
A Note on the Structure of Canadian Curling Playoffs

D.R. Stinson

March 15, 2024

Starting in the mid-1990s, the Canadian curling championships has used a playoff
format known as the Page Playoffs. The same system is also used in some softball
and cricket tournaments. The system originated in Australia in 1931, where it was
first used in Australian Rules Football under the name Page-McIntyre System [1].

The playoff involves four teams, which are ranked 1–4 after a result of a prelim-
inary round of play. Here is how it works:

round match name teams

1 A 3-4 game 3 vs. 4

1 B 1-2 game 1 vs. 2

2 C semifinal winner A vs. loser B

3 D final winner B vs. winner C

Observe that matches A, C and D are elimination matches since the loser does
not play any more games. Match B is not an elimination game.

One interesting aspect of this system is the very large advantage it provides to
the two top-ranked teams as compared to the third- and fourth-ranked teams. For
purposes of illustration, let’s suppose that the probability that any team wins any
particular game is 1/2.

Here is a quick way to compute the probabilities (the computations I discuss in
this paper remind me of the various examples in Peter Winkler’s article “Probability
in your head” [3]). The probability that team 3 wins the tournament is 1/8 since
they must win three consecutive games. Similarly, team 4’s winning probability is
1/8. Team 1 and 2 both have the same probability p of winning. Since the four
probabilities must sum to 1, we have p = 3/8. Thus teams 1 and 2 are each three
times more likely to win than teams 3 or 4.

Evidently one goal of this system is to reward the top two teams by giving them
a higher chance of winning the playoffs. But I think it is reasonable to ask if such
a large advantage is desirable.

Very recently, the Canadian curling championships have changed their playoff
system to include six teams. There are now four preliminary games to determine
seedings for a four-game Page Playoff (so there are a total of eight games played!).
The teams are designated 1–6; they are actually the top three teams from each of
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two groups. Let’s denote the top three teams from the first group (in order) by 1, 3
and 5; the top three teams from the second group are denoted (in order) 2, 4 and 6.

round match name teams

1 A 1 vs. 4

1 B 2 vs. 3

2 C loser A vs. 5

2 D loser B vs. 6

3 E 3-4 game winner C vs. winner D

3 F 1-2 game winner A vs. winner B

4 G semifinal winner E vs. loser F

5 H final winner F vs. winner G

In this system, matches C, D, E, G and H are the elimination matches.
Again, let’s suppose that the probability that any team wins any particular game

is 1/2. We analyze the probabilities as follows. It is clear that teams 1, 2, 3 and 4
each have the same probability, say p, of winning. Teams 5 and 6 also have the same
probability of winning. Teams 5 and 6 must win four consecutive games to win the
tournament, so each of their winning probabilities is 1/16. Since the probabilities
sum to 1, we have 4p+ 1/8 = 1, so p = 7/32.

We conclude that teams 1–4 are each 3.5 times more likely to win the tournament
than teams 5–6. This is a very skewed distribution, and, in addition, one might ask
why teams 1 and 2 receive no advantage over teams 3 and 4.

Is there a better alternative? Wikipedia [2] describes the McIntyre final six
system which we discuss now. (There are actually two versions of this system; we
describe the first version.) As was the case for the previous system, the last four
matches comprise a Page Playoff. Here there are seven rather than eight matches;
the elimination matches are A, B, D, F and G.

round match name teams

1 A 5 vs. 6

1 B 3 vs. 4

1 C 1 vs. 2

2 D 3-4 game loser C vs. winner A

2 E 1-2 game winner C vs. winner B

3 F semifinal loser E vs. winner D

4 G final winner E vs. winner F

As before, let’s suppose that the probability that any team wins any particular
game is 1/2. It is now the case that teams 1 and 2 have probability p of winning and
teams 3 and 4 have a different probability, say q of winning. First, we observe that
teams 5 and 6 must win four consecutive games to win the tournament, so each of
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their winning probabilities is 1/16. Teams 3 and 4 can win in two possible ways: (1)
by consecutive wins in matches B, E, and G, or (2) by a win in match B, a loss in
match E, and wins in matches F and G. So q = 1/8+1/16 = 3/16. We can compute
p by using the fact that the probabilities sum to 1. Hence 2p + 3/8 + 1/8 = 1
and p = 1/4. Summarizing, teams 1 and 2 each have probability 1/4 of winning,
teams 3 and 4 each have probability 3/16 of winning, and teams 5 and 6 each have
probability 1/16 of winning.

This seems somewhat more equitable to me. It seems appropriate that teams
1 and 2 have the best chance of winning. There is a fairly small gap in winning
probabilities between teams 1 and 2 and teams 3 and 4, as well as a fairly large
gap between the winning probabilities of teams 3 and 4 and teams 5 and 6. In my
opinion, the seven-match McIntyre final six system is preferable to the eight-match
system currently in use.
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