise see
Figure 5.22.
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of SAPS can capture very long-term memory, since the smoothing never completely erases any of

the past behaviour. Conversely, when PAWS decrements its penalty values, it is truly erasing past

history. It is more difficult to characterize DDFW in such a manner, but we expect that it can retain

information much longer than PAWS.

In Section 5.4, we examined how the non-DLS-CP algorithms, WEIGHTED G2WSAT and

WEIGHTED ADAPTIVE NOVELTY+, performed on warped landscapes generated by DLS-CP algo-

rithms. We observed that for most instances these landscapes were harder and no advantage could

be achieved by searching the warped landscapes instead of the natural landscapes. While we have

demonstrated that the non-DLS-CP algorithms do not typically benefit from this extra information,

the question arises whether DLS-CP algorithms themselves could.

To explore this question, we developed +CARRYOVER variants. a +CARRYOVER variant of a

DLS-CP algorithm retains all of the clause penalty values between successive runs and essentially

extends the long-term memory of the algorithm. The runs of the +CARRYOVER variants are not

independent, and in practice all that occurs between successive runs is that after a solution is found

the variable assignment is re-initialized to a random assignment.

In Figure 5.24, we present the results of these new variants on anp10m. For most instances there

is no statistically significant difference between the run-length performance of the +CARRYOVER

variants when compared to the original algorithm. However, there are significant outliers for all

three variants, and DDFW+CARRYOVER has the most. The run-length performance of all three

+CARRYOVER variants was better on approximately half of the inductive inference ii instances,

especially for DDFW+CARRYOVER. The performance improvement for both SAPS+CARRYOVER

and DDFW+CARRYOVER on one of the bitadd instances was very significant. The performance of

both SAPS+CARRYOVER and PAWS+CARRYOVER was better on a few of the flat instances. For

DDFW+CARRYOVER the performance was worse on a few instances, the most significant being

one of the gcp instances, all of the instances from the bw-large set, and one of the ii instances. Aside

from these few exceptions, it would seem that extending the long-term memory is not helping for

DLS-CP algorithms. These results are not overly surprising if we recall the behaviour of individual

clause penalties demonstrated in Figure 5.6, where we saw that clause penalties are smoothed back

down very quickly. This further suggests that clause penalties in DLS-CP algorithms are important

locally, but not globally.

We have demonstrated that extending long-term memory does not improve the performance of

a DLS-CP algorithm on most instances. We now explore what happens if the algorithm’s long-term

memory is reduced. To further study the effects of long-term memory on DLS-CP algorithms, we

developed +AMNESIA variants of our DLS-CP algorithms. An +AMNESIA variant of a DLS-CP

algorithm will periodically reset all of the clause penalties back to their initial values (i.e., they will

‘forget’ all of the clause penalty information they have learned). Conceptually and in practice, an

+AMNESIA variant simply performs periodic restarts, with the exception that the current variable
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Figure 5.24: Original vs +CARRYOVER variants on anp10m. (Each point corresponds to
an instance in the set anp10m (1931 instances). Median run-lengths were obtained
from 100 independent runs per instance. All algorithms were executed with default
parameters as described in Appendix A. See Section C.5 for general correlation plot
details.)
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assignment is not changed when the restart occurs. +AMNESIA variants can also be thought of as

algorithms with very aggressive (complete) periodic smoothing. We developed these variants to

demonstrate that long-term memory does not play a critical role in the performance of current state-

of-the-art DLS-CP algorithms. If long term memory were important to the success of the algorithm,

then the performance of +AMNESIA variants should be substantially poorer than the original DLS-

CP algorithm.

When implementing an +AMNESIA variant of a DLS-CP algorithm, we must establish the dura-

tion of the long-term memory (i.e., the number of search steps that occur between periodic resets).

A short duration may cripple the algorithm to the point that it cannot escape local minima. A long

duration may not substantively affect the algorithm. We selected two durations of 3 · |V | and 10 · |V |
search steps where |V | is the number of variables in the instance. The choice of 3 · |V | was chosen

to be consistent with the restart mechanism in SCHÖNING’S ALGORITHM [94], and the 10 · |V |
parameter was arbitrarily selected for comparison.

In Figure 5.25, we present the results of our experiment with a duration of 3 · |V |. For a large

number of the instances in anp10m the amnesia had no effect or marginally improved the perfor-

mance of the algorithm. Since the default parameter setting of the PAWS algorithm has aggressive

smoothing, the amnesia did not affect it significantly. SAPS+AMNESIA performed poorly on a few

statistically significant outliers, including all of the parity and qg instances, two of the bitadd in-

stances, and a sixth of the ii instances. DDFW+AMNESIA was significantly worse on a quarter of

the instances. This suggests that DDFW could be more reliant on long term memory, more sensitive

to smoothing schedules than SAPS and PAWS, or that it requires more search steps to penalize the

clauses necessary to escape from local minima. We increased the duration to 10 · |V | and present

the results in Figure 5.26, where the performance of the DDFW+AMNESIA significantly improved.

However, there were still many significant outlier instances where DDFW+AMNESIA performed

worse than regular DDFW, including most of the instances from the bitadd, ais, clus-1200, ii, lo-

gistics, parity and qg sets.

In this section we have demonstrated that while DLS-CP algorithms can have long-term memory

and accumulate large amounts of information on the instance and the search landscape, typically

this information is not helpful to the algorithm during the search, and is not the primary mechanism

responsible for how DLS-CP algorithms find solutions effectively.

5.6 Related Work
The literature on search landscapes for combinatorial problems is quite extensive, with Stadler’s

work [106] often cited, and a thorough study available in the book by Hoos and Stützle [55: ch. 5].

In Section 5.4, we introduced our notion of a probabilistic solution basin of attraction, which is

closely related to the concept of a solution basin mentioned by Cheeseman et al. [15] and explored

in depth by Flamm et al. [27]. Prestwich and Roli [90] independently developed a conceptual model
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Figure 5.25: Original vs +AMNESIA variants (3 · |V |) on anp10m. (Each point corresponds
to an instance in the set anp10m (1931 instances). Median run-lengths were obtained
from 100 independent runs per instance. All algorithms were executed with default
parameters as described in Appendix A. See Section C.5 for general correlation plot
details.)
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Figure 5.26: Original vs +AMNESIA variants (10 · |V |) on anp10m. (Each point corresponds
to an instance in the set anp10m (1931 instances). Median run-lengths were obtained
from 100 independent runs per instance. All algorithms were executed with default
parameters as described in Appendix A. See Section C.5 for general correlation plot
details.)
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of solution basins very similar to our approach. They used solution basins to measure the change in

hardness that occurs when instances are modified with symmetry breaking.

We became aware of Ferreira Jr. and Thornton’s PAWS WITH USUAL SUSPECTS (PAWS+US)

algorithm variant after we had conducted the experiments in this chapter. The PAWS+US algo-

rithm is given additional information a priori about which clauses are so-called usual suspects, an

analogous concept to the problem clauses we describe throughout this chapter. The PAWS+US

algorithm treats the usual suspect clauses differently by increasing their penalty value at the ini-

tialization stage and increasing the clauses by a greater amount during the penalty update stage.

Despite their methodology being different from our own, they observed similar behaviour, in that

including extra clause information only significantly improved performance on a small number of

instances. In their experiments, the bw-large instances were the most significant. Interestingly, they

included the ais10 instance we studied in Section 5.2 in their experiments, but they did not observe

any improvement in performance on those algorithms by identifying the usual suspect clauses.

5.7 Conclusions
The primary objective of this chapter was to explore how DLS-CP algorithms solve SAT instances

and to answer the question of why they are effective. Based on our experimental results, we can

rule out a number of plausible hypotheses and arrive at a somewhat surprising explanation.

In Section 5.4, we observed that for the vast majority of instances, the warped landscapes created

by DLS-CP algorithms are no easier to search than the unweighted (natural) landscapes for the re-

spective problem instances. Even if the DLS-CP algorithms we studied could search on aggregated

landscapes reflecting the cumulative clause penalty information learned throughout the search, it

appears that for most types of SAT instances, they would likely not benefit from this information.

We have established that in practice, for most instances, a DLS-CP algorithm does not achieve suc-

cess by manipulating its clause penalties in an intelligent manner. We observed that even when a

DLS-CP algorithm was very close to a solution of a given problem instance, it was not the clause

penalties themselves that led the algorithm to the solution. It is clear that while clause penalties can

lead algorithms away from local minima, they do not lead algorithms toward solutions.

In Section 5.5, we demonstrated that long-term memory is not a vital ingredient to the success of

a DLS-CP algorithm. Providing a DLS-CP algorithm a priori with the clause penalty information

from an independent successful run typically does not help the algorithm to find a solution more

effectively. This suggests that any information embedded in the long-term memory of a DLS-CP

algorithm is not useful to the algorithm. To further explore this topic we created amnesic variants

of the algorithms and demonstrated that removing the long-term memory typically does not affect

performance. Clearly, the success of DLS-CP algorithms cannot be explained by the presence of

long-term memory. If short-term memory were to be completely eliminated, most DLS-CP algo-

rithms would be reduced to simple iterative improvement procedures and hence become highly sus-

102



ceptible to local minima. This suggests that short-term memory plays an important role in rendering

DLS-CP effective.

Considering all the evidence presented in this chapter, it seems likely that the short-term memory

represented by the clause penalties of DLS-CP algorithms is primarily useful for escaping minima

in practice. In other words, DLS-CP algorithms are not successful because they utilize any guidance

towards solutions, but because they are effective at escaping from non-solution areas of the search

landscape.
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Chapter 6

Random Decisions

It’s action. . . reaction. . . random interaction.
So who’s afraid of a little abstraction? Can’t get no satisfaction.

— Rush. “Roll the Bones”

In Chapter 4, we observed that the variable selection mechanism in our SAPS algorithm was

essentially deterministic for long search trajectories (an observation also made by Schuurmans and

Southey on their SDF algorithm [95]). In SAPS, it would appear that the idiosyncrasies of the

long search trajectory captured in the history (long-term memory) of the clause penalty values is an

adequate substitute for the random decisions normally employed by SLS algorithms. For us, this

raised many interesting questions regarding the role of random decisions in SLS algorithms: Why

are most algorithms so heavily randomized? How important are those random decisions? How

important is the quality of the underlying random numbers? How much randomness is necessary?

Can randomness be eliminated altogether? In this chapter, our goal was to shed light on some of

these questions.

The remainder of this chapter is structured as follows. First, in Section 6.1, we provide back-

ground information and related work. Second, in Section 6.2, we study the effect of the quality of the

underlying random number sequence on the behaviour of some well-known SLS algorithms. Next,

in Section 6.3, we investigate the amount of randomness required to achieve the typical behaviour

of these algorithms using derandomization. Finally, in Section 6.4, we summarize our work.

6.1 Background and Related Work
In Figure 2.1, we illustrated that a typical SLS algorithm for SAT consists of an initialization phase,

in which a truth value is assigned to each variable, and a search phase, during which the values of

individual, heuristically selected variables are changed (flipped) in an attempt to reach a satisfying
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assignment. Stochastic (random) decisions are typically used in both phases, and in the following

we describe the most common ways SLS algorithms for SAT make use of random decisions:

Variable initialization is heavily randomized in most SLS algorithms for SAT; typically, the initial

variable assignment is obtained by assigning each variable a truth value chosen uniformly and

independently at random. For example, the InitializeVariables procedure in URWALK

as described in Figure 2.6.

Heuristic tie-breaking occurs when a choice needs to be made between several alternatives that

are ranked identically by a given heuristic evaluation function; many SLS algorithms for SAT

break these ties randomly. For example, the PickVariableGSAT procedure in GSAT [100] as

described in Figure 2.9.

Variable selection often includes randomized choices. For example, the variable selection in NOV-

ELTY [80] (see Figure 2.11) can make noisy decisions. Under certain circumstances, the sec-

ond best variable is selected (a noisy decision) over the best variable (a greedy decision) with

some probability noveltyNoise.

Neighbourhood selection occurs when an algorithm narrows the list of flip candidates to a subset

of all the variables. For example, in the WALKSAT algorithms, at each step, an unsatisfied

clause is selected uniformly at random, and then only variables occurring in this clause are

considered as flip candidates. This is described in Figure 2.10.

Random walk steps involve flipping randomly selected variables; they can help to increase search

diversification, to avoid stagnation and to render an algorithm Probabilistically Approximate

Complete (PAC). In a uniform random walk all variables can be selected with uniform prob-

ability. In a conflict-directed random walk, only variables occurring in currently unsatisfied

clauses can be selected, such as in CRWALK [85].

Random restarts cause an algorithm to randomly re-initialize all variables. Most SLS algorithms

for SAT, including algorithms of purely theoretically interest, such as SCHÖNING’S ALGO-

RITHM [94], perform periodic restarts instead of random restarts.

Search control mechanisms can also make use of randomized decisions; examples include the

probabilistic smoothing mechanism in SAPS [61], described in Chapter 4, and the random

selection of the tabuTenure parameter in ROBUST TABU SEARCH (ROTS) [107].

The prominent use of random decisions in many components of SLS algorithms suggests that it is

an important area of study, and in the following we identify some related work.

Gent and Walsh investigated the role of random decisions in GSAT [39]. They found that

random decisions were neither important in the initialization phase nor for tie-breaking, and that
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deterministic substitutions could be made in both cases. Much of their analysis revolved around the

ability of the algorithm to diversify the search during the re-initialization that occurs during restarts.

They did not study the impact of the quality of random decisions. It is not clear to what extent their

observations apply to more powerful SLS algorithms for SAT that do not require restart mechanisms

or to a broader range of SAT instances.

There has been a large body of work dedicated to the quest for increasingly higher quality

random number generators. In the Monte Carlo simulation literature, there has been evidence that

even ‘good’ random number generators can produce very undesirable results [11, 26]. In work

related to our experiments, Ribeiro et al. surveyed RNGs to find a good candidate for randomized

algorithms [92]. In our published work [112], we investigated the role of random decisions in

SAPS, which we will develop further in Section 6.3.

In this chapter we perform experiments with three different DLS algorithms. The first algorithm

we consider is CRWALK (a.k.a. Papadimitriou’s algorithm) [85], as described in Section 2.5. We

chose to include CRWALK in our study because it is a prominent, yet very simple, algorithm that

is purely based on random decisions. Originally, we had decided to include SCHÖNING’S AL-

GORITHM in our study because of its provably excellent worst-case behaviour, but in preliminary

experiments on a large set of instances from SATLIB we found no empirical evidence for any dif-

ferences between its behaviour and that of CRWALK (which, given well-known empirical results

that the WALKSAT algorithm does not benefit from restarts [55, 86] is not surprising). The results

reported in the following sections clearly show CRWALK performs rather poorly when compared

against high-performance SLS algorithms for SAT, because it lacks the heuristic guidance of an

evaluation function.

The next algorithm we consider in this study, ADAPTIVE NOVELTY+ [51] is described in Sec-

tion 2.5 and uses a deterministic mechanism for adapting its noveltyNoise setting during the search

and therefore requires no parameter tuning. ADAPTIVE NOVELTY+ uses randomized neighbour-

hood selection, randomized heuristic variable selection, and conflict directed random walk steps (in

addition to random initialization).

Finally, we used the SAPS algorithm [61] as described in detail in Chapter 4. It was our ex-

perience with SAPS that inspired much of the work in this chapter. We included it in this work

because (as we will discuss in more detail later) in long search trajectories SAPS operates almost

deterministically [112]. In all experiments reported in this study we used the default parameters for

SAPS, as described in Appendix A.

Unless otherwise stated (as in Section 6.2) all experiments have been conducted using the default

random number generator in UBCSAT, the Mersenne Twister (MT) [78].
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6.2 The Quality of Random Decisions
Typically, SLS algorithms are designed to make perfectly random decisions without any concern

as to how those decisions are made. When implementing SLS algorithms, all random decisions

are realized using a Random Number Generator (RNG). In principle, a True Random Number

Generator (TRNG), which obtains a sequence of random numbers from a truly random source could

be used. Hardware implementations of TRNGs that obtain random data from physical phenomae,

such as atmospheric noise or radioactive decay, are available and are popular in applications such

as gambling [129] and cryptography [10]. However, most computer implementations use Pseudo-

Random Number Generators (PRNGs) instead [71]. A PRNG is a finite state machine with memory,

and performs deterministic mathematical operations on the state information to generate a sequence

of numbers. Once a PRNG is initialized with a numerical seed, it will produce a series of numbers

that may have the appearance of being random, but in fact can all be deterministically calculated

from the seed. The quality of a PRNG is solely determined by the mathematical operations it

performs. Ideally, sequences will be uniform and unbiased (i.e., equal fractions of numbers from

the sequence should fall into equal intervals), uncorrelated (i.e., the numbers in the sequence should

be statistically independent of one another) and have long periods (because the state information in

a PRNG is finite, all PRNGs will eventually cycle, but the period between cycles should be very

large) [55: p. 52].

Because of the importance of high quality random numbers in cryptography and other appli-

cations, tests have been developed that measure the quality of a sequence of random data. The

American National Institute of Standards and Technology (NIST) has produced a document [93]

with companion software [131] to test the quality of random data. The NIST software includes 16

groups of tests that cover a wide variety of statistical properties. Another popular software tool for

quickly analyzing the quality of random numbers is known as simply ENT (short for entropy) and

was developed by John Walker at Fourmilab [126].

There are numerous PRNGs available that use a wide variety of mathematical methods. We

have selected a few characteristic PRNGs to test, in addition to data generated by a TRNG. The

following are brief descriptions of the RNGs we used:

True Random Data This data was obtained online [135] and was generated by a hardware device

measuring atmospheric noise.

C random() We chose the Linux gcc (C) random() function because it is the default PRNG for

many programmers, and is also currently the default PRNG for the original WALKSAT soft-

ware package by Kautz [99] when compiled under Linux. We used gcc v3.3.3 on SuSE Linux

v9.1.

LCG The Linear Congruential Generator (LCG) we chose is based on the ANSI C specification:
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Random Data Bias χ2 Analysis Monte Carlo π NIST %

True random 0.5000290 235.9 (75%) 3.14094 (0.021%) 97.80

C random() 0.4999988 224.6 (90%) 3.14148 (0.004%) 99.50
LCG 0.5000000 0.0 (99.99%) 3.14123 (0.011%) 93.53
LFG 0.5000129 237.3 (75%) 3.14139 (0.007%) 96.69
MT 0.5000204 278.5 (25%) 3.14203 (0.014%) 98.37

Random: Skew 1.25:1 0.5554831 2165538.1 (0.01%) 2.76998 (11.829%) 16.39
Random: Cycled 16k 0.5000086 4327.3 (0.01%) 3.14631 (0.150%) 59.18

Table 6.1: Test of quality on RNG data. Tests were executed on 160MB of data. The Bias
value is the average value of all bits (the ideal value is 0.5). The χ2 analysis from ENT

shows the distribution value and a percentage which indicates how frequently a TRNG
would have a larger distribution value, where values > 95% or < 5% are highly suspect.
The Monte Carlo π analysis from ENT gives an estimated value of π and the respective
error. For the NIST tests, we report the overall percentage of the tests passed by the
respective data, where each of the 16 groups of tests was weighted equally.

I j+1 = (I j ·1103515245+12345) except that only one byte (bits 11-18) of random data was

collected per iteration, a common practice to improve the quality of this particular PRNG.

LFG The Lagged Fibonacci Generator (LFG) we chose is from Knuth [71], and the source code is

available from his website [130].

MT The Mersenne Twister (MT) we chose is the MT19937 algorithm [78], which has an astound-

ing period of (219937− 1). This is the default PRNG in the current release of the UBCSAT

software package.

In Table 6.1, we examine the relative quality of some of these RNGs. There is little difference

between the results for the PRNGs and the TRNG, with the exception of LCG, which is clearly the

worst of the tested PRNGs. It is often the case that particular sequences of TRNGs fail more tests

than particular sequences of PRNGs [93]. The bottom two rows of Table 6.1 will be discussed later.

We now investigate the extent to which implementations of existing SLS algorithms are af-

fected by the quality of the source of randomness. For most random decisions made within an

SLS algorithm, there are bad choices (that increase the length of the current run) and good choices.

Correspondingly, there could be bad sources of biased randomness (that cause a given algorithm to

make more bad choices) and good sources. Whether or not a source is good or bad would depend

on the given SLS algorithm and instance. An extremely good source for a particular SLS algorithm

and instance could cause the algorithm to make a series of good decisions, solving the instance in
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linear run-time. However, an extremely bad source could cause the same algorithm to search for an

arbitrarily long time, and in the worst case make a solution unreachable. However, note that even

when using a TRNG with extreme bias, as long as the probability of generating 0 or 1 at any posi-

tion of the sequence is greater than zero, the PAC property of a given SLS algorithm would remain

intact, since the required sequence of ‘correct decisions’ would still occur (albeit with much lower

probability).

The effect of correlation in the random number sequence, as long as it does not involve deter-

ministic dependencies, is very similar for analogous reasons. (Note that correlation, in this context,

corresponds to bias for certain subsequences.)

Deterministic cycles in the random number sequence, on the other hand, can lead to a loss of

the PAC property. In combination with the finite state information held by the algorithm (which,

in addition to the search position, may include search control variables and properties, such as

tabu status information and clause penalty values), cycles in the random number sequence could

cause cycles in the search trajectory that do not include any solutions to the given problem instance.

Note that all PRNGs are periodic; whether or not this leads to observable stagnation of a given

SLS algorithm depends on the period of the PRNG as well as on the amount and nature of state

information used by the SLS algorithm.

To empirically study the effect of poor quality RNGs on SLS algorithms, we generated some

intentionally bad random number sequences by manipulating the data we had from the TRNG. First,

we introduced a skew s in our data. We converted 32-bits of our random data to an unsigned integer

value and then divided it by 232 to obtain a fixed-point value in the range [0,1). We generated a one

if the value was greater than s/(s+ 1), and zero otherwise. Next, we generated cycled data where

we simply truncated the random data at a fixed number of bytes and repeated the same sequence.

We ran our new poor sequences through the same tests we performed on the PRNGs and, from

Table 6.1, it is clear that our poor RNGs do not meet very high standards of quality. We then made

the sequences progressively worse, so the data presented in Table 6.1 can be considered the best of

the bad sequences we generated.

To examine the effects of different RNGs on our selected algorithms, we ran CRWALK, ADAP-

TIVE NOVELTY+ and SAPS with the different sources of random data, and present the results in

Table 6.2, Table 6.3 and Table 6.4 respectively. We provided the PRNG comparison for CRWALK,

and we can see the algorithm was very robust to the selection of the PRNGs. Analogous observa-

tions were made for ADAPTIVE NOVELTY+ and SAPS.

For the skewed data, the sequences had more ones, and we shall consider what effect it would

have on the specific implementations of the algorithms. For CRWALK, the bias would be toward

arbitrarily specific clauses and literals. For the ADAPTIVE NOVELTY+ algorithm, the same bias

would exist for clause selection, but more importantly the frequency of random walk steps and

noisy variable selections would decrease. For SAPS, the only significant change is a decrease in the
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ii8c2 ssa7552-159 flat50-med uf100-med uf50-hard

steps cv steps cv steps cv steps cv steps cv

True random 300k 0.99 2.21M 0.97 631k 0.97 76.1M 0.94 372k 0.97

C random() 1.13 0.94 1.02 0.91 0.96 0.93 1.10 0.99 1.10 0.99
LCG 1.13 1.02 1.02 1.00 0.95 0.98 1.02 0.96 1.02 0.96
LFG 1.15 0.99 1.05 1.02 0.94 1.03 0.98 0.97 0.98 0.97
MT 0.97 0.95 0.99 0.98 0.90 0.93 0.93 0.96 0.93 0.96
Skew 1.25:1 0.48 0.97 3.39 1.08 0.93 0.97 0.97 1.03 0.97 1.03
Skew 1.5:1 0.29 0.92 15.27 0.97 0.85 1.04 1.10 0.96 1.10 0.96
Skew 2:1 0.13 0.94 > 368 0.97 0.93 1.03 1.03 0.99 1.03 0.99
Skew 4:1 0.06 1.00 > 2k 0.02 0.88 1.02 0.96 1.05 0.96 1.05
Cycled 16k 1.28 0.86 0.66 0.96 0.92 0.87 0.82 1.16 0.82 1.16
Cycled 4k 1.23 0.85 0.82 1.15 0.89 0.83 0.61 1.11 0.61 1.11
Cycled 1k 0.89 0.76 2.17 0.91 0.55 0.83 0.52 1.00 0.52 1.00
Cycled 512 0.68 1.22 ∞ 0 0.10 0.75 0.63 1.12 ∞ 0
Cycled 256 2.38 0.56 ∞ 0 0.41 0.70 0.41 0.69 ∞ 0

Table 6.2: The effect of RNG quality on CRWALK. For the true random data, the mean
number of search steps (run-length) required to find a solution is given, while for all other
sources the mean search steps is given as a fraction of the number required for the true
random source. The cv is calculated as the standard deviation divided by the mean. Note
that cv = 1 characterizes an exponential run-length distribution, which is typical for high-
performance SLS algorithms for SAT. All experiments results are based on 500 runs with
a maximum run-length of 232 (4.3B) steps. For the cycled sequences, with a reported ∞

mean, we confirmed cyclic behaviour by examining the respective search trajectories. See
Appendix B for instance information.

smoothing frequency. Not all of the changes were negative. In some cases, such as the CRWALK

algorithm on the ii8c2 instance, the skew greatly improved the performance of the algorithm.

For the cycled data, we continued to shorten the length of the cycles and thereby increased

the likelihood that the algorithms would cycle. In Table 6.2 and Table 6.3 we present results from

situations where both the CRWALK and the ADAPTIVE NOVELTY+ algorithm became stuck in

endless loops. Note that although CRWALK and ADAPTIVE NOVELTY+ are both PAC, our em-

pirical results show that these algorithms are no longer complete when using cyclic random number

sequences. The fact that all PRNGs eventually cycle implies that no conventional implementation

of an SLS algorithm is truly PAC. (An implementation may be PAC for a given instance, but with a

countably infinite number of SAT instances there is no hope of guaranteeing that an implementation

will be PAC for any arbitrary instance.)

Given this conclusion, it might seem wise to implement algorithms with TRNGs. If efficient
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Random Data uf100-med uf250-hard bw-large-c ferry9u

steps cv steps cv steps cv steps cv

Random Source 998 0.63 3.00M 0.96 10.0M 0.99 880k 0.88

Skew 1.25:1 1.17 0.61 1.29 1.06 0.91 1.05 0.57 0.87
Skew 1.5:1 1.29 0.62 2.17 0.95 0.80 0.94 0.45 0.87
Skew 2:1 1.61 0.65 4.16 1.01 0.99 0.95 0.68 0.90
Skew 4:1 3.02 0.76 96.31 0.62 1.30 1.00 > 3 122 0.75

Cycled 16k 1.06 0.80 0.85 0.95 0.93 1.17 0.98 0.40
Cycled 4k 1.27 0.76 0.81 0.94 0.82 0.92 1.09 1.03
Cycled 1k 0.98 0.64 203.97 2.45 1.15 1.08 1.40 0.86
Cycled 512 1.26 0.50 ∞ 0 0.13 1.61 1.03 0.80
Cycled 256 0.33 0.79 ∞ 0 0.66 1.33 ∞ 0

Table 6.3: The effect of RNG quality on ADAPTIVE NOVELTY+. See Table 6.2 for details.

Random Data uf100-med uf250-hard bw-large-c ferry9u

steps cv steps cv steps cv steps cv

Random Source 1.06k 1.01 304k 1.07 14.6M 0.99 1.92M 1.01

Skew 1.25:1 1.31 0.97 1.33 1.01 0.54 1.04 0.39 0.97
Skew 1.5:1 1.53 1.13 1.79 1.02 0.35 1.02 0.32 0.98
Skew 2:1 1.89 1.16 3.03 1.08 0.34 0.97 0.26 0.97
Skew 4:1 2.37 1.09 5.45 1.04 0.42 1.02 0.11 0.90

Cycled 16k 1.10 0.99 0.99 1.00 0.95 0.97 0.78 0.90
Cycled 4k 0.91 0.91 1.12 0.95 0.87 0.90 0.41 1.03
Cycled 1k 0.60 0.88 0.73 0.97 1.26 1.37 1.59 0.86
Cycled 512 0.55 0.72 0.96 0.49 0.88 1.18 2.18 0.89
Cycled 256 1.39 0.89 1.44 0.83 1.26 0.99 0.39 1.23

Table 6.4: The effect of RNG quality on SAPS. See Table 6.2 for details. SAPS was exe-
cuted with default parameters as described in Appendix A.
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TRNGs were readily available it would be an ideal solution. However, TRNGs are far from efficient

when compared to PRNGs. To add perspective to this discussion, we must consider how incredibly

unlikely the aforementioned circumstances are with a good PRNG; for example, the Mersenne

Twister PRNG has a period of (219937−1), which means that it will not cycle in practice. If cyclic

behaviour is observed for an algorithm using a PRNG of this type, the behaviour is far more likely

to be due to a design flaw, an implementation error, or simply because the algorithm is not PAC

(even when using true random numbers).

When implementing an SLS algorithm and selecting a PRNG, there are several factors to be

considered. To assess the quality of a given PRNG, one of the many available test suites can be

used. However, any reasonable PRNG will be sufficiently unbiased and uncorrelated to render

impacts on the performance of typical SLS algorithms very unlikely. To minimize the chance of

encountering cycling behaviour of an SLS algorithm in practice, it is generally advisable to choose

a PRNG with a sufficiently large period. We provided the Mersenne Twister as an example of a

PRNG with an extremely large period, but note that much smaller periods appear to be sufficient

in practice. Another potentially important factor is the efficiency of a PRNG. This is particularly

relevant in the context of highly randomized SLS algorithms that make random decisions in every

(or almost every) search step. Finally, especially in the context of scientific research, the use of

platform-independent PRNGs makes it possible to reproduce unusual algorithm behaviour exactly

across different hardware and operating systems. The previously mentioned Mersenne Twister has

all of the qualities that are desirable for a PRNG and overall appears to be the best choice in the

context of implementing SLS algorithms.

6.3 Quantity of Randomness
In the previous section, we examined how the quality of random numbers can affect SLS behaviour.

In this section, we study the quantity of random decisions made by SLS algorithms, and consider

how many random decisions are truly required. We first investigate random decisions in the SAPS

algorithm. It has been observed that DLS-CP algorithms, such as SDF or SAPS, become essentially

deterministic after an initial search phase [95]. Intuitively, the clause penalties become unique

after numerous scaling and smoothing steps, so there is no need for heuristic tie-breaking. To

further investigate the role of randomness in these algorithms, we have created and studied a mostly

derandomized variant of SAPS known as SAPS/NR [114].

SAPS/NR does not perform any random walk steps at local minima, uses periodic smoothing

after every (b1/psc) local minima, and breaks all ties by selecting the variable with the smallest

index. At first glance, it may seem that SAPS/NR is completely deterministic, but we must empha-

size that the initialization of SAPS/NR is identical to the initialization in SAPS, and consequently

the initial starting position for each run of SAPS/NR is completely random. In Table 6.5 and

Figure 6.1 we compare the performance differences between SAPS and SAPS/NR. The ferry9u
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SAPS SAPS/NR
Instance Mean cv Mean cv

uf100-med 1 075 0.95 1 041 1.01
uf250-hard 287 907 0.98 292 488 0.96
bw-large-c 13 413 962 0.98 14 510 361 1.05
ferry9u 1 883 606 1.03 3 179 808 1.06

Table 6.5: SAPS vs SAPS/NR. (Median run-lengths were obtained from 1000 independent
runs per instance. All algorithms were executed with default parameters as described in
Appendix A.)
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Figure 6.1: SAPS vs SAPS/NR on anp10m. Each point corresponds to an instance in the
set anp10m (1931 instances). Median run-lengths were obtained from 100 independent
runs per instance. All algorithms were executed with default parameters as described in
Appendix A. See Section C.5 for general correlation plot details.

instance is one of the few cases in which we have found significant performance differences; in

the overwhelming majority of cases, both algorithms show no significant difference in their perfor-

mance.

After restricting all of the random decisions to the initialization phase, we will next consider

what happens when we remove the random decisions from the initialization phase as well. If we

deterministically initialize the variable assignments, SAPS/NR will always take the same number

of steps to solve an instance, reducing the variability in the run-time to zero. This can be seen

in Figure 6.3 (a) as a vertical line. The deterministic initialization method we used was a simple
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greedy approach. For each variable, if the positive literal appears more frequently than the negative,

the variable is assigned a value of true, otherwise false. When variables with an equal number of

positive and negative literals are encountered, they are deterministically assigned a value of true or

false, alternating between variables.

We next consider what happens if, between the initialization and the search phase, we select

one variable uniformly at random and flip it. Remarkably, as seen in Figure 6.3 (a), the variability

introduced by just that one random decision is close to the full variability seen by the regular, fully

randomized version of SAPS. Because this instance has 250 variables, there are 250 discrete levels

in the curve, corresponding to each of the 250 variables that could have been flipped. It is quite

remarkable and rather counter-intuitive that flipping just one variable between the initialization and

search phase could have such a dramatic effect on the run-time behaviour of the algorithm. We note

that this phenomenon is very reminiscent of the extremely sensitive dependence on initial conditions

found in chaotic dynamic systems [68: p. 56]

Next, we consider similar derandomizations for CRWALK and ADAPTIVE NOVELTY+, which

depend on random decisions to a much greater extent than SAPS. It should be noted that the de-

randomized versions of these algorithms described in the following were chosen for their simplicity

rather than for their performance or their exceptionally strong correlation to the original algorithms.

We did not invest time in tuning and engineering our algorithms with different derandomization

strategies to meet higher quality standards. Our goal was to illustrate that our simple, straightfor-

ward approach works reasonably well for most instances.

Recall that CRWALK uses random decisions to select unsatisfied clauses and to decide which

variable in a selected clause is to be flipped. To implement clause selection in DETERMINISTIC

CRWALK (DCRWALK), we keep track of the number of times each clause has been selected

(count) and the number of steps at which each clause has been unsatisfied (unsat), then we simply

select the clause that has the smallest (count : unsat) ratio, breaking ties by selecting the clause with

the smallest index. This method ensures that clauses are selected in a uniform, fair and deterministic

manner. For literal selection, we simply keep a counter for each clause, selecting the first literal the

first time the clause is selected, the second literal the second time, and so on, returning to the first

literal when all have been exhausted. Thus, DCRWALK removes all of the randomness from the

heuristic search phase, while still allowing for random decisions at the initialization phase. Note that

our approach differs substantially from some of the published theoretical methods for derandomiz-

ing SCHÖNING’S ALGORITHM [19], which use Hamming balls to eliminate randomness from the

initialization phase, departing from traditional SLS by using backtracking in the local search phase.

To derandomize the ADAPTIVE NOVELTY+ algorithm, we need to replace three types of random

decisions: clause selection, random walk steps and noisy variable selection. For clause selection,

we maintain a list of the currently false clauses and simply step through that list, selecting the clause

in the list that is the current search step number modulo the size of the list. Instead of random walk
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Figure 6.2: Original vs deterministic implementations. ((a) Each point corresponds to an
instance in the set flat30 (100 instances). (b) Each point corresponds to an instance in the
set anp10m (1931 instances). Median run-lengths were obtained from 100 independent
runs per instance. All algorithms were executed with default parameters as described in
Appendix A. See Section C.5 for general correlation plot details.)

steps, every (b1/wpc) steps a variable is selected to be flipped using the same variable selection

scheme used by DCRWALK. For the noisy variable selection, we use two integer variables n and

d. If the ratio ( n
d ) is less than the current noise setting noveltyNoise a noisy decision is made and n

is incremented. Conversely, if ( n
d ) is greater than noveltyNoise the greedy decision is made and d

is incremented. Whenever the adaptive mechanism modifies the noise parameter noveltyNoise, the

values of n and d are reinitialized to b256 ·noveltyNoisec and (256−n), respectively.

In Figure 6.2, we compare the performance of DCRWALK and DETERMINISTIC ADAPTIVE

NOVELTY+ with their fully randomized versions. In general, we do not see the same tight cor-

relation observed for SAPS/NR. However, for the most part our derandomized algorithms show

very similar behaviour. Our DCRWALK algorithms seems to outperform CRWALK for the vast

majority of instances in this set, possibly because the clause selection scheme is fair and unbi-

ased. Gent and Walsh observed similarly improved behaviour for a fair deterministic version of

GSAT [39]. Our DETERMINISTIC ADAPTIVE NOVELTY+ algorithm suffers from slightly worse

performance on average, and there are significant outliers that indicate some inherent problems with

our derandomization approach on some specific instances, but for most instances the performance

of DETERMINISTIC ADAPTIVE NOVELTY+ resembles that of ADAPTIVE NOVELTY+.
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Figure 6.3: The variability of deterministic algorithms with few random decisions. A
run-length distribution comparison of SAPS, CRWALK and ADAPTIVE NOVELTY+

and their deterministic variants (with [N] total random decisions per run) based on 1000
runs. The deterministic algorithms were initialized according to a deterministic method
(see text for details), and then [N] variables were selected at random to be flipped after
initialization. In other words, the vertical bar, [0], reflects when all random decisions
have been replaced, while the [1] curve shows the behaviour when one single random
decision is made in each run. (Instances are (a) uf250-hard, (b) uf50-hard and (c) anp10m
(see Appendix B). Each run-length distribution is for 1000 runs. All algorithms were
executed with default parameters as described in Appendix A.)
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In Figure 6.3 (b) and Figure 6.3 (c), we see evidence that the same ‘chaotic’ behaviour observed

for SAPS/NR is also present for DCRWALK and DETERMINISTIC ADAPTIVE NOVELTY+. Us-

ing the same deterministic initialization as in SAPS/NR, we obtain the same behaviour. With just

one simple random decision in DCRWALK and two in DETERMINISTIC ADAPTIVE NOVELTY+,

the full variability found in the run-time distributions of the original, heavily randomized versions

of these algorithms is achieved. What makes this observation remarkable is not so much that in

principle, the amount of random decisions can be drastically reduced without any substantial effect

on the behaviour of the algorithm (after all, any implementation of an SLS algorithm using a PRNG

is fully deterministic), but rather that it can be done using very simple derandomization schemes.

6.4 Conclusions
Most SLS algorithms heavily use various types of random decisions. We argued that, from a theoret-

ical point of view, their performance can be expected to be severely compromised by poor-quality

random number sequences. Nevertheless, our empirical results indicate that in practice, the be-

haviour of these algorithms is remarkably robust with respect to the quality of the RNG used to

implement these random decisions. As a consequence, there is no reason to consider the use of

true random number generators (which have the disadvantage of typically being rather slow), or to

worry about minor differences in the quality of readily available PRNGs, especially if their period

is high. Because of its extremely high period, efficiency and platform-independent availability, we

recommend using the Mersenne Twister PRNG for the implementation of SLS algorithms.

We demonstrated that three prominent SLS algorithms for SAT (SAPS, ADAPTIVE NOVELTY+,

CRWALK) can be almost completely derandomized using very simple mechanisms to replace the

random decisions without significantly changing their behaviour. In particular, versions of these

algorithms that only use a single random decision during initialization basically exhibit the full

variability in the run-time required to solve a given SAT instance as the original, fully randomized

algorithms. Eliminating this last random decision leads to completely deterministic algorithms

which, on average, may often perform similarly well as their fully randomized versions. At the same

time, these deterministic algorithms can no longer benefit from easy and efficient parallelization

by means of performing multiple independent tries in parallel [53]. Additionally, at least for the

deterministic version of ADAPTIVE NOVELTY+ we observed substantially degraded performance

on a very small number of instances. Therefore, we see no practical advantages in using completely

or partially derandomized SLS algorithms.

Overall, our results are fully consistent with the widely held view that the role of random deci-

sions in SLS algorithms is primarily to provide search diversification. Therefore, neither the quality

of the RNG nor the quantity of random decisions used by an SLS algorithm is of crucial importance

to its behaviour.
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Chapter 7

Variable Expressions

Call on me. . .
. . . I’m the same boy I used to be.

— Eric Prydz. “Call On Me”
(Original lyrics by Steve Winwood)

In this chapter, we present our most recent and significant work, which stands as the capstone of

our dissertation. Our work in this chapter was motivated by two significant trends we had observed

within our research group and elsewhere. The first trend we observed was that DPLL-based algo-

rithms were continuing to outperform SLS algorithms on application instances such as software ver-

ification encodings [137]. As a result of this observation, our primary goal was to improve the state-

of-the-art of SLS algorithms for SAT on encodings of software verification benchmark instances.

In our pursuit of this goal, we developed a new conceptual model for representing SLS algorithms

for SAT, based on our notion of Variable Expressions (VEs). The second significant trend we ob-

served was the success of automated algorithm configuration tools, in particular PARAMILS [59];

we believe that this trend is heralding a new era of automated algorithm design. As a result of

this observation, we were motivated to revisit our UBCSAT architecture, and we created the DE-

SIGN ARCHITECTURE FOR VARIABLE EXPRESSIONS (DAVE), a highly flexible SLS algorithm

design architecture designed to leverage recent tools such as PARAMILS to automate many of the

tedious aspects of algorithm design. By following our new algorithm design approach, we were

able to achieve significant improvements over previous state-of-the-art SLS algorithms for SAT on

encodings of software verification benchmark instances, thus accomplishing our goal.

This chapter is structured as follows. First, in Section 7.1, we provide some background and

describe some of our experimental methodologies. Then, in Section 7.2, we introduce VEs, and

demonstrate their potential. Next, in Section 7.3, we present our general conceptual model and
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briefly discuss its implementation (DAVE). Then, in Section 7.4, we introduce a new, highly para-

metric algorithm named VE-SAMPLER to demonstrate how DAVE facilitates the automated design

of SLS algorithms. In Section 7.5, we discuss related work from the literature. Finally, in Sec-

tion 7.6, we summarize our contributions.

7.1 Background
In this chapter, we propose a new conceptual model for specifying SLS algorithms for SAT. We

introduce the concept of Variable Expressions (VEs) to generalize scoring functions; while VEs

are ultimately used for variable selection, they can transcend the traditional notion of score. VEs

are mathematical expressions that compute numerical values from one or more properties of a vari-

able in combination with constants, operators and functions. We described variable properties in

Section 2.4, including GSAT’s score property [100] and the age property used by NOVELTY and

WALKSAT/TABU [80]. A VE can be a simple property (e.g., 〈age〉) or any mathematical expres-

sion with one or more properties, such as 〈score+3 · log(age)〉. Most existing SLS algorithms for

SAT select variables based on scoring functions that correspond to a single, rather simplistic VE. In

Section 7.2, we present evidence that potentially complex VEs can be very effective.

We also introduce the concept of Variable-Selection Mechanisms (VSMs), which evaluate VEs

to determine the variable to flip during a search step. For example, the GSAT algorithm (see

Figure 2.9) uses a very simple min VSM to select the variable with the minimum 〈score〉 (breaking

ties uniformly at random).

Our model was developed to provide a clean conceptual separation between the VEs and the

VSM of an algorithm. A more complicated example of a VSM, that demonstrates the potential of

this conceptual separation, is the NOVELTY algorithm (see Figure 2.11). In our model, the VSM

of NOVELTY uses three VEs (e1,e2,e3). The first VE is the primary scoring function, which in the

NOVELTY algorithm is (e1 = 〈score〉). The second VE (e2 = 〈−age〉) is used for tie-breaking (we

negated the age property so that it is consistent with score, i.e., a minimal value is preferred). The

third VE (e3 = 〈age〉) is coincidentally similar to e2, and is used to identify when a randomized noisy

decision is made. The generalized NOVELTY VSM is as follows: the variable with the minimal

e1 (breaking ties by e2) is selected, unless the variable has the minimal e3, in which case with

probability noveltyNoise the variable with the second minimal e1 (breaking ties by e2) is selected.

In our model, the traditional NOVELTY algorithm can be implemented by providing the VSM the

VEs (〈score〉,〈−age〉,〈age〉), but now that we have separated the VEs from the VSM, we can use

the VSM of NOVELTY with any three VEs, such as (〈break〉,〈flips〉,〈age/flips〉). We will explore

our model in more detail in Section 7.3

In this chapter, we mostly focused on the cbmc software verification instance sets. This set

is interesting to us primarily because it has some of the structural properties of larger and more

complicated software verification problems, which are still somewhat intractable for SLS solvers.
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For example, well-known state-of-the-art SLS solvers from the 2009 SAT Competition [137], such

as ADAPTIVE G2WSAT [77] and GNOVELTY+ [87], require over an hour to solve the hardest cbmc

instance, whereas many of the DPLL-based solvers from the competition, such as PICOSAT [12],

can solve the hardest cbmc instance in less than one second. At the same time, a significant number

of the instances can be solved by SLS algorithms within a low enough time to allow for extensive

experiments. In Section 7.4, we also provide, for the first time, experimental data for SLS algorithms

on the software verification benchmark set swv generated by the CALYSTO static checker [9] and

used as a benchmark for DPLL-based solvers by Hutter et al. [58].

In the experiments presented throughout this chapter, we used the PARAMILS automated algo-

rithm configurator by Hutter et al. [60]. PARAMILS is an SLS method that searches a parameter

configuration space. The three primary inputs to PARAMILS are an algorithm, a set of instances

and a configuration file that specifies the parameters of the algorithm and the possible values for

each parameter. The primary output of PARAMILS is a configuration of the algorithm that has been

optimized for the given instance set. We used PARAMILS to optimize the parameter settings of var-

ious SLS-based SAT algorithms for the aforementioned sets. To ensure that our results generalize

to instances other than those used during the optimization process, we randomly split each set into

two halves, a training set and a test set. In Section C.6 we provide more detail on how we split

the training and test sets. The optimized configuration is found by running PARAMILS on only the

training set, and only the test set is used to report our results.

7.2 Advanced Variable Expressions
In Section 2.5, we described several SLS-based algorithms known from the literature and identified

the various variable properties they use. Before we start introducing new ideas, we provide a brief

review of how variable properties are used by existing algorithms, in the new light of VEs.

Perhaps the most popular VE currently used by SLS algorithms is 〈score〉, which is equivalent

to the VE 〈break−make〉 where the properties make and break measure the number of clauses

that would become satisfied and unsatisfied, respectively, if the variable were to be flipped. The

WALKSAT/SKC algorithm was the first algorithm to use the even simpler VE 〈break〉 for scoring

variables and also introduced a Boolean freebie property that is true if, and only if, break equals

zero. Algorithms with dynamic clause penalties, such as SAPS, use a penalized property penScore.

The G2WSAT algorithm uses a Boolean promising property that indicates a negative score property

value, but only under certain circumstances (see Section 2.5 and [76] for details).

Another variable property that is prominently used in existing SLS algorithms for SAT is age.

The age property is defined as the number of search steps that have occurred since the given variable

was last flipped. The age property is closely related to the flips property (a.k.a. flipCount) used by

the HSAT algorithm [39] as a tie-breaking mechanism. The flips property measures how many

times a variable has been flipped. An interesting and effective combination of the freebie, break,
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age and flips properties is used in the VW2 algorithm [88].

7.2.1 Deconstructing VW2

In many ways, Prestwich’s VW2 algorithm [88] provided the starting point for our work on VEs,

and we describe VW2 in the following.1 Each variable is assigned a weight, which we call the

vw property, initialized to zero. At each search step a WALKSAT strategy is used, where the flip

candidates are those variables that appear in a randomly selected unsatisfied clause. If there are any

candidates with a true freebie value, one of those is selected (breaking ties uniformly at random);

otherwise, with probability wp, a candidate is selected uniformly at random, and in the remaining

cases (i.e., with probability (1−wp)), the candidate is selected with the smallest value of the VE:

break+ c · (vw− vw) (7.1)

(breaking ties uniformly at random), where the constant c is a parameter and vw denotes the average

of the vw property across all variables. When a variable is flipped, its vw property is updated

according to:

vw := (1− s) · (vw+1)+ s · step , (7.2)

where s is another constant parameter, and step is the current search step iteration value.

A variant of VW2 that we call VW2-SAT05 received the bronze medal in the satisfiable ran-

dom category of the 2005 SAT competition [73]. This variant eliminates the three VW2 parameters

(s,c,wp) by setting wp to zero and introducing a randomized mechanism to change the behaviour of

c and s during the search; it has been included recently in the SATENSTEIN [70] and HYBRID [117]

algorithms. In our experiments, we found that the original VW2 procedure with parameter set-

tings optimized for a given set of benchmark instances will often outperform VW2-SAT05. In

particular, we observed this performance difference on the cbmc software verification instances, as

illustrated in Figure 7.1 (a). In Figure 7.1 (b), we present evidence showing that VW2 can out-

perform SATENSTEIN, the previously best-known SLS algorithm for SAT for cbmc. This excellent

performance of VW2 motivated us to study it in more depth.

Upon closer examination of the VW2 VE shown in Equation 7.1, we noticed that the vw term

can be removed without changing the behaviour of VW2, since this term is constant over all vari-

ables and therefore does not affect the variable selection. In the vw property update procedure, the s

parameter is a smoothing parameter. if s is set to one, the VE becomes equivalent to 〈break−c ·age〉.
If s is set to zero, as in the optimal setting for cbmc, the VE becomes equivalent to 〈break+c ·flips〉.

For very small values of c, it may appear as though the vw property acts as a tie-breaking

mechanism, and Prestwich observed that when s is zero, VW2 behaves like HSAT [39]. While it

may be easy to dismiss the mechanics of VW2 as a simple tie-breaking scheme, this simplification

1For consistency with our dissertation, we chose to use our notations instead of Prestwich’s when describing VW2.
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Figure 7.1: VW2 vs VW2-SAT05 and SATENSTEIN on cbmc. The speedup factor (s.f.)
is (a) 7.66 and (b) 1.22. (The parameters for VW2 are (s,c,wp) = (0,0.01,0.2), found
by PARAMILS (see Section C.7.1). The configuration of SATENSTEIN is from the au-
thor [69]. Each point corresponds to an instance in the set cbmc (test) (39 instances).
Median run-lengths and run-times are reported, obtained from 25 runs. Execution envi-
ronment: UBC arrow cluster (Section C.1). See Section C.5 for general correlation plot
details.)

does not seem justified when considering the parameter settings obtained for VW2 and the length

of typical runs required for solving cbmc instances. In our analysis of VW2 on the hardest cbmc

instance, we observed that for over half of the search steps the break and flips properties were

interacting in a complex way, and VW2 was making trade-offs between satisfying additional clauses

(intensification) and changing the values of rarely flipped variables (diversification).

7.2.2 VW2+VE: Modifying the VE in VW2

Considering this type of complementarity in the role of the break and flips properties and the strong

performance of VW2, it seemed promising to explore different ways of constructing a VE based

on those two properties. Because the difference in scale between the two properties becomes in-

creasingly larger as the search progresses, we decided to normalize the values of these properties

to the interval [0,1]. We achieved this using the formula p
max(p) , where max(p) refers to the maxi-

mum value of the property p for all flip candidates, which for VW2 would be those variables in the

currently selected clause.

In addition to normalizing the property values, we also allowed for non-linear interaction be-
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Figure 7.2: VW2+VE vs VW2 on cbmc. The speedup factor (s.f.) is (a) 2.47 and (b) 2.10.
(The parameters for VW2 are (s,c,wp) = (0,0.01,0.2), found by PARAMILS (see Sec-
tion C.7.1). The configuration of VW2+VE is (c,a,wp) = (0.95,8,0.05), found by
PARAMILS (see Section C.7.2). Each point corresponds to an instance in the set cbmc
(test) (39 instances). Median run-lengths and run-times are reported, obtained from 25
runs. Execution environment: UBC arrow cluster (Section C.1). See Section C.5 for
general correlation plot details.)

tween the two properties. Our motivation was that the relative difference in magnitude between

two different property values could have an important impact on the behaviour of the algorithm.

Since the values have already been normalized, we used a simple polynomial transformation on the

normalized values of the flips property, to obtain the generalized VE:

break
max(break)

+ c ·
(

flips
max(flips)

)a

. (7.3)

We used this to replace the scoring function of VW2. We refer to the resulting variant of VW2, in

which we also disabled smoothing, as VW2+VE. Automated configuration of this algorithm for our

cbmc training set using PARAMILS yielded the parameter configuration (c,a,wp) = (0.95,8,0.05)

(see Section C.7.2).

As can be seen from Figure 7.2 (a), the use of this generalized VE leads to improved perfor-

mance in terms of local search steps required for solving the cbmc instances (as always, we show

results for the test set, which is disjoint from the training set used for parameter optimization). How-

ever, the VE is more complex, and evaluating it requires an additional initial iteration to determine
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the maximum values. This leads to a less pronounced improvement in terms of run-time perfor-

mance, which is illustrated in Figure 7.2 (b). Still, VW2+VE performs better than VW2 on the

cbmc benchmark which, based on our earlier findings, makes it the best SLS-based SAT algorithm

for that benchmark currently available.

7.2.3 Normalization in VEs

In VW2+VE, we normalized the break and flips properties so they would fall within the interval

[0,1]. We now generalize this further, using from here on the notation ‖x‖ in VEs to indicate that the

value x has been normalized using one of several different methods. The method used in VW2+VE,

‖x‖= x
max(x)

, (7.4)

preserves ratios between the values being normalized. Alternatively, a flat normalization:

‖x‖= x−min(x)
max(x)−min(x)

(7.5)

forces the maximum and minimum to be one and zero, respectively, and a summation normalization:

‖x‖= x
sum(x)

(7.6)

forces the sum of the values to be one. Of course, numerous other normalizations are possible,

including non-linear normalizations and normalizations more suitable for both positive and negative

values.

In the literature, some scoring functions are designed to select variables with the minimum

value (such as VW2’s), whereas others select the variable with the maximum value. Both cases are

common, and choosing which one should be used is usually obvious from the context; however,

this may not always be the case as we consider more complicated VEs. To address this issue, we

first note that the question of favouring minimum or maximum values already arises for variable

properties. For example, a small value of flips is considered favourable, while the opposite is true

for age. To facilitate the construction of more complex VEs, we require that all properties be

transformed to favour maximum values. To this end, we revise our notation for normalization so that
‖p‖ indicates that p has been normalized and transformed (if necessary). A simple transformation

and normalization would be (1−‖p‖), and we found that ‖max(p)+min(p)−p‖ worked quite

effectively in practice.

When normalizing the make and break properties, we observed that the number of clauses in

which the variable appears can also be used for normalization. We introduce the variable properties

relMake and relBreak to correspond to the relative number (fraction) of clauses that become satisfied
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or unsatisfied, respectively, as a result of flipping a given variable. For example, if the positive literal

x occurs in numPosOcc clauses and the negative literal ¬x occurs in numNegOcc clauses, then the

value of relMake is equivalent to 〈make/numPosOcc〉 when x is false and 〈make/numNegOcc〉
when x is true. For randomly generated instances with uniform structure, normalizing the score in

this manner would have no material effect. For structured formulae, such as the cbmc instances,

there is often large variability in the number of clauses each variable appears in, and consequently,

this normalization can make a substantial difference. Ansótegui et al. explored the scale-free struc-

ture of industrial instances and the impact of this structure on DPLL-based solvers [3], and we

believe that there is potential for SLS algorithms to exploit this structure as well.

Another observation we made is that existing algorithms combine make and break symmetri-

cally, but there may be an advantage to constructing VEs in which they are weighted differently. We

therefore consider the generalized VE 〈c1 ·break− c2 ·make〉, which uses simple scaling to weight

the two variable properties differently. We note that WALKSAT/SKC can be seen as using a special

case of this VE where c2 = 0. While it is possible that in many cases choosing c1 = c2 may lead to

the best performance, there is no reason to assume this would always be the case.

Finally, we observed that the summation normalization (Equation 7.6) behaved rather differently

than the one we used in VW2+VE (Equation 7.4), even though at first glance it would appear that

they should only differ by a constant factor. However, that constant factor is the clause length,

which is constant for any particular search step, but can differ between search steps. In other words,

we discovered that normalization of the clause length can be beneficial, and we believe that such

normalizations merit further study.

7.2.4 WALKSAT+VE: Modifying the VE in WALKSAT

To investigate the potential latent in the generalizations introduced up to this point, we constructed

a new SLS algorithm we call WALKSAT+VE. This algorithm is obtained from the original WALK-

SAT/SKC algorithm by replacing the VE 〈break〉 with the following VE that makes use of scaling,

normalizations and non-linear transformations:

c1 · ‖make‖a1 + c2 · ‖relMake‖a2 + c3 · ‖break‖a3 + c4 · ‖relBreak‖a4 . (7.7)

Whereas VW2+VE benefited from the flips property providing diversification, this VE uses only

greedy components (make and break) and a standard random walk mechanism. To test the effec-

tiveness of our new algorithm, we ran PARAMILS to optimize the values of the constants and the

normalization parameters (hidden in the ‖p‖ notation) on the cbmc training set (see Section C.7.3).

The performance of the configuration thus obtained on the cbmc test set is illustrated in Fig-

ure 7.3 and Figure 7.4. WALKSAT+VE solves this benchmark set more than three orders of mag-

nitude faster than WALKSAT/SKC, and outperforms the previously best known SLS algorithm for
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Figure 7.3: WALKSAT+VE vs WALKSAT/SKC on cbmc. Unsuccessful runs of WALK-
SAT/SKC that were terminated after two billion search steps are indicated with an ’x’.
The speedup factor (s.f.) is (a) > 4194 and (b) > 2043. (The random walk parameter
of WALKSAT/SKC is (wp) = (0.15), and was found manually. The configuration of
WALKSAT+VE was found by PARAMILS and is described in Section C.7.3. Each point
corresponds to an instance in the set cbmc (test) (39 instances). Median run-lengths
and run-times are reported, obtained from 25 runs. Execution environment: UBC arrow
cluster (Section C.1). See Section C.5 for general correlation plot details.)

this benchmark (VW2). These results are especially impressive when examining run-length perfor-

mance, but because of the complexity involved with this advanced VE, the results of the run-time

performance is somewhat less impressive, but still significant. We were genuinely surprised that

with this relatively modest modification to the venerable, but rather dated WALKSAT/SKC algo-

rithm, we were able to outperform all known SLS algorithms. This experiment clearly demonstrates

the potential of complex VEs as a basis for the development of new, high-performance SLS algo-

rithms.

7.3 Modeling and Designing SLS Algorithms with VEs
Now that we have motivated our interest in VEs, we present our VE-based model. Our model,

illustrated in Figure 7.5, includes an algorithm controller and three core stages: a variable filter

stage, a VE evaluation stage and a variable selection stage. There is a final stage that simply flips

the selected variable and updates the state information resulting from the flip (e.g., property values)

and any algorithm state information (such as the noise value in algorithms with adaptive noise). We
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Figure 7.4: WALKSAT+VE vs VW2 on cbmc. The speedup factor (s.f.) is (a) 7.25 and (b)
3.07. (The parameters for VW2 are (s,c,wp) = (0,0.01,0.2), found by PARAMILS (see
Section C.7.1). The configuration of WALKSAT+VE was found by PARAMILS and is
described in Section C.7.3. Each point corresponds to an instance in the set cbmc (test)
(39 instances). Median run-lengths and run-times are reported, obtained from 25 runs.
Execution environment: UBC arrow cluster (Section C.1). See Section C.5 for general
correlation plot details.)

first describe the three core stages and then describe the algorithm controller.

The Variable Filter Stage outputs a list of variables that are candidates to be flipped in this

search step. For example, the clause-based filter used in WALKSAT/SKC [99] and VW2 [88]

selects an unsatisfied clause uniformly at random, and then only the variables that appear in that

clause are flip candidates. Other examples include the GSAT algorithm [100] which considers all

variables, the SAPS algorithm which includes all variables that appear in unsatisfied clauses and

the G2WSAT algorithm [76] which includes a filter that only allows variables with a true promising

property.

The VE Evaluation Stage is very straightforward. The input is the list of n flip candidates from

the filter stage and k VEs from the controller. The output is an array of n · k values where each of

the VEs are evaluated for each candidate.

The Variable Selection Stage makes the final decision as to which of the candidates will be

flipped, based on the array of values from the VE evaluation stage. For simplicity, we assume that

a single candidate is selected and flipped in each step, but in practice, the VSM could select zero

or many candidates. For most existing SLS algorithms, the variable selection mechanism (VSM)
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Figure 7.5: Our conceptual SLS algorithm model.

is a simple max (or min) operation, where the candidate with the maximum value of the first VE

is selected; additional VEs can be used for tie-breaking, and any remaining ties will be broken

randomly. The NOVELTY algorithm we described earlier is an example of an algorithm with a VSM

that incorporates multiple VEs.

The Algorithm Controller controls behaviour at each step by determining the components of

each of the three stages: the filter, the set of VEs and the VSM. The controller may use the same

components for every step, make independent random decisions for each step or it may use a more

sophisticated decision mechanism. The GSAT algorithm represented in our model uses a simple

controller, where the components are the same at every step: no filter (consider all variables), use a

simple VE of 〈score〉 and a min VSM. The GWSAT algorithm adds a random walk to GSAT, and is

represented in our model by a randomized controller that, with some probability, selects an alternate

filter (only variables that appear in unsatisfied clauses) and a VSM that selects candidates randomly.

In Figure 7.5, we indicate control flow from the filter back to the controller to allow for controllers

that may wish to re-filter the variables or defer the determination of the VEs or VSM until after

the filter results are known. For example, as a form of clause normalization (see Section 7.2.3), a

controller could use a random-clause-based filter and choose VEs based on the length of the selected

clause.

In our model, complex controllers can be constructed that do not directly decide the components

for the three stages, but instead utilize a number of sub-controllers. Since each sub-controller can

correspond to a unique algorithm (or the same algorithm with different parameter settings), this

allows the construction of hybrid algorithms. A hybrid algorithm can switch between different

algorithms randomly, periodically, when some criteria is met (e.g., search stagnation is detected) or

according to some other customized mechanism. G2WSAT is one such hybrid algorithm, where if

any variables have a true promising property, a GSAT-based step occurs, otherwise, a WALKSAT-

based step occurs [76].

Now that we have presented our highly flexible model, we briefly outline our Design Architec-

ture for Variable Expressions (DAVE), based on our versatile UBCSAT architecture [113]. One of

the design goals of DAVE was to reduce (and potentially eliminate) the programming component
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of algorithm design by allowing the entire algorithm behaviour to be specified at run-time. The

user can specify the algorithm controller (and sub-controllers), the filter(s), the VE(s), the VSM(s)

and any additional UBCSAT triggers to activate. The only programming required is to introduce

new variable properties, controllers, filters or VSMs. Because the configuration space of DAVE is

actually an algorithm specification space, when we use DAVE in combination with an automated

configurator, we can find optimized algorithm specifications automatically. To further facilitate the

use of a configurator, DAVE supports a sophisticated macro-based syntax that allows controllers,

filters, VEs, and VSMs to be highly parameterized.

In DAVE, most variable properties depend on the current value of the variable assignment. We

use the notation p′ to correspond to the property value for the negation of a given variable. For

example, the flips property in DAVE is actually half of the total flip count (flips+ flips′). Similarly,

age′ ignores the most recent flip and measures the number of search steps that have occurred since

the flip prior to the most recent flip.

The only other implementation detail of DAVE that we address here, as it is specifically relevant

to the presentation and understanding of the performance results we report later, is the interpreted

nature of the algorithms specified in DAVE. Since DAVE receives the algorithm specification and

VEs at run-time, the code is not natively compiled. Instead, each operation is individually inter-

preted and executed. This means that an algorithm in DAVE will not achieve the same run-time

performance as the equivalent algorithm in compiled source code, which is why we encourage mea-

suring DAVE algorithms by run-length performance where there is no such penalty. In preliminary

experiments, we have seen algorithms in DAVE run 1.5-3 times slower than their native implemen-

tations, where the speed of DAVE is often more a function of the number of operators used in the

VE, as opposed to the true complexity of the algorithm. This is one reason why we present DAVE

as a design architecture that facilitates the exploration of new algorithmic ideas. It is our intent that

new and robust algorithms developed in DAVE will subsequently be incorporated directly in UBC-

SAT as stand-alone optimized algorithms. We are currently in the preliminary stages of developing

a software tool that can automatically generate fast, native source code to implement an algorithm

specified in DAVE.

7.4 VE-SAMPLER: Exploring New SLS Methods using DAVE
In this section we introduce a new algorithm framework we call VE-SAMPLER. VE-SAMPLER

uses a randomized controller that selects between six sub-controllers, where each sub-controller is

selected with a probability proportional to a configurable weight. Each of the six sub-controllers

uses a simple max VSM, and has a configurable clause-based filter, where the unsatisfied clause se-

lected is either random, the clause unsatisfied the longest, or the clause most frequently unsatisfied.

The VE of the first sub-controller is 〈freebie〉, similar to the random walk in WALKSAT/SKC [99],

where no random walk occurs if a freebie exists. The max VSM will select all freebie candidates,
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or all candidates if no freebies exist, and then break ties randomly.

The VEs for the other five sub-controllers are all of the form:

‖p1‖a1 + clw(s,m, l) · ‖p2‖a2 , (7.8)

where p1 and p2 are configurable, and correspond to variable properties (or a ratio of properties)

selected from lists we describe below. The clw() function represents a simple mechanism we created

to address clause normalization (briefly discussed in Section 7.2.3) in a practical, yet interesting way.

The three configurable parameters of clw(s,m, l) correspond to scaling coefficients that depend on

whether the clause length is small (< 3), medium (= 3), or large (> 3) (i.e., if the clause length is

two then clw(s,m, l) = s).

The normalization and non-linear transformation used in Equation 7.8 is similar to VW2+VE

and WALKSAT+VE. We chose to use only two properties to avoid the poor run-time performance

we observed with four properties in WALKSAT+VE. However, we believe that our approach of

using multiple VEs via a controller can provide a similar level of algorithm robustness without

significantly degrading per-step time complexity.

Of the five sub-controllers, one was configured to have only greedy properties similar to WALK-

SAT+VE, while the remaining four were configured to have one greedy property (p1) and one

diversification property (p2) similar to VW2+VE. The five greedy properties available were score,

make, relMake, break and relBreak.

We wanted diversification properties that were independent of the greedy variable properties

and required little or no computational overhead to maintain. For VE-SAMPLER, we created the

following new properties: filtCount is incremented every search step where the variable (with its

current value) has appeared in the list of flip candidates, relFiltCount is similar, but increases by

1/clauselen, and goodFlips and badFlips are incremented every time the variable (with its current

value) is flipped and the number of satisfied clauses goes up or down, respectively. In total, there

were thirteen diversification properties (or ratios of properties) available in VE-SAMPLER:

flips, age/flips, relFiltCount, goodFlips/flips,

age, age′/age, relFiltCount/flips, goodFlips/goodFlips′,

age′, filtCount, relFiltCount/relFiltCount′, goodFlips/badFlips

and rand, which draws a number uniformly at random from the interval [0,1]. While some of these

properties are based on prior evidence and intuition, others are simply interesting ideas that we

thought might be effective.

Our goal with VE-SAMPLER was to make very few decisions at design time and to configure

the resulting, highly parameterized algorithm automatically for optimized performance [52]. In

total, VE-SAMPLER has over 1050 possible configurations, which, to the best of our knowledge, is

the largest design space searched using PARAMILS so far. The experiments for the cbmc and swv
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Figure 7.6: VE-SAMPLER vs VW2 on cbmc. The speedup factor (s.f.) is (a) 16.2 and (b)
9.0. (The parameters for VW2 are (s,c,wp) = (0,0.01,0.2), found by PARAMILS (see
Section C.7.1). The configuration of VE-SAMPLER was found by PARAMILS and is
described in Section C.7.4. Each point corresponds to an instance in the set cbmc (test)
(39 instances). Median run-lengths and run-times are reported, obtained from 25 runs.
Execution environment: UBC arrow cluster (Section C.1). See Section C.5 for general
correlation plot details.)

test sets were conducted independently, and PARAMILS found a different configuration for each set,

as described in Section C.7. We present the results of our PARAMILS-configured VE-SAMPLER in

Figure 7.6, Figure 7.7 and Table 7.1. We compared VE-SAMPLER against the SLS-based solvers

VW2 and SATENSTEIN (see Section 7.5), both also configured with PARAMILS (see Section C.7).

The results we present were obtained using a compiled version of VE-SAMPLER, where the original

version, implemented in DAVE, was approximately 1.5 times slower.

VE-SAMPLER performs substantially better than VW2 and SATENSTEIN on our cbmc test set,

especially in terms of search steps. On the much more challenging real-world software verifica-

tion instances from the swv set, VE-SAMPLER also performs significantly better than VW2 and

SATENSTEIN. We note that none of the SLS algorithms we are aware of can solve more than about

half of the complete set of swv instances within our 600 second cutoff, but VE-SAMPLER does

solve this half of the instances more efficiently than any other SLS algorithm. While the results

in Table 7.1 are impressive and represent the current state-of-the-art in SLS-based SAT solvers on

these types of instances, the DPLL-based solver PICOSAT [12] is twice as fast as VE-SAMPLER

on cbmc, seven times as fast on swv (partial) and can solve any instance from the full swv set in
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Algorithm
cbmc swv (partial) swv (full)

Steps Time Steps Time %
PAR

%
×103 sec. s.f. ×103 sec. s.f. Compl. Compl.

VW2-SAT05 3 577 6.22 0.11 10 089 19.20 0.16 100 3 008 50.1
VW2 467 0.66 ref. 1 555 3.10 ref. 100 3 042 49.3
SATENSTEIN 228 0.80 0.82 1 465 12.50 0.25 100 3 040 49.5
VE-SAMPLER 29 0.07 9.00 245 0.90 3.61 100 2 664 50.7

Table 7.1: VE-SAMPLER vs VW2 and SATENSTEIN on cbmc and swv. Values shown are
the means of the median run-length and run-time from (a) 25 runs on instances from the
cbmc test set and (b) 10 runs on instances from swv. The s.f. is measured against the run-
time of VW2. All algorithms completed 100% of the cbmc instances. The PAR (Penalized
Average Run-time) is the average from all runs on all instances, where incomplete runs
after 600 seconds are penalized by a factor of 10 (6000 seconds) (see [70] for details). All
algorithms (except the parameterless VW2-SAT05) were optimized by PARAMILS (see
Section C.7).

10
3

10
4

10
5

10
6

10
7

10
8

10
3

10
4

10
5

10
6

10
7

10
8

V
E

-S
am

p
le

r 
[s

te
p
s]

VW2 [steps]

(a) run-length

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

V
E

-S
am

p
le

r 
[s

ec
]

VW2 [sec]

(b) run-time

Figure 7.7: VE-SAMPLER vs VW2 on swv (partial). The speedup factor (s.f.) is (a) 6.36 and
(b) 3.61. (The parameters for VW2 are (s,c,wp) = (0,0.1,0.05), found by PARAMILS
(see Section C.7.1). The configuration of VE-SAMPLER was found by PARAMILS and is
described in Section C.7.4. Each point corresponds to an instance in the set swv (partial)
(test) (39 instances). Median run-lengths and run-times are reported, obtained from 10
runs. Execution environment: UBC arrow cluster (Section C.1). See Section C.5 for
general correlation plot details.)
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just a few CPU seconds. Thus, while we have considerably reduced the performance gap between

SLS-based and DPLL-based SAT solvers on these software verification instances, there is still much

room for improvement.

When studying the VE-SAMPLER configurations found by PARAMILS, we observed that con-

figurations with similarly good performance often had substantially different configurations. This

might suggest that VE-SAMPLER is somewhat robust with respect to its configuration, and that

PARAMILS was far from finding the true optimal configuration of VE-SAMPLER (with over 1050

possible configurations, this is not surprising). We also observed configurations where two sub-

controllers would be configured to use the same variable properties, but to be rather different oth-

erwise. This was the case in the configurations featured in the results above, where the final cbmc

configuration heavily weighted two sub-controllers with the properties relMake and age′, and the

final swv configuration heavily weighted two sub-controllers with the properties break and flips (see

Section C.7.4). We believe this suggests that a hybrid algorithm including multiple configurations

of the same underlying mechanism can achieve very robust performance.

After experimenting with VE-SAMPLER on the software verification instance sets cbmc and

swv, we were curious to see how VE-SAMPLER would perform on instance sets where SLS algo-

rithms are currently the best known approach. We selected the crafted set qcp and the random set

r3sat used by KhudaBukhsh et al. in their work on SATENSTEIN [70], which they showed to be the

best performing SAT solver on these sets. As with our previous experiments, the sets were split into

a training set and a test set, and for qcp and r3sat we used the same subsets as the SATENSTEIN

author. We used PARAMILS to configure VE-SAMPLER on each of the training sets and present

the results of our experiments on the test sets in Figure 7.8, Figure 7.9 and Table 7.2. The results

we present were obtained using a compiled version of VE-SAMPLER, where the original version,

implemented in DAVE, was approximately 1.5 times slower.

On the qcp test set, VE-SAMPLER outperforms both SATENSTEIN and VW2 in run-lenth per-

formance (which is the criterion we optimized), but is slower with respect to run-time performance.

On the r3sat test set, VE-SAMPLER outperforms only VW2 in run-length performance, and is al-

most twice as slow as both SATENSTEIN and VW2 with respect to run-time performance. However,

based on the results presented by KhudaBukhsh et al. [70], VE-SAMPLER significantly outperforms

all eleven of the state-of-the-art challenger algorithms on qcp and six of the challengers on r3sat.

We designed VE-SAMPLER to demonstrate the power of VEs, and our results on the software

verification instances are especially impressive because the other components of the algorithm de-

sign (e.g., algorithm controllers, filters, variable selection mechanisms) are very straightforward.

However, while the results for VE-SAMPLER on the the qcp and r3sat domains are still very com-

petitive, to advance the state-of-the-art in these domains it is not sufficient to focus solely on VEs,

and additional components of our algorithm model also need to be explored.
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Figure 7.8: VE-SAMPLER vs SATENSTEIN on qcp. The speedup factor (s.f.) is (a) 1.28 and
(b) 0.71. (The configuration of SATENSTEIN is from the author [69]. The configuration
of VE-SAMPLER was found by PARAMILS and is described in Section C.7.4. Each point
corresponds to an instance in the set qcp (test) (1000 instances). Median run-lengths and
run-times are reported, obtained from 25 runs. Execution environment: UBC arrow
cluster (Section C.1). See Section C.5 for general correlation plot details.)

Algorithm
qcp r3sat

Steps Time Steps Time
×103 sec. s.f. ×103 sec. s.f.

VW2-SAT05 > 21 048 > 23 < 0.01 4 341 2.82 0.38
VW2 95.4 0.074 0.89 1 801 1.04 1.02
SATENSTEIN 64.3 0.066 ref. 790 1.06 ref.
VE-SAMPLER 50.3 0.092 0.71 1 466 2.03 0.52

Table 7.2: VE-SAMPLER vs VW2 and SATENSTEIN on qcp and r3sat. Values shown are
the means of the median run-length and run-time from 25 runs on instances from the
qcp and r3sat test sets. The s.f. is measured against the run-time of SATENSTEIN. All
algorithms completed 100% of the runs except for VW2-SAT05 on qcp, where 188 of
1000 instances had a median beyond the cutoff of 108 steps. All algorithms (except the
parameterless VW2-SAT05) were optimized by PARAMILS (see Section C.7).
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Figure 7.9: VE-SAMPLER vs SATENSTEIN on r3sat. The speedup factor (s.f.) is (a) 0.54
and (b) 0.52. (The configuration of SATENSTEIN is from the author [69]. The config-
uration of VE-SAMPLER was found by PARAMILS and is described in Section C.7.4.
Each point corresponds to an instance in the set r3sat (test) (250 instances). Median
run-lengths and run-times are reported, obtained from 25 runs. Execution environment:
UBC arrow cluster (Section C.1). See Section C.5 for general correlation plot details.)

7.5 Related Work
The manner in which SLS algorithm hybrids can be implemented in DAVE can be seen as a gen-

eralization of the HYBRID algorithm by Wei et al. [117]. HYBRID implements a clever heuristic to

select between the algorithms VW2-SAT05 and ADAPTIVE G2WSAT at each search step. Their

heuristic corresponds to a specific algorithm controller in our model, and once implemented in

DAVE, it becomes a universal controller that can be used to select between any two algorithms.

Furthermore, the selection of the algorithms to be hybridized can be achieved by using an auto-

mated configurator.

DAVE is conceptually related to the SATENSTEIN solver by KhudaBukhsh et al. [70], which

also extends UBCSAT, albeit in a different direction. SATENSTEIN incorporates proven com-

ponents from over two dozen existing SLS algorithms, including GNOVELTY+ [87], ADAPTIVE

G2WSAT+P [77], SAPS [61] and PAWS [111] and can be configured to instantiate any of those

algorithms, as well as many complex hybrids. SATENSTEIN is very efficient when properly config-

ured and is the best known SLS algorithm on several benchmark sets [70]. Whereas the SATEN-

STEIN authors liken their generated algorithms to Frankenstein’s monster, stitched together from
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existing algorithm parts, we believe that our model is more akin to a mad scientist experimenting

with algorithmic DNA. The significant difference is that SATENSTEIN has a bounded configuration

space, whereas DAVE is a design environment that supports arbitrarily complex algorithms in a

potentially unbounded space.

In that latter respect, DAVE is similar in nature to the COMPOSITE HEURISTIC LEARNING

ALGORITHM FOR SAT SEARCH (CLASS) by Fukunaga [35]. CLASS is a genetic programming

system that constructs new variable selection heuristics. Our work with VEs is somewhat orthogonal

to the research direction underlying CLASS; our goal has been to decouple the scoring functions

(VEs) from the VSMs and focus on the VEs, whereas in CLASS they are tightly coupled. There is

potential for combining the strategies of DAVE and CLASS, and we are considering incorporating

a CLASS-like syntax for VSMs into a future version of DAVE. Conversely, CLASS could be

extended by incorporating our concept of VEs.

7.6 Conclusions
In this work, we proposed a new conceptual model for SLS algorithms based on variable expressions

(VEs), and we demonstrated that algorithms with complex VEs can be very effective in practice.

We created a new software framework for designing new SLS algorithms and algorithm hybrids

in our model, and we demonstrated that by combining our software with an automated algorithm

configuration tool, it was rather easy to construct a new algorithm that is nine times faster than the

existing state-of-the-art SLS-based SAT solvers on a set of software verification instances known

from the literature. In Section 8.3, we discuss the future potential of this work and identify ways we

believe it can be extended.
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Chapter 8

Conclusions

. . . with satisfaction when we’re done. . .
— Deee-Lite. “Groove Is in the Heart”

This final chapter is structured as follows. First, in Section 8.1, we summarize the primary contri-

butions we have made in this dissertation. Next, in Section 8.2, we reflect on the journey we have

taken in this dissertation, and how the theme of Dynamic Local Search (DLS) has been prevalent

throughout. Finally, in Section 8.3, we identify ways in which our work can be extended.

8.1 Contributions
As we stated in Chapter 1, our primary goal in this dissertation was to advance the state-of-the-art

for SLS-based SAT solving. We accomplished this goal explicitly by developing new SLS algo-

rithms that outperform the current state-of-the-art SLS-based SAT solvers on interesting benchmark

problems, and implicitly by advancing the understanding of current SAT solvers and introducing

development tools for the next generation of SAT solvers. More specifically, our contributions are

as follows:

1. We developed UBCSAT, a framework for efficiently implementing and empirically evaluat-

ing SLS algorithms (Chapter 3).

2. We created the SCALING AND PROBABILISTIC SMOOTHING (SAPS) algorithm, and demon-

strated that SAPS dominates the performance of its predecessor, the EXPONENTIATED SUB-

GRADIENT (ESG) algorithm [97], and is amongst the state-of-the-art SLS algorithms for

SAT for some benchmark instances (e.g., the fac instances) (Chapter 4).

3. We provided an in-depth study of DLS-CP algorithms, advancing our understanding of their

behaviour. We discovered that there are interesting examples of instances where DLS-CP
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algorithms can identify problem clauses that can be weighted to make solving the instance

easier, but we demonstrated that this behaviour is rare and not how DLS-CP algorithms solve

most instances in practice. We concluded that typically only the very short-term memory of

DLS-CP algorithms is useful, and primarily for escaping local minima (Chapter 5).

4. We studied the role of random decisions in SLS algorithms, and performed an empirical

analysis on both the quality and quantity of random decisions. We concluded that SLS al-

gorithms are very robust with respect to the quality of their randomness source, and that

widely available Pseudo-Random Number Generators (PRNGs) are of sufficient quality for

implementing SLS algorithms. We presented evidence that even highly randomized SLS al-

gorithms can be derandomized in a straightforward manner without significantly changing

their behaviour. We observed an interesting phenomenon where, by making only one or two

changes in their initial variable assignment, derandomized algorithms can exhibit the same

full variability in run-time observed for randomized algorithms. (Chapter 6).

5. We introduced a new conceptual model for representing and designing new SLS algorithms

with Variable Expressions (VEs). We developed the DESIGN ARCHITECTURE FOR VARI-

ABLE EXPRESSIONS (DAVE), an extension of UBCSAT that implements our model. DAVE

was designed to leverage the use of recent automated algorithm configuration tools for the au-

tomated development of new algorithms. We demonstrated that by following our new algo-

rithm design approach, we achieved significant improvements over previous state-of-the-art

SLS-based SAT solvers on software verification benchmark instances (Chapter 7).

Almost all of the experiments in our work were conducted from within the UBCSAT frame-

work, which is why in Chapter 1 we referred to it as the cornerstone of our dissertation. The task of

collecting the clause penalty data from multiple DLS-CP algorithms (Chapter 5) would have been

very onerous without UBCSAT. The use of weighted algorithm variants and our ability to create

new variants, such as the +AMNESIA algorithms in Chapter 5 and the derandomized algorithms in

Chapter 6, was also facilitated by UBCSAT. In addition, we were able to easily extend UBCSAT

to add support for providing arbitrary sources of random data. Most importantly, we were able to

develop DAVE by extending the UBCSAT framework.

Beyond this dissertation, UBCSAT has been a significant contribution to the research commu-

nity. It is difficult to obtain exact usage statistics for UBCSAT, but based on the Google analytics

tool [124], in the eight month period from September 1, 2009 through April 30, 2010 the UBCSAT

website [141] was visited by over 1000 visitors (over 750 unique visitors), from over 60 differ-

ent countries. Since launched in 2004, UBCSAT has been downloaded hundreds of times. Google

Scholar [139] lists over 50 publications that cite UBCSAT [113]. We find this evidence very encour-

aging, and when combined with the positive anecdotal feedback we have received from UBCSAT

users, it reinforces our belief that UBCSAT has been a worthwhile and meaningful endeavour.
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One of the most recent uses of UBCSAT is the SATENSTEIN solver [70], which was able to

extend UBCSAT to create over 1011 unique algorithm hybrids from the algorithms that exist in

UBCSAT. Another interesting use of UBCSAT is its inclusion in SATZILLA [122], the overall

winner of the 2009 SAT Competition [137]. SATZILLA is a portfolio solver that selects a SAT

solver to solve an instance based on features of the instance. It uses the robust statistical report-

ing abilities of UBCSAT to collect features, including several measures of the behaviour of the

SAPS algorithm during a brief search through the instance. Interestingly, the behaviour of SAPS

reported by UBCSAT is useful even when selecting from amongst DPLL-based algorithms to solve

an instance [84].

This use of the SAPS algorithm in SATZILLA also speaks to the success of SAPS. Google

Scholar lists over 100 publications that cite SAPS [61], and it has been used as a state-of-the-

art benchmark algorithm in numerous publications. SAPS was one of the algorithms included in

the aforementioned SATENSTEIN solver, where many components of the SAPS algorithm were

combined with components from other algorithms to make interesting hybrids. A noteworthy and

frequent use of SAPS has been in the study of automated algorithm configuration tools. The devel-

opers of both PARAMILS [59] and the GENDER-BASED GENETIC ALGORITHM (GGA) [4] have

used SAPS in their experiments as an algorithm with a small, but interesting parameter configura-

tion space.

In Chapter 5, we provided a comprehensive analysis of how DLS-CP algorithms behave in

practice. We believe that our empirical study and methodology was consistent with the principals

prominently advocated by Hooker [46, 47], and that insights such as these will ultimately make

it possible to design better algorithms. The experimental approach we adopted to study random

decisions in Chapter 6 was motivated similarly, and was recognized as a significant contribution

when its publication [114] won the best paper award at the 2006 Canadian Conference on Artificial

Intelligence.

Our work in Chapter 7 was only recently published, so it is too early to assess its reception.

Ultimately, we believe that our DAVE project will have the most significant impact on the develop-

ment of new state-of-the-art SLS algorithms for SAT. In Section 8.3, we discuss the future potential

of this work and identify ways we believe it can be extended.

8.2 Overview: Dynamic Local Search for SAT
As we foreshadowed in Chapter 1, Dynamic Local Search (DLS) has been the prevalent theme

throughout this dissertation. We have defined a DLS algorithm as an algorithm that incorporates its

search history to dynamically adjust its search behaviour. Throughout this dissertation, we have de-

scribed numerous variable and clause properties that algorithms use in their search. In this context,

a useful alternate definition of a DLS algorithm is an algorithm that uses dynamic properties. Non-

dynamic properties are either static properties, such as the length of a clause, or scoring properties
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that reflect the current variable assignment, such as the score variable property and the satisfied

clause property. Dynamic properties incorporate elements of the search history, such as the age

and flips variable properties and the penalty clause property. Our work with UBCSAT aided our

study and development of DLS algorithms by creating a framework that facilitates the creation of

dynamic properties and the ability to collect statistical information on their behaviour.

At the beginning of our journey, we were fascinated by how SAPS incorporated history into its

search, not directly as with the age variable property, but indirectly with the use of the penalty clause

property. This fascination led us down a path that began with SAPS in Chapter 4 and eventually

led to the rigorous experimental analysis of DLS-CP algorithms we conducted in Chapter 5. Along

this journey we made some interesting observations and arrived at some important conclusions.

In particular, we concluded that for some instances we can study the dynamic clause penalties

generated by a DLS-CP algorithm such as SAPS to identify problem clauses that be used to make

solving the instance easier. (see Chapter 5).

We continued along this path of discovery by studying the role of random decisions in SLS

algorithms. In Chapter 6, we were able to replace the random decisions in SAPS with dynamic

properties. From this we concluded that a duality may exist between random decisions and the

dynamic search history (i.e., they both give rise to the same behaviour). Surprisingly, we were able

to demonstrate this duality on algorithms that heavily rely on random decisions. We were able to

successfully replace the random decisions in CRWALK and ADAPTIVE NOVELTY+ with dynamic

properties.

When we started our work in Chapter 7, our interest in dynamic clause properties such as penalty

had waned, and we saw more promising directions for further exploration. We decided to revisit

DLS algorithms from a much broader perspective, and we started to develop a new conceptual model

for SLS algorithms. We soon realized that even the most straightforward of dynamic properties, such

as flips, could be used more effectively by SLS algorithms, and we demonstrated this in Chapter 7.

By shifting the focus from Variable-Selection Mechanisms (VSMs) to Variable Expressions (VEs),

we also shifted the focus to dynamic properties. We believe there is great potential for new DLS

algorithms that can use new and existing dynamic clause and variable properties in novel and in-

teresting ways. Ultimately, we are looking forward to continuing this journey of exploration and to

discovering what lies ahead.

8.3 Future Work
In the previous two sections we summarized our work and our contributions. In this section, we

identify several exciting directions in which our research can be extended.

We believe that much of our work can be extended beyond SAT to other problem domains.

Our UBCSAT strategy, to design a framework for efficiently implementing and empirically ana-

lyzing algorithms, can be extended to nearly any domain. We believe our method of implementing
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triggered procedures will provide insight to other developers struggling with the practical imple-

mentation issues of such frameworks. Algorithm designers from other domains will be able to

emulate our approach with DAVE, by developing flexible design architectures that can benefit from

the availability of automated configuration tools. For domains where SLS approaches are prominent

and successful, we believe that many of the lessons we learned from our work in SLS for SAT will

also apply. For example, we believe that our conclusions on the role of random decisions in SLS

algorithms for SAT are applicable to all SLS algorithms. The BREAKOUT approach is popular in

other domains (e.g., the Constraint Satisfaction Problem (CSP)), and our work on analyzing and

understanding the behaviour of DLS-CP algorithms for SAT can provide new insight into the be-

haviour and efficacy of similar algorithms in other domains. In addition, we believe that our work

with variable expressions, where we combine properties together in new and interesting ways, will

be especially applicable and effective in other domains.

The UBCSAT project is an ongoing effort, and we are continuously expanding and enhancing

the software. We anticipate that whenever new, effective and interesting SLS algorithms are de-

veloped we will want to incorporate them into UBCSAT, and we often receive such requests from

the community. We also receive requests to enhance UBCSAT with new features. The two most

popular requests are to extend UBCSAT to a true 64-bit architecture, allowing for search trajecto-

ries and data collection that extend beyond the 32-bit barrier, and to improve the library interface

of UBCSAT so it can be more easily incorporated into larger projects. Both of these requested

features are forthcoming.

Following our success with DAVE, we believe that automated algorithm configuration tools

(such as PARAMILS) can be used to not only configure a single algorithm, but also to select from

amongst a collection of configurable algorithms. While existing algorithm configuration tools are

already sufficient, we propose that future tools may be more effective if they are designed specif-

ically as portfolio-based (multiple algorithm) configuration tools. In future releases of UBCSAT

we plan to include a PARAMILS configuration (specification) file that will allow PARAMILS to

determine the best configuration of UBCSAT (i.e., the best algorithm and the best configuration of

that algorithm) for a given instance (or instance set). We believe that this combination of UBC-

SAT and an automated algorithm configuration tool can be used to automatically establish a large

online repository (e.g., on SATLIB), where for any given instance or set of instances the best-known

configuration of UBCSAT would be widely available. This information would help new algorithm

developers measure their performance against the existing state-of-the-art algorithms. The combina-

tion of UBCSAT and PARAMILS can also be used in the automatic construction of portfolio-based

solvers, a new and exciting approach recently demonstrated by Xu et al. with their HYDRA proce-

dure [120].

As we look to the future of SAT solving, there are two features missing from UBCSAT that

we believe could help facilitate the next generation of SLS solvers: support for dynamic instances
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and distributed message passing. Algorithms with dynamic instances could change the instance

during the search by adding and removing clauses and variables; DPLL-based solvers often use this

strategy where new clauses are learned during the search. While this is not a new idea for SLS

algorithms [14, 45, 91], we believe there is greater potential for SLS algorithms to employ similar

strategies. With distributed message passing, UBCSAT could communicate with other applications

(including other instantiations of UBCSAT), to exchange information and coordinate search effort.

With dynamic message passing, new algorithms could be developed to exploit the parallel archi-

tectures that are becoming increasingly abundant in hardware. As an example of the potential of

message passing, Kroc et al. extended UBCSAT to communicate with a DPLL-based solver to co-

ordinate information to solve certain types of MAX-SAT instances instances very effectively [72].

We believe that in the light of our experience with SAPS and the knowledge we have gained

in more recent work, there is the potential for developing new, powerful DLS-CP algorithms. We

have seen that the random walk mechanism in SAPS is ineffective, and we believe that adding a

more explicit parameterized diversification mechanism would be more useful. We have encountered

instances where multiple scaling steps are necessary to escape a local minima and we would like to

avoid such repetition by determining the minimum scaling factor α required to escape minima in

a manner similar to SMOOTHED DESCENT AND FLOOD (SDF). As we have seen from our study

in Chapter 5, there are instances where problem clauses can be identified and exploited, but for

the majority of instances this is not the case, and dynamic penalties are simply a diversification

mechanism. We believe there is potential to develop two flavours of DLS-CP algorithms: one

specifically designed to detect and exploit problem clauses, and another primarily focused on using

DLS-CP as a diversification strategy. We believe that experimenting with normalizations, non-

symmetric and non-linear interactions in the penalized scoring functions can produce strong results,

similar to those we observed in Chapter 7. Finally, we believe that within the DAVE architecture, we

can combine penalized properties with other dynamic properties (such as flips and age) to develop

interesting new DLS-CP algorithms.

With respect to our work on randomization in Chapter 6, we believe the biggest potential for

improving state-of-the-art SAT solvers is in the further study of the circumstances when derandom-

ized algorithms perform better than or worse than the corresponding randomized algorithm. For

those instance and problem domains where derandomized algorithms perform better, perhaps new

algorithms could be developed that are more fair and balanced, and would use random decisions

more sparingly. Conversely, for instances on which derandomized algorithms are found to perform

poorly (i.e., ferry9u for SAPS/NR), it would be interesting to further explore the reasons underlying

the loss of performance, and to investigate in which mechanism of the algorithm derandomization is

causing the problem. This information could be useful to help identify how to use random decisions

more effectively.

The area of our dissertation where we see the biggest potential for further improvement in the
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state-of-the-art for SAT solving is our work in Chapter 7. Apart from the previously mentioned

work on CLASS-based Variable-Selection Mechanisms (VSMs) (Section 7.5) and the automated

generation of source code from DAVE configurations (Section 7.3), we see several other promising

directions for future work. We expect that there are more variable properties that can be effectively

incorporated into VEs, as well as more sophisticated ways of combining variable properties beyond

the simple scaling and non-linear transformations we presented in this work. We especially believe

that there are more effective ways to handle clause normalization. Now that we have conceptually

separated the components of algorithm controllers, filters, VEs and VSMs, we believe that algorithm

designers will be able to focus on those individual components. With the ability to quickly and

automatically test ideas in DAVE, we anticipate rapid development in each of these components of

algorithm design. Overall, we believe that the utilization of rich and flexible design environments,

such as DAVE, in combination with powerful automated configuration tools will make it possible

to achieve further, substantial progress in the state-of-the-art in SLS-based SAT solving.
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Appendix A

Algorithm Index

A.1 ADAPTIVE G2WSAT
Original citation: [77]

Referenced in text: page(s) 34, 120, 135

A.2 ADAPTIVE G2WSAT+P

Original citation: [77]

Referenced in text: page(s) 34, 135

A.3 ADAPTIVE NOVELTY+

ADAPTIVE NOVELTY+ is described in Section 2.5

Original citation: [51]

Default parameter(s): (wp) = (0.01)

Referenced in text: page(s) 19, 33, 51, 62, 64, 65, 68, 72, 106, 109, 110, 114–117, 140, 171

A.4 BREAKOUT

BREAKOUT is described in Section 2.6

Original citation: [83]

Referenced in text: page(s) 20, 21, 44–47, 65, 141

A.5 CALYSTO

Original citation: [9]

Referenced in text: page(s) 120, 176
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A.6 CLASS
CLASS is described in Section 7.5

Original citation: [35]

Additional citation(s): [32, 34]

Alternate name(s): Composite heuristic Learning Algorithm for SAT Search

Referenced in text: page(s) 136, 143

A.7 COMET
COMET is described in Section 3.7

Original citation: [116]

Referenced in text: page(s) 41

A.8 CRWALK: CONFLICT-DIRECTED RANDOM WALK

CRWALK is described in Section 2.5

Original citation: [85]

Alternate name(s): Papadimitriou’s Algorithm

Referenced in text: page(s) 17, 19, 25, 34, 105, 106, 109, 110, 114–117, 140

A.9 DAVE: DESIGN ARCHITECTURE FOR VARIABLE
EXPRESSIONS

DAVE is described in Section 7.3

Original citation: [115]

Referenced in text: page(s) 2, 3, 118, 119, 128, 129, 131, 133, 135, 136, 138, 139, 141–143, 179,

180

A.10 DCRWALK: DETERMINISTIC CRWALK
DCRWALK is described in Section 6.3

Original citation: [114]

Referenced in text: page(s) 34, 114, 115, 117
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A.11 DDFW: DIVIDE AND DISTRIBUTE FIXED WEIGHTS

DDFW is described in Section 4.4

Original citation: [63]

Default parameter(s): (Winit,pflat,TL) = (8,0.15,0.99)

Referenced in text: page(s) 34, 60, 61, 64–70, 72–78, 80–86, 88–90, 92, 93, 95–101

A.12 DDFW+: ADAPTIVE DDFW
DDFW+ is described in Section 4.4

Original citation: [62]

Referenced in text: page(s) 61

A.13 DETERMINISTIC ADAPTIVE NOVELTY+

DETERMINISTIC ADAPTIVE NOVELTY+ is described in Section 6.3

Original citation: [114]

Default parameter(s): (wp) = (0.01)

Referenced in text: page(s) 34, 115, 117

A.14 DLM: DISCRETE LAGRANGIAN METHOD

DLM is described in Section 4.1

Original citation: [102]

Referenced in text: page(s) 44–46, 51, 53, 60

A.15 DLM-98-BASIC-SAT
DLM-98-BASIC-SAT is described in Section 4.1

Original citation: [102]

Alternate name(s): DLM A3

Referenced in text: page(s) 46

A.16 DLM-99-SAT
DLM-99-SAT is described in Section 4.1

Original citation: [118]

Referenced in text: page(s) 46
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A.17 DLM-2000-SAT
DLM-2000-SAT is described in Section 4.1

Original citation: [119]

Referenced in text: page(s) 46

A.18 ESG: EXPONENTIATED SUBGRADIENT

ESG is described in Section 4.1

Original citation: [97]

Referenced in text: page(s) 2, 43, 46–51, 53–56, 58, 60, 62, 137

A.19 G2WSAT: GRADIENT-BASED GREEDY WALKSAT
G2WSAT is described in Section 2.5

Original citation: [76]

Default parameter(s): (noveltyNoise,dp) = (0.5,0.05)

Referenced in text: page(s) 19, 34, 62, 64, 65, 68, 72, 120, 127, 128

A.20 GGA: GENDER-BASED GENETIC ALGORITHM

Original citation: [4]

Referenced in text: page(s) 139

A.21 GLSSAT: GUIDED LOCAL SEARCH FOR SAT
GLSSAT is described in Section 4.1

Original citation: [81]

Referenced in text: page(s) 44, 45

A.22 GLUCOSE

Original citation: [8]

Referenced in text: page(s) 8

A.23 GNOVELTY+

GNOVELTY+ is described in Section 4.4

Original citation: [87]

Referenced in text: page(s) 62, 120, 135
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A.24 GSAT: GREEDY SEARCH FOR SAT
GSAT is described in Section 2.5

Original citation: [100]

Referenced in text: page(s) 16, 17, 19–21, 33–36, 40, 44, 45, 65, 105, 115, 119, 127, 128

A.25 GSAT+CW: GSAT WITH CLAUSE WEIGHTS

GSAT+CW is described in Section 4.1

Original citation: [98]

Alternate name(s): GSAT Strategy I: Clause Weights, WEIGHT

Referenced in text: page(s) 44, 45

A.26 GSAT+LR: GSAT WITH LEARNING RATES

GSAT+LR is described in Section 4.1

Original citation: [30]

Additional citation(s): [29]

Alternate name(s): WGSAT

Referenced in text: page(s) 44, 45

A.27 GSAT+LR+D: GSAT+LR WITH DECAY

GSAT+LR+D is described in Section 4.1

Original citation: [30]

Alternate name(s): WGSAT with decay

Referenced in text: page(s) 44, 45

A.28 GSAT/NW: GSAT WITH NO WORSENING STEPS

GSAT/NW is described in Section 5.1

Referenced in text: page(s) 65, 94

A.29 GSAT/TABU: GSAT WITH TABU
Original citation: [79]

Default parameter(s): (tabuTenure) = (10)

Referenced in text: page(s) 33
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A.30 GWSAT: GSAT WITH RANDOM WALK

GWSAT is described in Section 2.5

Original citation: [98]

Alternate name(s): GSAT Strategy III: Random Walk, GRSAT

Default parameter(s): (wp) = (0.5)

Referenced in text: page(s) 16, 17, 33–36, 72, 128

A.31 HSAT: GSAT WITH HISTORY

HSAT is described in Section 2.5

Original citation: [39]

Referenced in text: page(s) 19, 33, 120, 121

A.32 HWSAT: HSAT WITH RANDOM WALK

HWSAT is described in Section 2.5

Original citation: [40]

Alternate name(s): HRSAT

Default parameter(s): (wp) = (0.1)

Referenced in text: page(s) 19, 33, 72

A.33 HYBRID

HYBRID is described in Section 7.5

Original citation: [117]

Referenced in text: page(s) 121, 135

A.34 HYDRA

Original citation: [120]

Referenced in text: page(s) 141

A.35 IPAWS: SELF-TUNING PAWS
IPAWS is described in Section 4.4

Original citation: [110]

Referenced in text: page(s) 62
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A.36 IROTS: ITERATED ROTS
Original citation: [105]

Default parameter(s): (lTabu,tabuInterval,eSteps,pSteps,pTabu,pNoise) =

(0.1 · |V |+4,25, |V |2/4,0.9 · |V |,pSteps/2,0.1)

Referenced in text: page(s) 33, 40

A.37 MINISAT
Original citation: [23]

Referenced in text: page(s) 42

A.38 NOVELTY

NOVELTY is described in Section 2.5

Original citation: [80]

Default parameter(s): (noveltyNoise) = (0.5)

Referenced in text: page(s) 17, 19, 21, 27, 33, 36, 105, 119, 128

A.39 NOVELTY+

NOVELTY+ is described in Section 2.5

Original citation: [49]

Default parameter(s): (noveltyNoise,wp) = (0.5,0.01)

Referenced in text: page(s) 17, 19, 33, 48, 49, 51, 53–56, 72

A.40 NOVELTY++

Original citation: [76]

Default parameter(s): (noveltyNoise,dp) = (0.5,0.05)

Referenced in text: page(s) 19, 34, 72

A.41 NOVELTY+P

Original citation: [77]

Default parameter(s): (noveltyNoise,wp) = (0.5,0.01)

Referenced in text: page(s) 34
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A.42 OPENSAT
OPENSAT is described in Section 3.7

Original citation: [7]

Referenced in text: page(s) 41, 42

A.43 PARAMILS
PARAMILS is described in Section 7.1

Original citation: [59]

Additional citation(s): [57, 60]

Referenced in text: page(s) xxi, xxiv, 118, 120, 122, 123, 125–127, 130–135, 139, 141, 179–183

A.44 PAWS: PURE ADDITIVE WEIGHTING SCHEME

PAWS is described in Section 4.4

Original citation: [111]

Additional citation(s): [109]

Default parameter(s): (maxInc,pflat) = (10,0.15)

Referenced in text: page(s) 34, 53, 60, 61, 64–70, 72, 74–78, 80–86, 88–90, 92, 93, 95–101, 135

A.45 PAWS+US: PAWS WITH USUAL SUSPECTS

PAWS+US is described in Section 5.6

Original citation: [25]

Referenced in text: page(s) 61, 102

A.46 PICOSAT
Original citation: [12]

Referenced in text: page(s) 120, 131

A.47 PRECOSAT
Original Citation: [133]

Referenced in text: page(s) 8

A.48 RGSAT: RESTARTING GSAT
Original citation: [114]

Referenced in text: page(s) 34

165



A.49 RLS: RESOLVENT CLAUSE WEIGHTING LOCAL SEARCH

RLS is described in Section 4.4

Original citation: [91]

Referenced in text: page(s) 62

A.50 R-NOVELTY

Original citation: [80]

Default parameter(s): (noveltyNoise) = (0.5)

Referenced in text: page(s) 33

A.51 R-NOVELTY+

Original citation: [49]

Default parameter(s): (noveltyNoise,wp) = (0.5,0.01)

Referenced in text: page(s) 33, 72

A.52 ROTS: ROBUST TABU SEARCH

Original citation: [107]

Alternate name(s): Robust Taboo

Default parameter(s): (tabu,tabuInterval) = (10,25)

Referenced in text: page(s) 34, 72, 105

A.53 RSAPS: REACTIVE SAPS
RSAPS is described in Section 4.2

Original citation: [61]

Default parameter(s): (α ,ρ ,ps,wp,sapsThresh) = (1.3,0.8,0.05,0.01,−0.1)

Referenced in text: page(s) xxiv, 34, 51, 53, 72

A.54 SAMD: STEEPEST ASCENT MILDEST DESCENT

Original citation: [44]

Default parameter(s): (tabuTenure) = (10)

Referenced in text: page(s) 34, 40, 72
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A.55 SAPS: SCALING AND PROBABILISTIC SMOOTHING

SAPS is described in Section 4.2

Original citation: [61]

Default parameter(s): (α ,ρ ,ps,wp,sapsThresh) = (1.3,0.8,0.05,0.01,−0.1)

Referenced in text: page(s) ii, xxi, xxiv, 2, 3, 21, 34, 42, 43, 47, 50–70, 72–86, 88–93, 95–101,

104–106, 109, 111–114, 116, 117, 120, 127, 135, 137, 139, 140, 142

A.56 SAPS/NR: DERANDOMIZED SAPS
SAPS/NR is described in Section 6.3

Original citation: [114]

Default parameter(s): (α ,ρ ,ps,wp,sapsThresh) = (1.3,0.8,0.05,0.01,−0.1)

Referenced in text: page(s) 33, 60, 72, 112, 113, 115, 117, 142

A.57 SAT4J
SAT4J is described in Section 3.7

Referenced in text: page(s) 41, 42

A.58 SATELITE

Original citation: [22]

Referenced in text: page(s) 172

A.59 SATENSTEIN

SATENSTEIN is described in Section 7.5

Original citation: [70]

Alternate name(s): SATenstein-LS

Additional citation(s): [69]

Referenced in text: page(s) 53, 54, 57, 121, 122, 131–136, 139, 180, 183

A.60 SATZILLA

Original citation: [122]

Additional citation(s): [84, 121]

Referenced in text: page(s) 139
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A.61 SCHÖNING’S ALGORITHM

SCHÖNING’S ALGORITHM is described in Section 2.5

Original citation: [94]

Referenced in text: page(s) 17, 99, 105, 106, 114

A.62 SDF: SMOOTHED DESCENT AND FLOOD

SDF is described in Section 4.1

Original citation: [95]

Referenced in text: page(s) 46, 47, 49, 50, 56, 58, 60, 61, 104, 112, 142

A.63 UBCSAT
UBCSAT is described in Section 3.2

Original citation: [113]

Referenced in text: page(s) ii, xxi, 2, 3, 23, 24, 28–30, 32–42, 51, 52, 61, 62, 71, 72, 106, 108, 118,

128, 129, 135, 137–142

A.64 URWALK: UNIFORM RANDOM WALK

URWALK is described in Section 2.4

Referenced in text: page(s) 12–16, 24–27, 34, 35, 91, 105

A.65 VE-SAMPLER

VE-SAMPLER is described in Section 7.4

Original citation: [115]

Referenced in text: page(s) 119, 129–135, 180–183

A.66 VW1: VARIABLE WEIGHTING SCHEME I
Original citation: [88]

Default parameter(s): (wp) = (0.5)

Referenced in text: page(s) 34, 62
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A.67 VW2: VARIABLE WEIGHTING SCHEME II
VW2 is described in Section 7.2.1

Original citation: [88]

Default parameter(s): (c,s,wp) = (0.01,0.01,0.5)

Referenced in text: page(s) 34, 62, 121–124, 126, 127, 131–134, 180

A.68 VW2-SAT05: VW2 - 2005 COMPETITION VARIANT

VW2-SAT05 is described in Section 7.2.1

Original citation: [88]

Referenced in text: page(s) 121, 122, 132, 134, 135

A.69 VW2+VE
VW2+VE is described in Section 7.2.2

Original citation: [115]

Referenced in text: page(s) 123–125, 130, 180, 181

A.70 WALKSAT: (FAMILY OF ALGORITHMS)
WALKSAT is described in Section 2.5

Original citation: [99]

Referenced in text: page(s) 17, 19, 25, 27, 30, 32, 34–36, 40, 49, 105–107, 121, 128

A.71 WALKSAT/SKC
WALKSAT/SKC is described in Section 2.5

Original citation: [99]

Alternate name(s): WSAT, WalkSAT

Default parameter(s): (wp) = (0.5)

Referenced in text: page(s) 17, 21, 34–36, 42, 72, 91, 120, 125–127, 129

A.72 WALKSAT/TABU

WALKSAT/TABU is described in Section 3.2

Original citation: [80]

Alternate name(s): TABU, WTABU, Taboo

Default parameter(s): (tabuTenure) = (10)

Referenced in text: page(s) 19, 30, 32, 34, 36–38, 119
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A.73 WALKSAT+VE
WALKSAT+VE is described in Section 7.2.4

Original citation: [115]

Referenced in text: page(s) 125–127, 130, 181

A.74 WEIGHTED ADAPTIVE NOVELTY+

WEIGHTED ADAPTIVE NOVELTY+ is described in Section 5.1

Original citation: [51]

Default parameter(s): (wp) = (0.01)

Referenced in text: page(s) 64, 71, 88, 90, 91, 94, 95, 97

A.75 WEIGHTED G2WSAT
WEIGHTED G2WSAT is described in Section 5.1

Original citation: [76]

Default parameter(s): (noveltyNoise,dp) = (0.5,0.05)

Referenced in text: page(s) 64, 71, 89–91, 94, 96, 97

A.76 WEIGHTED GSAT/NW
WEIGHTED GSAT/NW is described in Section 5.1

Referenced in text: page(s) 65, 92
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Appendix B

Instance Set Index

We follow the common practice in the literature of identifying instances by their abbreviated file

name, often in the form prefix-suffix where the prefix is the instance set and the suffix is an identifier.

B.1 anp10m: SATLIB: Adaptive Novelty+ 1k-10M
Description: This is a large set we created with 1931 structured instances from SATLIB where

ADAPTIVE NOVELTY+ has a median run-length between 1000 and 10000000 steps. The anp10m

set is described in Section 5.1.

Original citation: [114]

Set categories: Structured, Crafted

Referenced in text: page(s) 65–67, 69, 70, 74, 76, 80, 81, 84, 86–88, 91, 95, 97, 98, 100, 101, 113,

115, 116

B.2 ais: All Interval Series
Description: Encoding of a numerical sequence problem inspired by music theory. ais-N instances

are sequences of length N. The ais instances are described in Section 2.2.

Original citation: [48]

Set categories: Structured, Crafted

Referenced in text: page(s) 6, 7, 48, 49, 54, 58, 65, 68, 71–73, 77, 79, 90, 99, 102
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B.3 bw-large: Blocks World
Description: Encoding of a temporal planning problem to stack blocks. The letter (e.g., bw-large-a)

indicates the size of the instance.

Original citation: [67]

Set categories: Structured, Application

Referenced in text: page(s) 35, 49, 53, 54, 65, 68, 90, 97, 102, 116

B.4 bitadd: Bit Adders
Description: Encoding of VLSI Boolean circuit synthesis problem.

Original citation: [66]

Source: 1996 International Competition on SAT Testing in Beijing

Set categories: Structured, Application

Referenced in text: page(s) 65, 97, 99

B.5 cbmc: ’C’ Bounded Model Checking
Description: Encoding of a software verification problem with bounded model checking. The in-

stances are ’C’ code of a binary search algorithm with different array sizes and loop-unwinding

values.

Original citation: [17]

Pre-processing: SATELITE tool with full processing settings (+ve)

Set categories: Structured, Application

Additional citation(s): [70]

Referenced in text: page(s) 7, 119–127, 130–133, 180–182

B.6 clus: Clustered 3-SAT
Description: Randomly generated structured 3-SAT instances that exhibit real-world clustering be-

haviour.

Original citation: [103]

Source: 2003 SAT Competition

Set categories: Structured, Crafted

Referenced in text: page(s) 68, 99
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B.7 fac: Factorial
Description: Encoding of a factorization problem.

Original Citation: [127]

Additional citation(s): [70]

Set categories: Structured, Crafted

Referenced in text: page(s) 53, 57, 137

B.8 ferry: Ferry Trafficking
Description: Encoding of a temporal planning problem to ferry cars from a source to a destination,

similar to the bw-large instances.

Original citation: [75]

Set categories: Structured, Application

Referenced in text: page(s) 68, 111–113, 142

B.9 flat: Flat Graph Colouring
Description: Encoding of a randomly generated flat graph 3-colouring problem. flatN instances

have N vertices. The hardest, median and easiest instances from a set are referred to as flatN-hard,

flatN-med and flatN-easy.

Original Citation: [128]

Set categories: Structured, Crafted

Referenced in text: page(s) 7, 48, 49, 54, 65, 73–76, 78, 80–86, 90, 97, 110, 115

B.10 gcp: Graph Colouring Problem
Description: Encoding of a randomly generated graph 3-colouring problem. The instance named

gN.C is a graph with N nodes where nodes are connected with a fixed probability p, and there are C

colours.

Original citation: [65]

Set categories: Structured, Crafted

Referenced in text: page(s) 53, 97

B.11 ii: Inductive Inference
Description: Encoding of a Boolean Function Synthesis Problem.

Original citation: [66]

Set categories: Structured, Crafted

Referenced in text: page(s) 65, 68, 90, 97, 99, 110
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B.12 jnh: Random P-SAT
Description: Random generated constant-density model instances, known as Random P-SAT. In

Random P-SAT, clauses are generated by including a variable in a clause with some probability p

and then randomly negated, with empty and unit clauses removed.

Original citation: [28]

Additional citation(s): [101]

Set categories: Random

Referenced in text: page(s) 36

B.13 logistics: Logistics Planning
Description: Encoding of a temporal planning problem to move packages between different loca-

tions in different cities.

Original citation: [67]

Set categories: Structured, Application

Referenced in text: page(s) 48, 49, 53, 54, 65, 99

B.14 parity: Parity Function
Description: Encoding of a parity function learning problem.

Original Citation: [132]

Set categories: Structured, Crafted

Referenced in text: page(s) 65, 77, 79, 90, 93, 99

B.15 qcp: Quasi-Group Completion
Description: Encoding of a quasi-group (Latin square) completion problem, similar to qg, generated

at the phase transition [43]

Original citation: [43]

Additional citation(s): [70]

Set categories: Structured, Crafted

Referenced in text: page(s) 133, 134, 180, 182, 183
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B.16 qg: Quasi-Group
Description: Encoding of a quasi-group (Latin square) problem. The instance named qgT-S is of

type T and size S.

Original citation: [123]

Set categories: Structured, Crafted

Referenced in text: page(s) 7, 68, 77, 79, 90, 99

B.17 r3sat: Random 3-SAT
Description: Random 3-SAT instances, similar to the uf instances, generated by the 2002 SAT

Competition generator.

Original Citation: [134]

Additional citation(s): [70]

Set categories: Random

Referenced in text: page(s) 133–135, 180, 183

B.18 rg: Random Graph
Description: Unsatisfiable Random Graph.

Set categories: Random, Unsatisfiable

Referenced in text: page(s) 36

B.19 SATLIB

Description: SATLIB is an online collection of benchmark problems [138].

Original citation: [54]

Referenced in text: page(s) 6, 65, 106, 141

B.20 sgi: Subgraph Isomorphism
Description: Encoding of the subgraph isomorphism problem to determine if a graph is isomorphic

to a subgraph of another graph.

Original citation: [5]

Set categories: Structured, Crafted

Referenced in text: page(s) 65

175



B.21 ssa: Single-Stuck-At fault circuit analysis
Description: Encoding of a single-stuck-at fault circuit analysis problem.

Original citation: [74]

Additional citation(s): [140]

Set categories: Structured, Application

Referenced in text: page(s) 110

B.22 swv: Software Verification
Description: Encoding of a software verification problem generated by the CALYSTO static checker.

Original citation: [9]

Additional citation(s): [58]

Set categories: Structured, Application

Referenced in text: page(s) 7, 120, 130–133, 180, 182, 183

B.23 swgcp: Morphed Graph Colouring Problems
Description: Encoding of a graph colouring problem where the graph is generated by morphing

randomly generated graph and a structured ring lattice graph.

Original citation: [37]

Set categories: Structured, Crafted

Referenced in text: page(s) 65, 68, 90

B.24 uf: Unforced Uniform Random 3-SAT
Description: Random instances with 3 unique variables per clause, each selected at random and

negated at random, with no forced solution. ufN instances have N variables and a number of clauses

corresponding to the phase-transition. The hardest, median and easiest instances from a set are

referred to as ufN-hard, ufN-med and ufN-easy. The uf instances are described in Section 2.2.

Original citation: [16]

Additional citation(s): [54]

Set categories: Random

Referenced in text: page(s) 6, 35, 49, 53–56, 59, 60, 110, 111, 113, 116
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B.25 uuf: Unsatisfied Unforced Uniform Random 3-SAT
Description: These are the same as uf instances, except that they are unsatisfiable.

Original citation: [16]

Additional citation(s): [54]

Set categories: Random, Unsatisfiable

Referenced in text: page(s) 36
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Appendix C

Experimental Details

C.1 UBC arrow cluster
The UBC arrow cluster at UBC is composed of 55 dual 3.2GHz Intel Xeon PCs with 2GB RAM,

2MB cache, running SuSE Linux.

Referenced in text: page(s) xxi, 57, 58, 67, 122, 123, 126, 127, 131, 132, 134, 135, 180

C.2 UBC BETA cluster
The original UBC BETA cluster at UBC is composed of Pentium III (Coppermine) PCs with 256KB

cache and 1GB RAM, running either Red Hat Linux or SuSE Linux.

Referenced in text: page(s) 36, 49, 54–56

C.3 WestGrid glacier cluster
The WestGrid glacier cluster is composed of 840 computational nodes, each with two 3.06 GHz

Intel Xeon 32-bit processors with at least 2GB of RAM, running Red Hat Linux.

C.4 WestGrid orcinus cluster
The WestGrid orcinus cluster is composed of 12 chassis, each containing 16 blades with two com-

pute servers on each blade and each server has two 3.0 GHz Intel Xeon E5450 quad-core processors,

with each server sharing 16 GB of RAM, running Red Hat Enterprise Linux Server.

C.5 Correlation plots
Throughout this dissertation, we provided correlation plots to compare the performance of two

different algorithms on an instance set. We also use the same methodology to compare two variants
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of the same algorithm or the same algorithm on two different weightings of the same instance set.

Each point in the plot corresponds to a single instance, and the location of the point is the resulting

median run-length from multiple runs of the two algorithms on the instance. In some cases, we

indicate the mean value of all of the medians with dashed lines, and provide the speedup factor (s.f.)

which is the ratio of the two means. The line of equivalent performance is also shown, and the

relative difference between the performance of the algorithms is represented by the perpendicular

distance from this line. In some cases, we also provide significance bands showing the distance

from the line of equivalent performance that is considered statistically significant. To determine the

location of these significance bands we use the Mann-Whitney U-test [55: p. 179] for significance

level 0.01 and a power of 0.99. In Chapter 5, we do not include instances in the plots where one or

both of the algorithms did not have at least half of the runs be successful at the cutoff value (108, or

the largest axis value) and instead identify the instances as significant outliers in the text.

C.6 Training sets
For our experiments in Chapter 7, we split the instance sets into halves: a test set, and a training set.

To split the instances we used a stratification strategy to ensure that the test and training set were of

approximately equal hardness. As an approximate measure of hardness, we measured the file size

of the instance. We first sorted the instances by their file size, and then segmented the instances into

pairs of consecutive instances. For each consecutive pair, we randomly placed one instance in the

test set, and the other in the training set. Only the instances in the training set were used to determine

good parameter settings, and only instances in the test set were used to report experimental results.

C.7 PARAMILS experimental information
All PARAMILS experiments were conducted with the UNIX binary of PARAMILS version 2.3.2.

We used the default FocusedILS configuration of PARAMILS with settings of (deterministic, overall-

obj) = (0, mean10). Because PARAMILS can be very sensitive to the ordering of the instance list,

we performed several runs of PARAMILS, each with a randomized instance list, and selected the

configuration with the best performance on the training set. To measure this performance we ran

each configuration five times on each instance in the training set and measured the median run-

length from those five runs, and then measured the mean of those medians. The current PARAMILS

software implementation only supports adaptive capping of algorithm runs after a given run-time,

not after a given run-length. Since we were interested in optimizing our algorithms in DAVE

for run-length performance, but still wanted to take advantage of PARAMILS’s excellent adaptive

capping feature, we reported the run-length information to PARAMILS as run-time information.

Whether or not PARAMILS uses the solution quality to compare unsuccessful runs changed between

different PARAMILS versions due to a bug we identified, so to err on the side of caution we included
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it in our run-time as follows. For a run with a run-length of rl with a solution quality of u unsatisfied

clauses, we modified the run-length to be rl + u
10000 . Instead of simply reporting the run-length of

DAVE as a run-time, we decided to add an additional transformation to provide PARAMILS with a

run-time in the same order of magnitude it typically encounters, to avoid introducing any unintended

numerical precision errors. We divided the run-length by 106, so that one million search steps in

DAVE corresponded to one second in PARAMILS. We had to use a wrapper script around DAVE

to convert cutoff times received from PARAMILS back to search steps (i.e., multiply by 106). For

SATENSTEIN and VW2 experiments, the instance cutoff time was 60 seconds, and for DAVE the

cutoff was 10 seconds, which is the equivalent of 107 search steps. Because PARAMILS measures

its total execution time by relying on the reported run-time data, the manner in which we were

reporting DAVE performance run-length data to PARAMILS as run-time data was problematic. As

a result, we specified a very large amount of cutoff time to PARAMILS and controlled the total

amount of CPU time used by PARAMILS through our computation environment.

In our experiments with PARAMILS and VE-SAMPLER, we encountered some difficulties that

we believe were caused by the very large parameter space of VE-SAMPLER. Due to Ruby’s over-

head in some data structures, we observed that the binary Ruby implementation of PARAMILS

could consume a large amount of RAM (over 1 GB), and as a consequence would be automatically

terminated in our computation environment. In addition, we observed that some of the PARAMILS

runs would stagnate, not improving over the initial (default) configuration despite parallel runs

achieving great improvement. As a result of these two observations, we used an iterative strategy,

where instead of executing PARAMILS for some amount of time t, we executed k iterations of

PARAMILS, each with time t/k. For each iteration, we would use the best configuration from the

previous iteration as the default configuration (see Section C.7.4).

C.7.1 VW2
The possible configurations for each parameter of VW2 were:

s {1, 0.33, 0.1, 0.033, 0.01, ... 0.000033, 0.00001, 0}

c {1, 0.33, 0.1, 0.033, 0.01, ... 0.00000033, 0.0000001, 0}

wp {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

We ran PARAMILS 10 times on the UBC arrow cluster for 24 hours. The best VW2 configura-

tion (s,c,wp) found by PARAMILS for cbmc is (0,0.01,0.2), for swv is (0,0.1,0.05), for r3sat is

(0.33,0.0001,0.4), and qcp is (1,0.0000001,0.1).

C.7.2 VW2+VE
The possible configurations for each parameter of VW2+VE were:

w {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35,
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40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175, 200}

c {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2,

1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.25, 2.5,

2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 15, 20, 25, 30,

35, 40}

a {0.125, 0.25, 0.5, 1, 2, 4, 8}

The value of wp is calculated from w as 1
1+w . We ran PARAMILS 20 times on the WestGrid

glacier cluster for 24 hours. The best VW2+VE configuration found by PARAMILS for cbmc

is (c,a,wp) = (0.95,8,0.05).

C.7.3 WALKSAT+VE

For each term in WALKSAT+VE, the possible configurations for the parameters c, a and w (wp)

were the same as for VW2+VE. For the normalizations, the possible configurations for make and

relMake were:
‖p‖flat =

p−min(p)
max(p)−min(p)

(C.1)

‖p‖max =
p

max(p)
(C.2)

‖p‖sum =
p

sum(p)
(C.3)

and the possible configurations for break and relBreak included all of the above normalizations in

the form of (1−‖p‖), as well as:

‖x‖-max =
max(x)+min(x)− x

max(x)
(C.4)

We ran PARAMILS 20 times on the WestGrid glacier cluster for 96 hours. The best WALKSAT+VE

configuration found by PARAMILS for cbmc is (wp) = (0.5) and the scoring function is:

1.05 · (‖make‖flat)
8 +1.35 · (‖relMake‖flat)

4

+8 · (1−‖break‖max)
1/2 +2.25 · (1−‖relBreak‖max)

4 . (C.5)

C.7.4 VE-SAMPLER

For VE-SAMPLER, the possible configurations for the weight of each sub-controller (w), the expo-
nents in the VEs (a) and the co-efficients of the clw function (c) were:

w {0, 1, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 12.5, 15, 20,

25, 30, 40, 50, 75, 100}
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a {0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16}

c {0, 0.1, 0.25, 0.5, 0.667, 0.8, 0.9, 0.95, 1, 1.05,

1.1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 5, 7.5, 10}

The possible configurations for the properties (or ratio of properties) used in the VEs are listed

in Section 7.4. For each property, we allowed only two possible normalizations, depending on

whether or not the property is a maximal or minimal property (see Section 7.2.3). The possible

normalizations were ‖p‖flat, ‖p‖max, (1−‖p‖flat) or ‖p‖-max (see Section C.7.3 above).

For cbmc we used the WestGrid glacier cluster, and ran PARAMILS for 4 iterations, where for

each iteration we ran PARAMILS 40 times for 24 hours. The best VE-SAMPLER configuration

found by PARAMILS on cbmc is:

w1 = 3 e1 = freebie

w2 = 30 e2 = (‖break‖-max)
1/4 + clw(0,0,2) · (1−‖relBreak‖flat)

16

w3 = 50 e3 = (‖relMake‖max)+ clw(3.5,0.9,5) · (‖age′‖max)
8

w4 = 3 e4 = (‖make‖flat)+ clw(0.25,3.5,1.05) · (‖flips‖-max)
1/8

w5 = 30 e5 = (‖relMake‖flat)
2 + clw(0.25,0.25,3) · (‖age′‖flat)

w6 = 1 e6 = (‖make‖max)
8 + clw(0.95,3.5,0.5) · (‖age‖max)

(C.6)

For swv we used the WestGrid orcinus cluster, and ran PARAMILS for 4 iterations, where for

each iteration we ran PARAMILS 40 times for 24 hours. The best VE-SAMPLER configuration

found by PARAMILS on swv (partial) is:

w1 = 3 e1 = freebie

w2 = 15 e2 = (1−‖break‖flat)
1/16 + clw(0,0.25,1) · (‖make‖max)

1/2

w3 = 50 e3 = (‖break‖-max)
16 + clw(0.1,5,0.25) · (‖flips‖-max)

1/2

w4 = 50 e4 = (‖break‖-max)
1/16 + clw(0.1,3.5,1.75) · (‖flips‖-max)

1/16

w5 = 3 e5 = (‖relBreak‖-max)+ clw(1,5,7.5) · (1−‖flips‖flat)
1/16

w6 = 5 e6 = (‖make‖flat)
1/2 + clw(2.5,0.1,1.05) · (‖flips‖-max)

(C.7)

For qcp we used the WestGrid glacier cluster, and ran PARAMILS for 4 iterations, where for

each iteration we ran PARAMILS 20 times for 24 hours. The best VE-SAMPLER configuration
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found by PARAMILS on qcp is:

w1 = 3 e1 = freebie

w2 = 3 e2 = (1−‖break‖flat)
2 + clw(1.5,1.5,3.5) · (1−‖break‖flat)

1/8

w3 = 12.5 e3 = (‖make‖flat)
4 + clw(1.5,1.25,0) · (1−‖flips‖flat)

4

w4 = 12.5 e4 = (‖relMake‖flat)
1/16 + clw(1.25,0.95,1) · (‖age′‖flat)

1/4

w5 = 100 e5 = (‖break‖-max)
16 + clw(0.9,0.9,0.667) · (‖age‖max)

1/2

w6 = 1.5 e6 = (‖relMake‖flat)
4 + clw(2.0,0.8,0.667) ·

(∥∥∥age′

age

∥∥∥
flat

)8

(C.8)

For r3sat we used the WestGrid glacier cluster, and ran PARAMILS for 4 iterations, where for

each iteration we ran PARAMILS 20 times for 24 hours. The best VE-SAMPLER configuration

found by PARAMILS on r3sat is:

w1 = 3 e1 = freebie

w2 = 1 e2 = (‖relMake‖flat)
1/2 +1.05 · (1−‖relBreak‖flat)

16

w3 = 50 e3 = (‖break‖-max)+1.1 ·
(∥∥∥ age

flips

∥∥∥
max

)1/4

w4 = 2.5 e4 = (1−‖score‖flat)
8 +2 · (‖filtCount‖max)

2

w5 = 2.5 e5 = (‖make‖flat)
8

w6 = 75 e6 = (‖break‖-max)
16 +1.1 · (‖age′‖max)

1/8

(C.9)

C.7.5 SATENSTEIN

For SATENSTEIN, we used two PARAMILS configuration files provided by the SATENSTEIN au-

thors. We ran PARAMILS 40 times (20 times for each configuration file) on the WestGrid orcinus

cluster for 96 hours. The configuration of SATENSTEIN found by PARAMILS on swv (partial) is:

-adaptive 0 -adaptivenoisescheme 1 -adaptiveprom 0

-adaptpromwalkprob 0 -adaptwalkprob 0 -alpha 1.066 -c 0.00001

-clausepen 1 -decreasingvariable 3 -dp 0.05 -heuristic 2

-maxinc 20 -novnoise 0.5 -performalternatenovelty 1

-performrandomwalk 1 -pflat 0.05 -phi 5 -promdp 0.05

-promisinglist 0 -promnovnoise 0.5 -promphi 5 -promtheta 6

-promwp 0.01 -ps 0 -randomwalk 4 -rdp 0.05 -rfp 0.15 -rho 0.8

-rwp 0.1 -rwpwalk 0.05 -s 0.001 -sapsthresh -0.1

-scoringmeasure 3 -selectclause 1 -singleclause 0

-smoothingscheme 1 -tabu 5 -tabusearch 0 -theta 6

-tiebreaking 2 -updateschemepromlist 3 -varinfalse 1 -wp 0.05

-wpwalk 0.7
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