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Abstract—In this paper, we discuss the use of combinatorial set ~ Recently, Eschenauer and Gligor [5] proposed a randomized
systems in the design of deterministic key predistributiorschemes key predistribution scheme. Their scheme consists of three
for distributed sensor networks. We concentrate on analyzig phaseskey predistribution shared-key discoveryand path-
comblnatgrlal properties of the set systems t.hat. relate to He K tablish We briefly d ibe th h .
connectivity and resilience of the resulting distributed gnsor K€Y €StabliSnmenvve brielly describe these phases since our
networks. schemes follow the same framework. In the key predistriouti

phase, a large pool of keys and their key identifiers are
I. INTRODUCTION generated. Every sensor node is loaded with a fixed number of
keys chosen from the key pool, along with their key identfier

Distributed Sensor Networks (DSNs) are ad-hoc mobile netfter deployment of the DSN, the shared-key discovery phase
works that include sensor nodes with limited computatioth amakes place, where two nodes in wireless communicatiorerang
communication capabilities. They are mainly used for @it look for their common keys. If they share one or more
purposes but they also have wide applications in civili@aar common keys, they can pick one of them as their secret key
In military operations, sensor nodes are distributed instilgo for cryptographic communication. The path-key establishim
territory in order to monitor and collect various inforn@ti phase takes place if there is no common key between a pair of
(e.g., acoustic, seismic, magnetic). Since they are tlipicanodes in a wireless communication range. Then, they look for
carried by soldiers or spread from airplanes, we assume thailtiple secure links (hops) to reach each other, so that one
sensor nodes have no information on where they are locatefithem can choose an arbitrary key and then relay it through
that is, they are distributed in a random way. Once deployatle links in encrypted form to the destination node.
they operate unattended for extended periods without anyThe communication capabilities of a DSN can be modeled
movement. They have no external power supply during theig the intersection of a physical layer and a network layee D
operation. Therefore the most essential requirement is th@ resource constraints, a sensor node can communicate with
each sensor should consume as little power as possible. nodes only within a limited radius. Sensor nodes are degloye

The sensor nodes in DSNs should be able to communicaea@domly within a certain physical space, so pgsical layer
with each other in order to relay or accumulate secret infermis represented by andom geometric graphOn the other
tion. There are three ways to establish pairwise keys betwdeand, thenetwork layeris represented by theetwork graph
sensor nodes. First is to establish secret keys using acpubin which two nodes are adjacent if they share a common key.
key infrastructure (PKI). However, asymmetric cryptodr@p The network graph is determined by the structure of the KPS,
primitives are not suitable due to expensive computatioost and it is independent of the physical distribution of thessen
as well as storage constraints in each node. In other sigategnodes. In order for two sensor nodes to communicate, the two
a sensor node is chosen to b&wsted authority(TA) or there nodes must be connected by a path in both the geometric graph
is an explicitbase station which all nodes in the network and the network graph.
are assumed to trust. The TA or base station shares a long- o
lived key with every node and transmits session keys to sendo OUr Contributions
nodes on request. This method can result in expensive cost$he Eschenauer-Gligor KPSs ([5]) are randomized schemes:
for message relay. Arbitrated protocols are also vulnerédl every node is assigned a random subset of keys from a
a compromise of the TA or the base station. Therefore it ggven pool of keys. In this paper, we focus on combinatorial
natural that we are interested key predistribution schemesconstructions for deterministic key predistribution sties.

(or KPS3, where a set of secret keys is installed in each nodée rest of this paper is organized as follows. In Sectiowd,
before the sensor nodes are deployed. define some basic types of combinatorial set systems (dgsign



and how they can be used to set up a KPS for a DSN. Inltis useful and convenient if every node receives a constant
Section lll, we introduce “configurations” and discuss thenumber of keys and every key is assigned to a constant number
influence on the local connectivity of the DSN. Section I\of sensor nodes ([9]). Therefore, from now on, we will only
characterizes the configurations that yield DSNs in whigh aconsider regular and uniform set systems. Such a set system i
two nodes share a common key. Section V introduces the nealled a(v, b, , k)-1-design where| X | = v, |A| = b, r is the
concept of a fi-common intersection design”, and Section Vtegree and: is the rank. A necessary condition for existence
discusses the existence of two-hop paths in the corresponddf such a set system is thiadt = vr. It is well-known that this
DSNs. Section VII examines a subclass of configuratiomgcessary condition is sufficient for existence divab, r, k)-
that are optimal with respect to their common intersectioirdesign (see, for example, [8]).
properties. Section VI treats resiliency of the DSNs irth The correspondences between the parameters of a set system
presence of failed or compromised nodes, and Section &Xd the related key predistribution scheme for a DSN are
mentions one efficient method for shared-key discovery. summarized in Table | (note that “two-hop paths” will be
B R described in detail in Section V).

. Related Work

The basic model we are studying is due to Eschenauelll. CONFIGURATIONS ANDLOCAL CONNECTIVITY OF
and Gligor [5], who studied randomized KPSs for DSNSs. THE DSNs
Extensions and variations of this approach can be found in : . o
) In this section, we address tHecal connectivityof the
Chan, Perrig and Song [2], Du, Deng, Han and Varsheney [4 L .
. ) . o twork. Our desire is that any two nodes that are in close
and Liu and Ning [7]. Papers studying deterministic KPSs for_ . - X
. . hysical proximity to each other should be able to estaldish
DSNs include Camtepe and Yener [1], Lee and Stinson |
. : . - - écure channel. Observe that two nodes,’Sagnd N;, share
and Wei and Wu [9]. The use of combinatorial designs in this . . L
) . a common key if and only if4; N A; # 0. In this case, they
context was first proposed in [1]. .
can use any key € A;NA; as a secret key for cryptographic
[I. COMBINATORIAL SET SYSTEMS AND DSNs communication.

A set systenor designis a pair(X, A), where A is a finite We can evaluate the connectivity of the network layer by
set of subsets ok, calledblocks Thedegreeof a pointz € X  studying theblock graphG 4 of the set systenf.X,.A). The
is the number of blocks containing the point (X,.4) is 9raphG. has vertex setd, and two vertices (blocks), say;
regular (of degreer) if all points have the same degree, andA;, are adjacent iz 4 if A; N A; # 0. Two nodes, say
The rank of (X, A) is the size of the largest block. If all Vi andN;, share a common key if and only if; and 4; are
blocks have the same size, shythen (X, .A) is said to be adjacentin the block graph.

uniform (of rank k). Lemma 1:Any vertex (block)A; in the block graphG 4
Example 1:Let of a (v, b, k)-1-design,(X,.A4), has degree at mos{r — 1).
Further, all vertices inG 4 have degrees equal fgr — 1) if
X = {1,2,3,456,7,8,9}, and and only if |[A; N A;| < 1 for all A;, A; € A, i # j.
A = {123,456, 789,147,258, 369, Proof: Fix a block A4; € A. For anyz € A;, define

159,267, 348,168,249, 357}.
’ ’ ’ ’ ’ B, = {Al ceA:zxe Az}\{AJ}

Then (X, A) is a set system in which there are nine points )

and twelve blocks. This set system is regular of degread Clearly, [B.| = r —1 for all z € A;. The degree of4; in

uniform of ranks. 1 G.a, which we denote byleg(4;), is equal to the number of
A set system can be used akey predistribution scheme blocks intersectingd;, so

in a distributed sensor network as follows. Suppose that

X={z;:1<i<v} deg(A;) = | | Bo| < D IBo| =k(r —1).
TEA; TEA;
and
A={A;:1<j<b}. Furthermore, it is easy to see thidg(A;) = k(r — 1) if and
Let the sensor nodes be denotdd.....N,. That is, we only if the setsB, (z € A;) are disjoint. This is equivalent to

. . . ) saying thajA, N A;| <1 forall A4, € A, i#j. ]
identify theb blocks in.A with the b sensor nodes. Further, the A (v, b, 7, k)-1-design is called dv, b, r, k)-configurationif

points in.X' are identified with a set of keys, as follows: For ny two distinct blocks intersect in zero or one point. (For a

Iie?/-lspgazéasz?h is randomly chosen from some SloeCIer(illrief survey on configurations, see [3, pp- 253-255]). Lerima
Then, for 1 <'j < b, the sensor nodéV; receives the set 2SS6MS that, among all tte, b, 7, k)-1-designs, thev, b, r, k)-
of keys' -4 =7 J _conﬁg_uratlons have block graphs wh|c_h are regul_ar graptls an
(Li:as € A;) in which the_ vertex degrees are mam_rmzed. This means _that
v 71 the connectivity of the network layer is as large as possible
That is, the block4 ; of the set system is used to specify whiclffor the given parameter values). For these reasons, we will
keys are given to the nod¥;. focus on(v, b, r, k)-configurations in this paper.



TABLE |
CORRESPONDENCESETWEEN TERMINOLOGY FORDISTRIBUTED SENSORNETWORKS AND SET SYSTEMS

KPS for a Distributed Sensor Network Set System Parameter
network size number of blocks b
size of key pool number of points v
number of keys per node block-size (rank) k
number of nodes per key degree of a point r
number of two-hop paths connecting two nodes  number of Blaatersecting two disjoint blocks m

The following elementary lemma records some basic faatsnfiguration withv = gu,
about(v, b, r, k)-configurations (see [3]).
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Lemma 2:A (v, b, r, k)-configuration exists only ik = vr b= %11) and r= %.
andv —1 > r(k —1). (k1) (k=1)

Remark: We noted above that the equatibh = vr holds The deficiency of this configuration is= g — 1.
for any (v, b, r, k)-1-design. Proof: The points and blocks of the group-divisible

The deficiencyof a (v, b, r, k)-configuration is the quantity design comprise the desired configuration. u
d=wv—1—r(k—1). It follows from Lemma 2 thatl > 0. Itis easy to verify that dv, b, r, k, 1)-BIBD yields a group-

divisible design of typel” and block-sizek (just define the

A. Some Examples of Configurations groups to bev singleton sets).

In this section, we mention some types of configurations thatHere is another special type of group-divisible design Eat

have been extensively studied in the combinatorial liteeat particularly useful: Atransversal desigfD(k, n) is a group-
A (v, b, r, k, \)-BIBD (or balanced incomplete block desjgn divisible design of typen* and block-sizek. .It follows that
is a (v, b, r, k)-1-design in which every pair of points oc:cursleA| = 1 for any blockA and any group in a transversal

: : sign.
:2 21(3 C;g/ /A\L 2'010)5;] ;—Se set system presented in Example %Remark: A TD(k,n) is equivalent to a set d&f—2 mutually

The following necessary conditions are well-known (see, f(())rthog_onal Lat_ln squares of order See [3, pp. 111-142] for
more information.
example, [8]). We pause to present one easily constructed class of transver
Lemma 3:A (v,b,r, k,A\)-BIBD exists only if \(v — 1) = : : .
sal designs. We will make use of these transversal designs a
r(k—1), bk =ovr andb > v. .
The relation between BIBDs with — 1 and configurations © - ore
. € refation between S WITA = 1 and configurations  rnagrem 6:Suppose thap is prime and2 < k£ < p. Then
is stated in the following lemma. .
, . _ _ there exists a T, p).
Lemma 4:([3]) A (v,b,r, k)-configuration having defi- . -
. L . . Proof: Define
ciencyd = 0 exists if and only if a(v, b, r, k, 1)-BIBD exists.
The so-called finite projective planes are BIBDs of par- X={0,...,k—1} X Zj,.
ticular interest. Aprojective planeof ordern > 2 is an
n?>+n+1,n>+n+1,n+1,n+ 1,1)-BIBD. It is well-
known that a projective plane of orderexists ifn is a prime H, = {z} x Zp,
or a prime-power; see, for example [8]. .
Let g,u andk be positive integers such that< k < u. A and then define
group-divisible desigrof type g* and block-sizek is a triple H={H,:0<2z<k—1}
(X,H,A), whereX is a finite set of cardinalityu, H is a o .
partition of X into  parts (calledyroupg of sizeg, and.Aisa For every ordered paifi, j) € Z, x Z,, define a block

For0 <z <k —1, define

set of subsets ok (calledblockg, which satisfy the following Ay ={(z,iz+jmodp):0<z<k—1}
properties: I ' o= '
1) |H N A| <1 for everyH € H and everyA € A. Let o
2) Every pair of elements ofX from different groups A={A;;:(i,]) € Zp X Ly}
occurs in exactly one block inl. Then it is easy to prove thatX, H, A) is a TD(k,p). ]

Remark: The groupsH € ‘H are not algebraic groups; they
are just disjoint subsets of points that form a partitionXof B. Dual Set Systems
The use of the term “groups” in this context is historical. Suppose thatX, A) is a set system, where
19!;;>r information on group-divisible designs, see [3, pp.-185 X = {ei:1<i<uv}
Lemma 5:([3]) If there exists a group-divisible design ofand
type g* and block-sizek, then there exists dv,b,r, k)- A={A;:1<j<b}.



The dual set systenof (X,.A) is any set system isomorphic There are infinite classes of configurations in which (1) is
to the set systeniY, B), where met with equality. In fact, these are just the finite projeeti
Vo {1 < i <b planes, which we introduced a bit earlier. From a projective
={yl=j<b} plane of ordem, we obtain the following key predistribution
and scheme, introduced by Camtepe and Yener in [1].
B={B;:1<i<uv}, Theorem 12:Suppose thag is a prime or a prime power.
Then there exists a key predistribution scheme for a DSN

and where havingq? + ¢ + 1 nodes, in which every node receives exactly
yj € Bi & x; € Aj. g+1 keys, and in which any two nodes share exactly one key.
The following results are easy to prove. The schemes_, Qf Theorel_”n 12 might be perfectly suitable
Lemma 7:1f (Y, B) is the dual set system ¥, A), then for DSNs containing a relatively small number of nodes_. For
(X, A) is the dual set system t, B). exa_lmple, taking; = 31, we get a scheme 0£93 nodes in
Lemma 8:1f (X, A) is a (v, b, r, k)-1-design, then the dual which every nodg receive® keys. Howeyer,.for larger DSNs,
set system is also &, v, k, 7)-1-design. thg storage requirement of these “projective plane schemes
Lemma 9:1f (X, A) is a (v, b, r, k)-configuration, then the might be too large. Suppose, _for example, that we want to
dual set system is also (&, v, k, r)-configuration. construct a KPS for a DSN havir2)000 nodes. The smallest

Lemma 10:If (X, .A) is a projective plane of order, then Prime or prime-power such thatg”® + g+ 1 > 20000 Is
the dual set system is also a projective plane of order q = 149. The resulting KPS would assigri0 keys to every
node, which may not be practical.
IV. CONFIGURATIONS HAVING COMPLETE BLOCK
GRAPHS V. u-COMMON INTERSECTIONDESIGNS

Suppose that we use(a, b, r, k)-configuration(X, A), for As noted in the previous section, it may not be practical to
key predistribution in a DSN. Recall that the block graghh employ KPSs in which any two nodes share a common key, at
is a regular graph oh vertices having degrele(r — 1). G4 is least for large DSNSs. In this section, we consider alteveati
a complete graph, i.e., the graph, if and only if k(r— 1) = WhenG 4 is not a complete graph, it can happen that two
b—1. In this case, any two nodes in the DSN share a (uniquejdesN; and N; in close proximity share no common key.
common key. This situation can be characterized in terms lof this case, the two node¥; and N; can communicate via
certain dual designs. a “two-hop path” provided that there is a nodg (which is

Theorem 11:Suppose that (X, A) is a (v,b,r k)- physically close to bothV; and N;) such that
configuration. Then the block grapl¥4 is a complete
graph if and only if the(X,.A) is the dual design of a AiNnAp#0 and  A; 0 Ay # 0. (@)
(b,v, k,r,1)-BIBD.

We present a small example.

Example 2:Define X and A as in Example 1. We already
observed that(X, A) is a (9,12,4,3,1)-BIBD. The dual
design of(X,.A) is given by (Y, B), where

Equivalently, in the block graph, we are looking for a common
neighbor ofA; and A;.

Ideally, we would like there to be many choices for an
intermediate node that satisfies (2). This would increase th
chance that at least one of these “good” intermediate nades i

Y = {1,2,3,4,5,6,7,8,9,T,E,V}, and physically close to botlV; and V;.
o The above discussion motivates the following definition:
B = {1477, 1585, 169V, 249F, 257V, Suppose thatX, .A) is a(v, b, r, k)-configuration. We say that
2687, 348V, 3597, 367E}. (X, A) is au-common intersection desidar n-CID) provided
(Y,B) is a (12,9, 3, 4)-configuration whose block graph is athat
complete graphKy (because any two distinct blocks 8 A e A:-ANA 0 andA, N A 0 >
intersect in exactly one point ifr). O {4 AN A 7 3 07 O} 2 p

Clearly it is desirable that any two nodes share a commamenever4; N A; = (). Note that we can takg = oo if
key. Therefore, we investigate a bit further to determine pal; N A; # 0 for all 4, j.
rameter situations when this goal can be achieved. Theotem 1in general, given parameter$v,b,r, k) such that a
states that X, .A) is the dual design of &,v,k,r,1)-BIBD. (v, b,r, k)-configuration exists, we would like to construct
This BIBD must satisfy the necessary conditions of Lemme (v, b, r, k)-configuration withy as large as possible. This
3. Note that the parametebsand v have been interchanged,maximum value ofu will be denotedu* (v, b, 7, k).

as haver andk, and\ = 1. Becauseék = vr andv > b, it Now we present a few easy observations:
follows thatk > r. Then, Theorem 13:p*(v, b, 7, k) = oo if and only if there exists
b 1= k(r— 1) < k(k— 1), (1) @(.v.k.r.1)-BIBD.

Proof: This follows immediately from Theorem 11. m
sob S k2. That is, the number of keys per node is (roughly) Theorem 14:Suppose thatt < n. If there exists a
at least as big as the square root of the number of nodes. TD(k,n), theny*(nk,n?,n, k) > k(k — 1).



Proof: Becausek < n, any TD(k,n), say (X,H,.A), In the rest of this section, we consider configurations which
contains disjoint blocks, sayl; and A;. For anyx € A; and satisfy the upper bound of Lemma 15. Thus we suppose that
anyy € A; such thatr andy are in different groups irt{, there exists v, b, r, k)-configuration that is ar — 1)k-CID.
there is a unique block containingandy. Hence, there are We will call such a configuratiooptimal
k* — k blocks intersecting bot; and A; and we have a  Suppose we define a relatien on the set of blocks in an
(k? — k)-CID. B optimal configuration as follows:

VI. TwWO-HOP PATHS IN THE DSNs Ai~Aj & A=A or AinA;=0.

Suppose we use @, b, r, k)-configuration that is a-CID

L In an optimal configuration, there does not exist a subset of
for key predistribution in a DSN. We can analyze the loc P 9 : .
L . 2o ree blocks such that two of them intersect and the third one
connectivity of the network using a method similar to tha

. ... s disjoint from the first two. It follows from this fact that
used in [6]. We assume that the sensor nodes are d|str|butse Jomnt .

. . : IS an equivalence relation.

in the Euclidean plane in a random way and the range covere

by each node forms a circle of fixed radius whose center is t

node. We call this circle aeighborhoodof the given sensor class Further, any two blocks from different partial parallel

node. . d : .
. classes intersect in a unique point.
Suppose thatV; and N; are two nodes that are in each™ _. ) que pon
Since any block in any clag$; intersects

other’s neighborhood. The probability thaf and N, share a

{ etCy,...,C, be the equivalence classes of blocks. Each
'E is a set of disjoint blocks, which we callartial parallel

common key (i.e.A; is adjacent ta4; in the block graph) is (r—1)k = Z Cy|
_k(r—1) 3) i#j
P b—1 ° other blocks, it follows that all the equivalence classeastain

Let  denote the number of nodes in the intersection of tiee same number of blocks, sayblocks. Therefore
neighborhoods of the two nodes; and N;. (In general,n b 5
depends on the size of the physical area where the nodes are =ms, ®)

deployed, the distance between nodes, and on the total muM&ause each of the classes contains blocks. Also, every
of sensor nodes in the DSN). The probability (denote@by plock 4, intersects(r — 1)k other blocks, which must equal

that N; and N; do not share a common key, but there existsie number of blocks not in the same class4gs Hence, we
node NV, in the intersection of their neighborhoods such thghtain that '

Ny, shares a key with botlV; and N, is estimated as follows: s(m—1) = (r — 1)k. (6)

n

by (1 _k(r— 1)) " (1 _ (1 _ L) > . (4) Two equations (5) and (6) allow us to solve ferandm in
b-1 b-2 terms of the other parameters.

Then the probability thatv; is connected taV; via a path of  In view of the discussion above, we obtain the following

length one or two is roughly; + p-. result.

Example 3:Suppose we use a TB0,49) as a key predis- Lemma 16:In any optimal(v, b, r, k)-configuration, the set
tribution scheme. From Theorem 14, we see that the transvef-blocks can be partitioned inte: partial parallel classes,
sal design yields 1470, 2401, 49, 30)-configuration which is each of which contains blocks, where
ang&70-CID. We can suppor2401 nodes in the resulting DSN, b
and every node is required to stae keys. s=b—(r—1)k and m= PRSIV

Now suppose that nodes are distributed in a physical region — (=1
in such a way that) > 20. Then, from (3) and (4), we have Furthermore, any two blocks from different partial classes

intersect in exactly one point.

pr = 06, Now, suppose(Y, B) is the dual set system of an opti-
p2 ~ 0.39995, and mal (v, b, 7, k)-configuration. Clearly(Y,B) is a (b, v, k,r)-
p1+p2 ~ 0.99995. configuration. Two points i(Y, B) are contained in a block

] ) - if and only if the corresponding blocks in the original corfig
Hence, in the resulting DSN, the probability that two nearbyiation are not from the same partial parallel class. Frag) th

nodes are not connected in one or two hops is less thafg|ows that (Y, B) is a group-divisible design of type™
0.00005. Ll and block-sizer, wherem ands are given by Lemma 16.

VII. OPTIMAL CONFIGURATIONS Conversely, suppose we start with a group-divisible de-
sign of type s™ and block-sizer. It is straightforward to
check that the dual of this design is an optinalms, r, k)-
configuration, where

First, we state an easy upper bound;on

Lemma 15:1f there exists a(v, b, r, k)-configuration and
w*(v,b, 1, k) < oo, then
(m—1)s
1 (v,b,7,k) < (r — Dk e

r—1



and with a probability of abouti8% when 10 random nodes are

2
_m(m—1)s _ compromised. O
r(r—1)
. L . . . IX. SHARED-KEY DISCOVERY
The above discussion is summarized in the following theo- )
rem By its nature, a randomized KPS has no “structure”. As a

Theorem 17:An optimal (v, b, r, k)-configuration exists if consequence, shared-key discovery between two nidesd
and only if there exists a group-divisible design of tyge N; typically requires the nodes to exchange the list of indices
and block-sizer, wherem and s are given by Lemma 16. of the keys they hold in order for them to be able to determine

Example 4:There exists a group-divisible design of typéf they sh_are a common key. This increases the_communication
3% and block size four (see [3]). The dual set system is &emplexity of the protocol, decreases battery life, etc.
optimal (54, 27, 4, 8)-configuration. One advantage of using deterministic KPS based on

There is extensive research on group-divisible desigrs, ait» 0 > #)-configurations (as opposed to a randomized KPS)
various necessary and sufficient conditions are known. Fgrthat the(v, b, r, k)-configurations may have a compact and
example, the following results can be found in [3]: efficient algebraic description. This may yield nice al¢furis

Theorem 18:Necessary conditions for the existence of £r shared-key discovery, in which very little information
group-divisible design of type™ and block-sizer are as N€eds to be broadcast.

follows: To illustrate, suppose we are using a KPS based on a
transversal design T, p) as constructed in Theorem 6. In
1) m>r, A N -
_ the resulting DSN, each node is identified by an ordered
2) im—1)s=0 (modr—1), and N e 7 % 7 We will show that it i Hicient
3) m(m—1)s? = (mod r(r — 1)). pair (i, j) € Z, x Z,. We will show that it is sufficient for

two nodes to exchange their identifiers. Suppose that the two

These necessary conditions are sufficient/fes 2,3 and 4, nodes are denoted; ;, and N; ;). These two nodes can

with the exception of group-divisible designs of tygsand independently determine if they share a common kegi)
64 and block-size four, which do not exist. time. as follows:

Theorem 18 together with Theorem 17 yields many ex- o, L,
amples of optimalv, b, r, k)-configurations withr = 2,3, 4. 1t :hl (and hencej 7|i3 ) then N ;) and Ny j) do
Also, the dual of a transversal design is an optimal configu- not s are a common ey.. N et
2) Otherwise, compute = (j' — j)(i — ')~ mod p. If

ration. 0 <z < k-1, thenN(; ;) andN(; ;. share the common
VIIl. RESILIENCY OF DSNs key Ly, iz+j)- If @ >k, thenN(; ;) and N(; ;,y do not

If a sensor node is detected as being compromised, then share a common key.
all of the k& keys it possesses should no longer be used Byrther, if the two nodesV(; ;y and N ;) do not share a
any node in the network. This can affect the connectivity @ommon key, then they can easily determine if there are two-
the network. For example, Suppose thgf, N;, N; all have hop paths joining them, given the identifiers of all the nodes
a common keyL and N, is compromised. Assuming that thein the intersection their neighborhoods.
key predistribution is done using @, b, r, k)-configuration,
we conclude thatV; and N; can no longer communicate
directy This i becausaf, and , hold at only one comman [} .1, Sameps il 5, e, Comouacis oo o (opiun
key (namely,L) and this key has been compromised. In such Dept. of Computer Science, April 2004, '

a situation, we say that the compromise/gf affectsthe link [2] H. Chan, A. Perrig, and D. Song. Random key predistrdutschemes
from N; to Nj. for sensor networks. INEEE Symposium on Research in Security and

. . . Privacy, May 2003, pp. 197-213
In general, an arbitrary link (i.e., a common key held 3] C.J. Colbourn and J.H. Dinitz, editorshe CRC Handbook of Combina-
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