Dynamic Local Search for SAT:
Design, Insights and Analysis

Dave Tompkins
Final PhD Oral Examination
Department of Computer Science, UBC
September 16, 2010

Supervisor: Holger Hoos
Supervisory Committee: Will Evans, Alan Hu
University Examiners: David Kirkpatrick, David Mitchell (SFU)
External Examiner: Steve Prestwich
Chair: Robin Turner (ECE)

Primary Goal

"to advance the state-of-the-art
for SLS algorithms for SAT"

Primary Goal

"to advance the state-of-the-art
for SLS algorithms for SAT"

* Explicitly: develop new SLS algorithms that can
outperform existing algorithms

Primary Goal

"to advance the state-of-the-art
for SLS algorithms for SAT"

* Explicitly: develop new SLS algorithms that can
outperform existing algorithms

* Implicitly: advance our understanding of current
algorithms and introduce tools for developing new
algorithms

Overview

* |Introduction

— The Propositional Satisfiability problem (SAT)
— Stochastic Local Search (SLS) for SAT
— Summary of key contributions

* Body of Work

 Conclusions
— Review key contributions

— Future work

Propositional Satisfiability

 Boolean variables are either (T)rue or (F)alse
— x,;: Dave's PhD defence will have a positive outcome
— x,: Dave will celebrate tonight

(=, V x,) A (x;V=x,) — formula

l_Y_J

clause

negative literal

Propositional Satisfiability

 Boolean variables are either (T)rue or (F)alse
— x,;: Dave's PhD defence will have a positive outcome
— x,: Dave will celebrate tonight

Propositional Satisfiability

* Boolean variables are either (T)rue or (F)alse
— x,;: Dave's PhD defence will have a positive outcome
— X,: Dave will celebrate tonight

Propositional Satisfiability

* Boolean variables are either (T)rue or (F)alse
— x,;: Dave's PhD defence will have a positive outcome
— X,: Dave will celebrate tonight

= satisfying assignments

* Objective: Given a formula (SAT instance)
find a satisfying assighment

Many "Real” SAT Applications

8 | J4] 6] | |7
HEN NN NN
11 le5

5| 9] [3] |7[8] |
HEE B .
48] 2] |1 3

Software Verification Sudoku

Exponential Search Space

Q
O
(q8]
Q.
V)
i -
O
. .
(q8]
Q
)
e
i
C
Q
C
O
Q.
X
LL]

Q
O
(q8]
Q.
V)
i -
O
. .
(q8]
Q
)
e
i
C
Q
C
O
Q.
X
LL]

Exponential Search Space

* n variables:
2" assignments

250 variables

=~ [0’ combinations
~# atoms in the universe

=4 =94 =94 =5 = = =
=4 =94 = = 49 4 = =
- =™ 4 =™ =5 =™ =

4 9 9 9 =™ =™ = = 49 494 39 9 =M =™ = o
4 9 mm mm 494 94 = =m 49 94 mm m 4 3 = o
4 =™ 4 m 494 =™ 34 mm A9 =™ <4 =M 3 =\ 4

F
F
F
F
F
F
F
F
T
T
T
T
T
T
T
T

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)

(=, Vx,V=xs)A(=x,V=x, VX YA (=x V=x) A(=x , Vx, Vi V=x,)

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)
(=, Va,V=x) A(=x, V=, Ve) A (=x, V=) A(=x, Ve, Vi V=)

(=0, Ve, V=) A=, V=, Ve YA (=, V=xs) A(=x, VX, VeV =xy)

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)

(
=x,V=x5)A(=x \/x2\/x3\/—-x4)
(

Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g) A=, V=, Vi) A (=, V=) A= Ve, Vi Vi-x,)

(=, Vx,V=xs)A(=x,V=x, VX YA (=x V=x) A(=x , Vx, Vi V=x,)

e Selecting a variable:
make = # of clauses that become satisfied if we flip x

score = make — [GSAT: Selman, Levesque & Mitchell, 1992]
2-4

1. Developed UBCSAT

. Created SAPS, a Clause Penalty (CP)
algorithm

. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

. Introduced a new conceptual model for SLS
algorithms with Variable Expressions (VEs)

— Developed a new Design Architecture (DAVE)

1. Developed UBCSAT

UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it

UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it

]

UBCSAT Architecture

ChooseVariable
FlipVariable

CheckTerminate

UBCSAT Algorithms

e All (typical) SLS algorithms
can be seen as a series of
procedures that happen at
"event points”

* When you select the
algorithm, the appropriate
procedures are "triggered"

UBCSAT Algorithms

e Similar algorithms can
re-use existing triggers

UBCSAT Reports

e Additional Reports and
Statistics can be "activated"
when needed

UBCSAT Reports

* Facilitating empirical
analysis is an important
component of UBCSAT

UBCSAT Efficiency

 UBCSAT is very efficient
with little overhead

UBCSAT
algorithm Speedup

WalkSAT/SKC 1.5x —2.2x
Novelty 1.3x — 2.0x
GSAT 1.7x —7.6x
GWSAT 2.5x — 7.4x

UBCSAT

A software framework for SLS algorithms

* |[ncorporates existing SLS algorithms

— highly efficient, accurate implementations

Facilitate development of new SLS algorithms

Advanced empirical analysis of algorithms

Open-source
Cornerstone of the dissertation

2. Created SAPS, a Clause Penalty (CP)
algorithm

SAT Search Space

* n-dimensional hypercube

é&

"2D" Search Landscape

YAt Vad

‘ solution

"2D" Search Landscape

VARV

‘ solution

Intensification & Diversification

Clause Penalties

* Each clause is assigned a penalty value

e Score is no longer just make —

score = 2. c.penalty —

make

Original Idea:

— Breakout Method [Morris, 1993]
— GSAT+CW [Selman & Kautz, 1993]

"Breakout" Approach

e When a local minimum occurs:

Zmake
increment the penalty for unsatisfied clauses

c.penalty <

N

"Breakout" Approach

e When a local minimum occurs:
>

increment the penalty for unsatisfied clauses

c.penalty <

make

* Eventually, will no longer be in a local minimum

score = 2. c.penalty—

make

N

"Breakout" Approach

e When a local minimum occurs:
>

increment the penalty for unsatisfied clauses

c.penalty <

make

* Eventually, will no longer be in a local minimum

score = 2. c.penalty—

make

SAPS Algorithm

Enhancement of existing algorithm

— Exponentiated Sub-Gradient (ESG)
[Schuurmans et. al, 2002]

Multiplicative Scaling

c.penalty := c.penalty - a

Probabilistic Smoothing

with probability (Ps):
c.penalty := c.penalty + (1-p) - avg.penalty

Scaling And Probabilistic Smoothing (SAPS)

SAPS Algorithm

 Dominated the performance of its predecessor (ESG)

e Still amongst the state-of-the-art solvers

* Led to the work in other chapters

3. Analyzed CP algorithm behaviour

Dynamic Clause Penalties

Clause Penalty Distributions

Clause Penalty Analysis

 We identified instances with
"Problem Clauses"
— We constructed weighted instances...

... that were easier for SLS algorithms to solve
(80x faster for Adaptive Novelty*)

Clause Penalty Analysis

A quest for problem clauses
Analyzed penalty behaviour
Hardness of warped landscapes

History ("memory") of the search

Ultimately: problem clauses are rarely helpful
Key element of CP algorithms: diversification

4. Analyzed random decisions in SLS algorithms

Random Decisions

e Stochastic Local Search

* Quality of random decision

— SLS Algorithms are robust (existing random
number generators are good enough)

* Quantity of random decisions
— Simple derandomizations can be effective
— SLS Algorithms exhibit ‘chaotic'-like behaviour
— No real advantage to derandomizing

5. Introduced a new conceptual model for SLS
algorithms with Variable Expressions (VEs)

— Developed a new Design Architecture (DAVE)

Variable Properties

* Scoring Properties
make = # of clauses that become satisfied if we flip x

score = make —

Variable Properties

* Dynamic Properties
age = # of steps since x was flipped [1ABU, Glover 1986]
flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]

Variable Properties

* Static Properties

Variable Expressions (VEs)

e combinations of variable properties
in mathematical expressions:

make — break
age
(make — break) + 3 - log,(age) + age/flips

Most existing SLS algorithms use straightforward VEs
... we explore more complex VEs

Our work was inspired by:
Variable Weighting Algorithm VW2 [prestwich, 2005]

Combining Properties

Select variable with minimum value of:

+ c-flips

breakﬁ -

A

Combining Properties

Select variable with minimum value of:

+ c-flips

breakﬁ - Q

A

Combining Properties

* Normalize properties values to [0...1]
amongst the “candidate” variables

 Allow for non-linear normalization

Modifying Existing Algorithms with VEs

* WalkSAT with more complex VE

* Speedup factor:
7.2x (steps)
3.1x (time)

WalkSAT+VE [steps]

* (compared to original WalkSAT)
> 4000x (steps)
> 2000x (time)

Our New SLS Model

[Filter Variables HVariable Expression(s) H Selection Mechanism J

Our New SLS Model

[Filter Variables HVariable Expression(s) Selection Mechanism

Separation of:
VEs & Selection Mechanism

¢ Novelty AIgO rithm [McAllester, Selman & Kautz, 1997]

e Select “best” variable with maximum of:
(make — break)
breaking ties by
(age)
* |f the best variable has the minimum

(age)
then, with probability p, select 2"¢ best var.

Separation of:
VEs & Selection Mechanism

¢ Novelty AIgO rithm [McAllester, Selman & Kautz, 1997]

e Select “best” variable with maximum of:
(VE,)

breaking ties by
(VE,)
* |f the best variable has the minimum
(VE;)
then, with probability p, select 2"¢ best var.

Our New SLS Model

[Filter Variables]—{ Evaluate VEs]—-[Select Variable]

Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

3

\ 4 A 4 A 4

Filter Variables]—{ Evaluate VEs]—-[Select Variable

Flip Selected Variable & Update State Information / Bookkeeping

Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

Filter Variables]—{ Evaluate VEs]—-[Select Variable

Flip Selected Variable & Update State Information / Bookkeeping

Algorithm Controllers

[Controller

FILT

(” D
» VEs
§)

—

" VSM

n
L

f
\

FILT

(” D
» VEs
§)

—
—

" VSM

FILT

(” D
» VEs
§)

—
—

"1 VSM

S

Algorithm Controllers

[Controller

N\

FILT

» VEs

)

"1 VSM

[Controller]

[
\

FILT

» VEs

—
)

"1 VSM

FILT

J

» VEs

—
)

"1 VSM

S

Algorithm Controllers

[Controller

N\

FILT —1 VEs

N\

)

[Controller]

{ FILT —1 VEs

"1 VSM

—
)

FILT —1 VEs

J

"1 VSM

—
)

"1 VSM

[Controller

S

Sub-Controller

Sub-Controller

Sub-Controller

Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

3

\ 4 A 4 A 4

Filter Variables]—{ Evaluate VEs]—-[Select Variable

Flip Selected Variable & Update State Information / Bookkeeping

Software Implementation

* Design Architecture for Variable Expressions
(DAVE)

— Entire algorithm specified at runtime

* Controllers, filters, VEs, selection mechanisms
— Arbitrary complex VEs (interpreted)
— Sophisticated macro system

* Aids the use of automated configurators

e Extension of UBCSAT (2.0)

New Model & DAVE

Concept of VEs
New Model
New Architecture

Demonstrated our work
in conjunction with an
automated configurator

o
Oy
]
5
o
D
o
=
=
£
E
=
7

10° 10°
VW2 [steps]

Speedup factor:
16.2x (steps)
9.0x (time)

1. Developed UBCSAT

. Created SAPS, a Clause Penalty (CP)
algorithm

. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

. Introduced a new conceptual model for SLS
algorithms with Variable Expressions (VEs)

— Developed a new Design Architecture (DAVE)

Primary Goal

"to advance the state-of-the-art
for SLS algorithms for SAT"

* Explicitly: develop new SLS algorithms that can
outperform existing algorithms

* Implicitly: advance our understanding of current
algorithms and introduce tools for developing new
algorithms

Future Work

Extend our methods to other domains
Incorporate the use of automated tools
Dynamic instances, distributed systems
Generalized clause penalty solver
Problem clauses & encodings

New algorithm constructions

Selected Publications

Dave A. D. Tompkins and Holger H. Hoos. Dynamic Scoring Functions with Variable
Expressions: New SLS Methods for Solving SAT in SAT 2010, p. 278-292, 2010.

Dave A.D. Tompkins and Holger H. Hoos, On the Quality and Quantity of Random Decisions
in Stochastic Local Search for SAT in Al 2006, p. 146-158, 2006.

Dave A.D. Tompkins and Holger H. Hoos, UBCSAT: An Implementation and
Experimentation Environment for SLS Algorithms for SAT and MAX-SAT in SAT 2004, p.
306-320, 2005.

Dave A. D. Tompkins and Holger H.Hoos. Warped Landscapes and Random Acts of SAT
Solving in AI&M 2004.

Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos, Scaling and Probabilistic
Smoothing: Efficient Dynamic Local Search for SAT in CP 2002, p. 233-248, 2002.

Special Thanks To:

* Supervisor:
— Holger H. Hoos

Special Thanks To:

Committee members:

— Will Evans, Alan Hu (& Lee Iverson)

Co-Authors:
— Holger H. Hoos & Frank Hutter

Additional technical help
— Kevin Smyth, Lin Xu, Chris Fawcett

BETA lab members
Proofreaders
Family & friends

i
CIBT

B L~
J‘._‘__. 4
o a2 .._.._-T.. olaz [
| m ® _...“_...r.. WAL ..__—..ﬂ.._.'w AL .
.__T... 2 M=~ ooz ~
- B L]
. W :

O
_I
V)
R
-
(C
c
_I
i
O
<,
Q
2

n
C
O
s’
(Vp)
Q
>
o}

