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— The Propositional Satisfiability problem (SAT)
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Propositional Satisfiability

 Boolean variables are either (T)rue or (F)alse
— x,;: Dave's PhD defence will have a positive outcome
— x,: Dave will celebrate tonight

(=, V x,) A (x;V=x,) — formula
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Propositional Satisfiability

* Boolean variables are either (T)rue or (F)alse
— x,;: Dave's PhD defence will have a positive outcome
— X,: Dave will celebrate tonight

= satisfying assignments

* Objective: Given a formula (SAT instance)
find a satisfying assighment




Many "Real” SAT Applications
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Exponential Search Space
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Exponential Search Space

* n variables:
2" assignments
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randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it
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Stochastic Local Search (SLS) for SAT

randomly initialize all variables
while (formula not satisfied)
select a variable and “flip” it

(=2, Vo, V=g ) A=, V=, Vi ) A (=, V=) A= Ve, Vi Vi-x,)

(=, Vx,V=xs)A(=x,V=x, VX YA (=x  V=x ) A(=x , Vx, Vi V=x,)

e Selecting a variable:
make = # of clauses that become satisfied if we flip x

score = make — [GSAT: Selman, Levesque & Mitchell, 1992]
2-4







1. Developed UBCSAT

. Created SAPS, a Clause Penalty (CP)
algorithm

. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

. Introduced a new conceptual model for SLS
algorithms with Variable Expressions (VEs)

— Developed a new Design Architecture (DAVE)
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UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it




UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it

]




UBCSAT Architecture

ChooseVariable
FlipVariable

CheckTerminate




UBCSAT Algorithms

e All (typical) SLS algorithms
can be seen as a series of
procedures that happen at
"event points”

* When you select the
algorithm, the appropriate
procedures are "triggered"




UBCSAT Algorithms

e Similar algorithms can
re-use existing triggers




UBCSAT Reports

e Additional Reports and
Statistics can be "activated"
when needed




UBCSAT Reports

* Facilitating empirical
analysis is an important
component of UBCSAT




UBCSAT Efficiency

 UBCSAT is very efficient
with little overhead

UBCSAT
algorithm Speedup

WalkSAT/SKC  1.5x —2.2x
Novelty 1.3x — 2.0x
GSAT 1.7x —7.6x
GWSAT 2.5x — 7.4x




UBCSAT

A software framework for SLS algorithms

* |[ncorporates existing SLS algorithms

— highly efficient, accurate implementations

Facilitate development of new SLS algorithms

Advanced empirical analysis of algorithms

Open-source
Cornerstone of the dissertation




2. Created SAPS, a Clause Penalty (CP)
algorithm




SAT Search Space

* n-dimensional hypercube
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"2D" Search Landscape
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"2D" Search Landscape
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‘ solution




Intensification & Diversification




Clause Penalties

* Each clause is assigned a penalty value

e Score is no longer just make —

score = 2. c.penalty —

make

Original Idea:

— Breakout Method [Morris, 1993]
— GSAT+CW [Selman & Kautz, 1993]



"Breakout" Approach

e When a local minimum occurs:

Zmake
increment the penalty for unsatisfied clauses
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SAPS Algorithm

Enhancement of existing algorithm

— Exponentiated Sub-Gradient (ESG)
[Schuurmans et. al, 2002]

Multiplicative Scaling

c.penalty := c.penalty - a

Probabilistic Smoothing

with probability (Ps):
c.penalty := c.penalty + (1-p) - avg.penalty

Scaling And Probabilistic Smoothing (SAPS)




SAPS Algorithm

 Dominated the performance of its predecessor (ESG)

e Still amongst the state-of-the-art solvers

* Led to the work in other chapters




3. Analyzed CP algorithm behaviour




Dynamic Clause Penalties




Clause Penalty Distributions




Clause Penalty Analysis

 We identified instances with
"Problem Clauses"
— We constructed weighted instances...

... that were easier for SLS algorithms to solve
(80x faster for Adaptive Novelty*)




Clause Penalty Analysis

A quest for problem clauses
Analyzed penalty behaviour
Hardness of warped landscapes

History ("memory") of the search

Ultimately: problem clauses are rarely helpful
Key element of CP algorithms: diversification




4. Analyzed random decisions in SLS algorithms




Random Decisions

e Stochastic Local Search

* Quality of random decision

— SLS Algorithms are robust (existing random
number generators are good enough)

* Quantity of random decisions
— Simple derandomizations can be effective
— SLS Algorithms exhibit ‘chaotic'-like behaviour
— No real advantage to derandomizing




5. Introduced a new conceptual model for SLS
algorithms with Variable Expressions (VEs)

— Developed a new Design Architecture (DAVE)




Variable Properties

* Scoring Properties
make = # of clauses that become satisfied if we flip x

score = make —




Variable Properties

* Dynamic Properties
age = # of steps since x was flipped [1ABU, Glover 1986]
flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]




Variable Properties

* Static Properties




Variable Expressions (VEs)

e combinations of variable properties
in mathematical expressions:

make — break
age
(make — break) + 3 - log,(age) + age/flips

Most existing SLS algorithms use straightforward VEs
... we explore more complex VEs

Our work was inspired by:
Variable Weighting Algorithm VW2 [prestwich, 2005]




Combining Properties

Select variable with minimum value of:

+ c-flips

breakﬁ -

A




Combining Properties

Select variable with minimum value of:

+ c-flips

breakﬁ - Q

A




Combining Properties

* Normalize properties values to [0...1]
amongst the “candidate” variables

 Allow for non-linear normalization




Modifying Existing Algorithms with VEs

* WalkSAT with more complex VE

* Speedup factor:
7.2x (steps)
3.1x (time)

WalkSAT+VE [steps]

* (compared to original WalkSAT)
> 4000x (steps)
> 2000x (time)




Our New SLS Model
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Separation of:
VEs & Selection Mechanism

¢ Novelty AIgO rithm [McAllester, Selman & Kautz, 1997]

e Select “best” variable with maximum of:
(make — break)
breaking ties by
(age)
* |f the best variable has the minimum

(age)
then, with probability p, select 2"¢ best var.
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Our New SLS Model

[ Filter Variables ]—{ Evaluate VEs ]—-[ Select Variable ]




Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM
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Algorithm Controllers

[ Controller
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Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM
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Filter Variables ]—{ Evaluate VEs ]—-[ Select Variable

Flip Selected Variable & Update State Information / Bookkeeping




Software Implementation

* Design Architecture for Variable Expressions
(DAVE)

— Entire algorithm specified at runtime

* Controllers, filters, VEs, selection mechanisms
— Arbitrary complex VEs (interpreted)
— Sophisticated macro system

* Aids the use of automated configurators

e Extension of UBCSAT (2.0)




New Model & DAVE

Concept of VEs
New Model
New Architecture

Demonstrated our work
in conjunction with an
automated configurator
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Speedup factor:
16.2x (steps)
9.0x (time)
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Future Work

Extend our methods to other domains
Incorporate the use of automated tools
Dynamic instances, distributed systems
Generalized clause penalty solver
Problem clauses & encodings

New algorithm constructions
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