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Stochastic Local Search (SLS)
/ Large combinatorial \

problems

Start with a full (random)
variable assignment

Move to neighbouring
(adjacent) solutions
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SATisfiability Problem
/ — literal \

e (@vbv-c)(av-bvd)(-avdve)...

N J ]
' T T variables

clause

OBJECTIVE:

* Find an assignment of variables (A=T,B=F,...)
so that all clauses are SATisfied
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CRWALK

K a.k.a. Papamaditrou’s algorithm
| Papadimitriou 1991]

 Nice theoretical bounds:

— Schoning’s algorithm is avg. case O(1.334")
[Schoning 1999]

e Conflict-Directed Random Walk
— Randomly select an unsatisfied clause

— Flip a random variable from that clause
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CRWALK

/+ a=T, b=T, c=T, d=F, e=F...
e (avbv-c)(av-bvd)

e a=F, b=T, c=T, d=F, e=F...
e (@Vvbv-c) (ravdve)...

e a=F, b=F, c=T, d=F, e=F...
k (Aav-bvd)(-avdve)...
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Adaptive Novelty™*

/ High performance, state-of-the-art SLS algorithm

« SLS Leader in last two SAT competitions
www . satcompetition.org

« Uses random decisions in four different ways:

— Selecting clauses

— Decide to take a random walk step

— Selecting variables in random walks

— Selecting between “best” & “second best” choices
« Deterministically adapts noise during search

— Based on current search progress

\_

N
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Random Number Generators (RNGSs)

/SLS algorithms use random decisions in a varlety\
of ways

e Obviously a “true” RNG is ideal (prohibitive)
 We use Pseudo-RNGs (PRNGS)

 The qualities of a “good” PRNG:
— Unbiased
— Uncorrelated
— Long Period

+ Software packages available for measuring the
“quality” of a bitstream

k-QuaIity IS related to underlying PRNG function
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Model of a Pseudo-RNG
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Measuring Quality

K Tested different streams with statistical testsx
and on SLS algorithms
— True RNG (atmospheric noise)
— Pseudo-RNGs:

e Unix “C” Random

 Linear congruential ANSI C]

e Lagged Fibinoacci Knuth]

* Mersenne twister Matsumoto, Takuiji]
— Intentionally bad streams:

» Added bias
k . Cycled (periodic) behaviour
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Observations

KStandard PRNGs are all “good” enough \

We could affect the SLS algorithm
performance with biased streams
(but they were really biased)

« With cycled streams, we could get the
kalgorithms to become “stuck”
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PAC Property of SLS Algorithms

K Many SLS algorithms are \
Probabillistically Approximate Complete (PAC)

— Will solve a soluble instance with arbitrarily high
probability when allowed to run long enough

« CRWALK & Adaptive Novelty+ are both PAC

« Even though the algorithms were PAC, we could
make them “incomplete” with a poor RNG
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Model of a Pseudo-RNG
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Conclusions

KSince all PRNGs eventually cycle, no Conventionam
algorithm implementation is truly PAC

e Desired PRNG features
— Reasonably “good” score on a statistical quality test
— Long cycle period
— Efficiency
— Platform independence

 Mersenne Twister; period is (219937 - 1)

\_
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Quantity of Random Decisions

K Previous Observation:

Scaling and Probabillistic
Smoothing (SAPS)

algorithm essentially becomes
deterministic after initial search
phase

Cumulative # of
Random Decisions

We derandomized the algorithm:
SAPS/NR
k[Tompkins, Hoos 2004]
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SAPS/NR Median Run-Time [steps]
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Derandomization

KCan we achieve similar results with \
algorithms that rely more heavily on random
decisions?

* \We developed derandomized versions of
CRWALK and Adaptive Novelty+

e Used straightforward derandomization

\methods
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Derandomized CRWALK

KBEFORE:

— Select unsatisfied clause at random
— Select variable to flip at random

« DERANDOMIZED:

— Select clause with the lowest value of:
(# times selected / # times unsat)

» Breaking ties with the “first” clause
k — Select variable to flip iIn sequential order

N
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DCRWALK (Deterministic)

/ a=T, b=T, c=T, d=F, e=F...
e (avbv-c)(av-bvd)

e a=F, b=T, c=T, d=F, e=F...
e (Avbv-c (ravdve)...

e a=1T, b=T, c=T, d=F, e=F...
e (@avbv-c)(av-bvd)

e a=F, b=T, c=T, d=T, e=F...
k(avbvﬂc) (av-bvd) (—mavdve)...

N
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DCRWALK Median Run-Time [steps]

CRWALK Median Run-Time [steps]



DANOV+ Median Run-Time [steps]
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Advanced Derandomization
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Quantity of Random Decisions

-

e Deterministic Algorithms

N

Cumulative # of
Random Decisions

e Deterministic Initialization

\_
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P(solve) [%]
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P(solve) [%]
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P(solve) [%)]
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P(solve) [%]
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P(solve) [%]
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P(solve) [%]
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P(solve) [%]
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Conclusions & Future Work

/SLS algorithms are very robust w.r.t. the quality of\
the random number generator

With straightforward implementations, a surprisingly
few number of random decisions can exhibit full
variability

Future Work

— Other domains & algorithms

— Time analysis of PRNGs & randomized vs. deterministic
— Statistical outliers: investigate for further insight
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Thank you

Dave

Tompkins

Questions?
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