
A Combinatorial Approach to Key Predistribution
for Distributed Sensor Networks

Invited Paper

Jooyoung Lee
Department of Combinatorics and Optimization

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada

Douglas R. Stinson
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada

Abstract—In this paper, we discuss the use of combinatorial set
systems in the design of deterministic key predistributionschemes
for distributed sensor networks. We concentrate on analyzing
combinatorial properties of the set systems that relate to the
connectivity and resilience of the resulting distributed sensor
networks.

I. I NTRODUCTION

Distributed Sensor Networks (DSNs) are ad-hoc mobile net-
works that include sensor nodes with limited computation and
communication capabilities. They are mainly used for military
purposes but they also have wide applications in civilian areas.
In military operations, sensor nodes are distributed in a hostile
territory in order to monitor and collect various information
(e.g., acoustic, seismic, magnetic). Since they are typically
carried by soldiers or spread from airplanes, we assume that
sensor nodes have no information on where they are located,
that is, they are distributed in a random way. Once deployed,
they operate unattended for extended periods without any
movement. They have no external power supply during their
operation. Therefore the most essential requirement is that
each sensor should consume as little power as possible.

The sensor nodes in DSNs should be able to communicate
with each other in order to relay or accumulate secret informa-
tion. There are three ways to establish pairwise keys between
sensor nodes. First is to establish secret keys using a public-
key infrastructure (PKI). However, asymmetric cryptographic
primitives are not suitable due to expensive computationalcost
as well as storage constraints in each node. In other strategies,
a sensor node is chosen to be atrusted authority(TA) or there
is an explicit base station, which all nodes in the network
are assumed to trust. The TA or base station shares a long-
lived key with every node and transmits session keys to sensor
nodes on request. This method can result in expensive costs
for message relay. Arbitrated protocols are also vulnerable to
a compromise of the TA or the base station. Therefore it is
natural that we are interested inkey predistribution schemes
(or KPSs), where a set of secret keys is installed in each node
before the sensor nodes are deployed.

Recently, Eschenauer and Gligor [5] proposed a randomized
key predistribution scheme. Their scheme consists of three
phases:key predistribution, shared-key discovery, and path-
key establishment. We briefly describe these phases since our
schemes follow the same framework. In the key predistribution
phase, a large pool of keys and their key identifiers are
generated. Every sensor node is loaded with a fixed number of
keys chosen from the key pool, along with their key identifiers.
After deployment of the DSN, the shared-key discovery phase
takes place, where two nodes in wireless communication range
look for their common keys. If they share one or more
common keys, they can pick one of them as their secret key
for cryptographic communication. The path-key establishment
phase takes place if there is no common key between a pair of
nodes in a wireless communication range. Then, they look for
multiple secure links (hops) to reach each other, so that one
of them can choose an arbitrary key and then relay it through
the links in encrypted form to the destination node.

The communication capabilities of a DSN can be modeled
as the intersection of a physical layer and a network layer. Due
to resource constraints, a sensor node can communicate with
nodes only within a limited radius. Sensor nodes are deployed
randomly within a certain physical space, so thephysical layer
is represented by arandom geometric graph. On the other
hand, thenetwork layeris represented by thenetwork graph,
in which two nodes are adjacent if they share a common key.
The network graph is determined by the structure of the KPS,
and it is independent of the physical distribution of the sensor
nodes. In order for two sensor nodes to communicate, the two
nodes must be connected by a path in both the geometric graph
and the network graph.

A. Our Contributions

The Eschenauer-Gligor KPSs ([5]) are randomized schemes:
every node is assigned a random subset of keys from a
given pool of keys. In this paper, we focus on combinatorial
constructions for deterministic key predistribution schemes.
The rest of this paper is organized as follows. In Section II,we
define some basic types of combinatorial set systems (designs),



and how they can be used to set up a KPS for a DSN. In
Section III, we introduce “configurations” and discuss their
influence on the local connectivity of the DSN. Section IV
characterizes the configurations that yield DSNs in which any
two nodes share a common key. Section V introduces the new
concept of a “µ-common intersection design”, and Section VI
discusses the existence of two-hop paths in the corresponding
DSNs. Section VII examines a subclass of configurations
that are optimal with respect to their common intersection
properties. Section VIII treats resiliency of the DSNs in the
presence of failed or compromised nodes, and Section IX
mentions one efficient method for shared-key discovery.

B. Related Work

The basic model we are studying is due to Eschenauer
and Gligor [5], who studied randomized KPSs for DSNs.
Extensions and variations of this approach can be found in
Chan, Perrig and Song [2], Du, Deng, Han and Varsheney [4],
and Liu and Ning [7]. Papers studying deterministic KPSs for
DSNs include Çamtepe and Yener [1], Lee and Stinson [6],
and Wei and Wu [9]. The use of combinatorial designs in this
context was first proposed in [1].

II. COMBINATORIAL SET SYSTEMS AND DSNS

A set systemor designis a pair(X,A), whereA is a finite
set of subsets ofX , calledblocks. Thedegreeof a pointx ∈ X
is the number of blocks containing the pointx. (X,A) is
regular (of degreer) if all points have the same degree,r.
The rank of (X,A) is the size of the largest block. If all
blocks have the same size, sayk, then (X,A) is said to be
uniform (of rank k).

Example 1:Let

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {123, 456, 789, 147, 258, 369,

159, 267, 348, 168, 249, 357}.

Then (X,A) is a set system in which there are nine points
and twelve blocks. This set system is regular of degree4 and
uniform of rank3.

A set system can be used as akey predistribution scheme
in a distributed sensor network as follows. Suppose that

X = {xi : 1 ≤ i ≤ v}

and
A = {Aj : 1 ≤ j ≤ b}.

Let the sensor nodes be denotedN1, . . . , Nb. That is, we
identify theb blocks inA with theb sensor nodes. Further, the
points inX are identified with a set ofv keys, as follows: For
1 ≤ i ≤ v, a keyLi is randomly chosen from some specified
key-space, sayL.

Then, for1 ≤ j ≤ b, the sensor nodeNj receives the set
of keys

{Li : xi ∈ Aj}.

That is, the blockAj of the set system is used to specify which
keys are given to the nodeNj .

It is useful and convenient if every node receives a constant
number of keys and every key is assigned to a constant number
of sensor nodes ([9]). Therefore, from now on, we will only
consider regular and uniform set systems. Such a set system is
called a(v, b, r, k)-1-design, where|X | = v, |A| = b, r is the
degree andk is the rank. A necessary condition for existence
of such a set system is thatbk = vr. It is well-known that this
necessary condition is sufficient for existence of a(v, b, r, k)-
1-design (see, for example, [8]).

The correspondences between the parameters of a set system
and the related key predistribution scheme for a DSN are
summarized in Table I (note that “two-hop paths” will be
described in detail in Section V).

III. C ONFIGURATIONS AND LOCAL CONNECTIVITY OF

THE DSNS

In this section, we address thelocal connectivityof the
network. Our desire is that any two nodes that are in close
physical proximity to each other should be able to establisha
secure channel. Observe that two nodes, sayNi andNj , share
a common key if and only ifAi ∩ Aj 6= ∅. In this case, they
can use any keyL ∈ Ai∩Aj as a secret key for cryptographic
communication.

We can evaluate the connectivity of the network layer by
studying theblock graphGA of the set system(X,A). The
graphGA has vertex setA, and two vertices (blocks), sayAi

andAj , are adjacent inGA if Ai ∩ Aj 6= ∅. Two nodes, say
Ni andNj , share a common key if and only ifAi andAj are
adjacent in the block graph.

Lemma 1:Any vertex (block)Aj in the block graphGA

of a (v, b, r, k)-1-design,(X,A), has degree at mostk(r−1).
Further, all vertices inGA have degrees equal tok(r − 1) if
and only if |Ai ∩ Aj | ≤ 1 for all Ai, Aj ∈ A, i 6= j.

Proof: Fix a blockAj ∈ A. For anyx ∈ Aj , define

Bx = {Ai ∈ A : x ∈ Ai}\{Aj}.

Clearly, |Bx| = r − 1 for all x ∈ Aj . The degree ofAj in
GA, which we denote bydeg(Aj), is equal to the number of
blocks intersectingAj , so

deg(Aj) =
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|Bx| = k(r − 1).

Furthermore, it is easy to see thatdeg(Aj) = k(r − 1) if and
only if the setsBx (x ∈ Aj) are disjoint. This is equivalent to
saying that|Ai ∩ Aj | ≤ 1 for all Ai ∈ A, i 6= j.

A (v, b, r, k)-1-design is called a(v, b, r, k)-configurationif
any two distinct blocks intersect in zero or one point. (For a
brief survey on configurations, see [3, pp. 253–255]). Lemma1
asserts that, among all the(v, b, r, k)-1-designs, the(v, b, r, k)-
configurations have block graphs which are regular graphs and
in which the vertex degrees are maximized. This means that
the connectivity of the network layer is as large as possible
(for the given parameter values). For these reasons, we will
focus on(v, b, r, k)-configurations in this paper.



TABLE I
CORRESPONDENCESBETWEEN TERMINOLOGY FORDISTRIBUTED SENSORNETWORKS AND SET SYSTEMS

KPS for a Distributed Sensor Network Set System Parameter

network size number of blocks b

size of key pool number of points v

number of keys per node block-size (rank) k

number of nodes per key degree of a point r

number of two-hop paths connecting two nodes number of blocks intersecting two disjoint blocks µ

The following elementary lemma records some basic facts
about(v, b, r, k)-configurations (see [3]).

Lemma 2:A (v, b, r, k)-configuration exists only ifbk = vr
andv − 1 ≥ r(k − 1).

Remark: We noted above that the equationbk = vr holds
for any (v, b, r, k)-1-design.

The deficiencyof a (v, b, r, k)-configuration is the quantity
d = v − 1 − r(k − 1). It follows from Lemma 2 thatd ≥ 0.

A. Some Examples of Configurations

In this section, we mention some types of configurations that
have been extensively studied in the combinatorial literature.

A (v, b, r, k, λ)-BIBD (or balanced incomplete block design)
is a (v, b, r, k)-1-design in which every pair of points occurs
in exactly λ blocks. The set system presented in Example 1
is a (9, 12, 4, 3, 1)-BIBD.

The following necessary conditions are well-known (see, for
example, [8]).

Lemma 3:A (v, b, r, k, λ)-BIBD exists only if λ(v − 1) =
r(k − 1), bk = vr andb ≥ v.

The relation between BIBDs withλ = 1 and configurations
is stated in the following lemma.

Lemma 4: ([3]) A (v, b, r, k)-configuration having defi-
ciencyd = 0 exists if and only if a(v, b, r, k, 1)-BIBD exists.

The so-called finite projective planes are BIBDs of par-
ticular interest. Aprojective planeof order n ≥ 2 is an
(n2 + n + 1, n2 + n + 1, n + 1, n + 1, 1)-BIBD. It is well-
known that a projective plane of ordern exists ifn is a prime
or a prime-power; see, for example [8].

Let g, u andk be positive integers such that2 ≤ k ≤ u. A
group-divisible designof type gu and block-sizek is a triple
(X,H,A), whereX is a finite set of cardinalitygu, H is a
partition ofX into u parts (calledgroups) of sizeg, andA is a
set of subsets ofX (calledblocks), which satisfy the following
properties:

1) |H ∩ A| ≤ 1 for everyH ∈ H and everyA ∈ A.
2) Every pair of elements ofX from different groups

occurs in exactly one block inA.

Remark: The groupsH ∈ H are not algebraic groups; they
are just disjoint subsets of points that form a partition ofX .
The use of the term “groups” in this context is historical.

For information on group-divisible designs, see [3, pp. 185–
193].

Lemma 5: ([3]) If there exists a group-divisible design of
type gu and block-sizek, then there exists a(v, b, r, k)-

configuration withv = gu,

b =
g2u(u − 1)

k(k − 1)
and r =

g(u − 1)

(k − 1)
.

The deficiency of this configuration isd = g − 1.
Proof: The points and blocks of the group-divisible

design comprise the desired configuration.
It is easy to verify that a(v, b, r, k, 1)-BIBD yields a group-

divisible design of type1v and block-sizek (just define the
groups to bev singleton sets).

Here is another special type of group-divisible design thatis
particularly useful: Atransversal designTD(k, n) is a group-
divisible design of typenk and block-sizek. It follows that
|H∩A| = 1 for any blockA and any groupH in a transversal
design.

Remark: A TD(k, n) is equivalent to a set ofk−2 mutually
orthogonal Latin squares of ordern. See [3, pp. 111–142] for
more information.

We pause to present one easily constructed class of transver-
sal designs. We will make use of these transversal designs a
bit later.

Theorem 6:Suppose thatp is prime and2 ≤ k ≤ p. Then
there exists a TD(k, p).

Proof: Define

X = {0, . . . , k − 1} × Zp.

For 0 ≤ x ≤ k − 1, define

Hx = {x} × Zp,

and then define

H = {Hx : 0 ≤ x ≤ k − 1}.

For every ordered pair(i, j) ∈ Zp × Zp, define a block

Ai,j = {(x, ix + j mod p) : 0 ≤ x ≤ k − 1}.

Let
A = {Ai,j : (i, j) ∈ Zp × Zp}.

Then it is easy to prove that(X,H,A) is a TD(k, p).

B. Dual Set Systems

Suppose that(X,A) is a set system, where

X = {xi : 1 ≤ i ≤ v}

and
A = {Aj : 1 ≤ j ≤ b}.



The dual set systemof (X,A) is any set system isomorphic
to the set system(Y,B), where

Y = {yj : 1 ≤ j ≤ b}

and
B = {Bi : 1 ≤ i ≤ v},

and where
yj ∈ Bi ⇔ xi ∈ Aj .

The following results are easy to prove.
Lemma 7: If (Y,B) is the dual set system to(X,A), then

(X,A) is the dual set system to(Y,B).
Lemma 8: If (X,A) is a (v, b, r, k)-1-design, then the dual

set system is also a(b, v, k, r)-1-design.
Lemma 9: If (X,A) is a (v, b, r, k)-configuration, then the

dual set system is also a(b, v, k, r)-configuration.
Lemma 10:If (X,A) is a projective plane of ordern, then

the dual set system is also a projective plane of ordern.

IV. CONFIGURATIONS HAVING COMPLETE BLOCK

GRAPHS

Suppose that we use a(v, b, r, k)-configuration,(X,A), for
key predistribution in a DSN. Recall that the block graphGA

is a regular graph onb vertices having degreek(r−1). GA is
a complete graph, i.e., the graphKb, if and only if k(r−1) =
b−1. In this case, any two nodes in the DSN share a (unique)
common key. This situation can be characterized in terms of
certain dual designs.

Theorem 11:Suppose that (X,A) is a (v, b, r, k)-
configuration. Then the block graphGA is a complete
graph if and only if the(X,A) is the dual design of a
(b, v, k, r, 1)-BIBD.

We present a small example.
Example 2:DefineX andA as in Example 1. We already

observed that(X,A) is a (9, 12, 4, 3, 1)-BIBD. The dual
design of(X,A) is given by(Y,B), where

Y = {1, 2, 3, 4, 5, 6, 7, 8, 9, T, E, V }, and

B = {147T, 158E, 169V, 249E, 257V,

268T, 348V, 359T, 367E}.

(Y,B) is a (12, 9, 3, 4)-configuration whose block graph is a
complete graphK9 (because any two distinct blocks inB
intersect in exactly one point inY ).

Clearly it is desirable that any two nodes share a common
key. Therefore, we investigate a bit further to determine pa-
rameter situations when this goal can be achieved. Theorem 11
states that(X,A) is the dual design of a(b, v, k, r, 1)-BIBD.
This BIBD must satisfy the necessary conditions of Lemma
3. Note that the parametersb and v have been interchanged,
as haver and k, andλ = 1. Becausebk = vr andv ≥ b, it
follows thatk ≥ r. Then,

b − 1 = k(r − 1) ≤ k(k − 1), (1)

so b / k2. That is, the number of keys per node is (roughly)
at least as big as the square root of the number of nodes.

There are infinite classes of configurations in which (1) is
met with equality. In fact, these are just the finite projective
planes, which we introduced a bit earlier. From a projective
plane of ordern, we obtain the following key predistribution
scheme, introduced by Çamtepe and Yener in [1].

Theorem 12:Suppose thatq is a prime or a prime power.
Then there exists a key predistribution scheme for a DSN
havingq2 + q +1 nodes, in which every node receives exactly
q+1 keys, and in which any two nodes share exactly one key.

The schemes of Theorem 12 might be perfectly suitable
for DSNs containing a relatively small number of nodes. For
example, takingq = 31, we get a scheme on993 nodes in
which every node receives32 keys. However, for larger DSNs,
the storage requirement of these “projective plane schemes”
might be too large. Suppose, for example, that we want to
construct a KPS for a DSN having20000 nodes. The smallest
prime or prime-powerq such thatq2 + q + 1 ≥ 20000 is
q = 149. The resulting KPS would assign150 keys to every
node, which may not be practical.

V. µ-COMMON INTERSECTIONDESIGNS

As noted in the previous section, it may not be practical to
employ KPSs in which any two nodes share a common key, at
least for large DSNs. In this section, we consider alternatives.

WhenGA is not a complete graph, it can happen that two
nodesNi and Nj in close proximity share no common key.
In this case, the two nodesNi andNj can communicate via
a “two-hop path” provided that there is a nodeNh (which is
physically close to bothNi andNj) such that

Ai ∩ Ah 6= ∅ and Aj ∩ Ah 6= ∅. (2)

Equivalently, in the block graph, we are looking for a common
neighbor ofAi andAj .

Ideally, we would like there to be many choices for an
intermediate node that satisfies (2). This would increase the
chance that at least one of these “good” intermediate nodes is
physically close to bothNi andNj .

The above discussion motivates the following definition:
Suppose that(X,A) is a(v, b, r, k)-configuration. We say that
(X,A) is aµ-common intersection design(or µ-CID) provided
that

|{Ah ∈ A : Ai ∩ Ah 6= ∅ andAj ∩ Ah 6= ∅}| ≥ µ

wheneverAi ∩ Aj = ∅. Note that we can takeµ = ∞ if
Ai ∩ Aj 6= ∅ for all i, j.

In general, given parameters(v, b, r, k) such that a
(v, b, r, k)-configuration exists, we would like to construct
a (v, b, r, k)-configuration withµ as large as possible. This
maximum value ofµ will be denotedµ∗(v, b, r, k).

Now we present a few easy observations:
Theorem 13:µ∗(v, b, r, k) = ∞ if and only if there exists

a (b, v, k, r, 1)-BIBD.
Proof: This follows immediately from Theorem 11.

Theorem 14:Suppose thatk ≤ n. If there exists a
TD(k, n), thenµ∗(nk, n2, n, k) ≥ k(k − 1).



Proof: Becausek ≤ n, any TD(k, n), say (X,H,A),
contains disjoint blocks, sayAi andAj . For anyx ∈ Ai and
any y ∈ Aj such thatx and y are in different groups inH,
there is a unique block containingx andy. Hence, there are
k2 − k blocks intersecting bothAi and Aj and we have a
(k2 − k)-CID.

VI. T WO-HOP PATHS IN THE DSNS

Suppose we use a(v, b, r, k)-configuration that is aµ-CID
for key predistribution in a DSN. We can analyze the local
connectivity of the network using a method similar to that
used in [6]. We assume that the sensor nodes are distributed
in the Euclidean plane in a random way and the range covered
by each node forms a circle of fixed radius whose center is that
node. We call this circle aneighborhoodof the given sensor
node.

Suppose thatNi and Nj are two nodes that are in each
other’s neighborhood. The probability thatNi andNj share a
common key (i.e.,Ai is adjacent toAj in the block graph) is

p1 =
k(r − 1)

b − 1
. (3)

Let η denote the number of nodes in the intersection of the
neighborhoods of the two nodesNi and Nj . (In general,η
depends on the size of the physical area where the nodes are
deployed, the distance between nodes, and on the total number
of sensor nodes in the DSN). The probability (denoted byp2)
thatNi andNj do not share a common key, but there exists a
nodeNh in the intersection of their neighborhoods such that
Nh shares a key with bothNi andNj , is estimated as follows:

p2 ≈

(

1 −
k(r − 1)

b − 1

)

×

(

1 −

(

1 −
µ

b − 2

)η)

. (4)

Then the probability thatNi is connected toNj via a path of
length one or two is roughlyp1 + p2.

Example 3:Suppose we use a TD(30, 49) as a key predis-
tribution scheme. From Theorem 14, we see that the transver-
sal design yields a(1470, 2401, 49, 30)-configuration which is
an870-CID. We can support2401 nodes in the resulting DSN,
and every node is required to store30 keys.

Now suppose that nodes are distributed in a physical region
in such a way thatη ≥ 20. Then, from (3) and (4), we have

p1 = 0.6,

p2 ≈ 0.39995, and

p1 + p2 ≈ 0.99995.

Hence, in the resulting DSN, the probability that two nearby
nodes are not connected in one or two hops is less than
0.00005.

VII. O PTIMAL CONFIGURATIONS

First, we state an easy upper bound onµ∗.
Lemma 15:If there exists a(v, b, r, k)-configuration and

µ∗(v, b, r, k) < ∞, then

µ∗(v, b, r, k) ≤ (r − 1)k.

In the rest of this section, we consider configurations which
satisfy the upper bound of Lemma 15. Thus we suppose that
there exists a(v, b, r, k)-configuration that is an(r−1)k-CID.
We will call such a configurationoptimal.

Suppose we define a relation∼ on the set of blocks in an
optimal configuration as follows:

Ai ∼ Aj ⇔ Ai = Aj or Ai ∩ Aj = ∅.

In an optimal configuration, there does not exist a subset of
three blocks such that two of them intersect and the third one
is disjoint from the first two. It follows from this fact that∼
is an equivalence relation.

Let C1, . . . , Cm be the equivalence classes of blocks. Each
Ci is a set of disjoint blocks, which we call apartial parallel
class. Further, any two blocks from different partial parallel
classes intersect in a unique point.

Since any block in any classCj intersects

(r − 1)k =
∑

i6=j

|Ci|

other blocks, it follows that all the equivalence classes contain
the same number of blocks, says blocks. Therefore

b = ms, (5)

because each of them classes containss blocks. Also, every
block Aj intersects(r − 1)k other blocks, which must equal
the number of blocks not in the same class asAj . Hence, we
obtain that

s(m − 1) = (r − 1)k. (6)

Two equations (5) and (6) allow us to solve fors and m in
terms of the other parameters.

In view of the discussion above, we obtain the following
result.

Lemma 16:In any optimal(v, b, r, k)-configuration, the set
of blocks can be partitioned intom partial parallel classes,
each of which containss blocks, where

s = b − (r − 1)k and m =
b

b − (r − 1)k
.

Furthermore, any two blocks from different partial classes
intersect in exactly one point.

Now, suppose(Y,B) is the dual set system of an opti-
mal (v, b, r, k)-configuration. Clearly(Y,B) is a (b, v, k, r)-
configuration. Two points in(Y,B) are contained in a block
if and only if the corresponding blocks in the original config-
uration are not from the same partial parallel class. From this,
it follows that (Y,B) is a group-divisible design of typesm

and block-sizer, wherem ands are given by Lemma 16.
Conversely, suppose we start with a group-divisible de-

sign of type sm and block-sizer. It is straightforward to
check that the dual of this design is an optimal(v, ms, r, k)-
configuration, where

k =
(m − 1)s

r − 1



and

v =
m(m − 1)s2

r(r − 1)
.

The above discussion is summarized in the following theo-
rem.

Theorem 17:An optimal (v, b, r, k)-configuration exists if
and only if there exists a group-divisible design of typesm

and block-sizer, wherem ands are given by Lemma 16.
Example 4:There exists a group-divisible design of type

39 and block size four (see [3]). The dual set system is an
optimal (54, 27, 4, 8)-configuration.

There is extensive research on group-divisible designs, and
various necessary and sufficient conditions are known. For
example, the following results can be found in [3]:

Theorem 18:Necessary conditions for the existence of a
group-divisible design of typesm and block-sizer are as
follows:

1) m ≥ r,
2) (m − 1)s ≡ 0 (mod r − 1), and
3) m(m − 1)s2 ≡ 0 (mod r(r − 1)).

These necessary conditions are sufficient forr = 2, 3 and 4,
with the exception of group-divisible designs of types24 and
64 and block-size four, which do not exist.

Theorem 18 together with Theorem 17 yields many ex-
amples of optimal(v, b, r, k)-configurations withr = 2, 3, 4.
Also, the dual of a transversal design is an optimal configu-
ration.

VIII. R ESILIENCY OF DSNS

If a sensor node is detected as being compromised, then
all of the k keys it possesses should no longer be used by
any node in the network. This can affect the connectivity of
the network. For example, Suppose thatNh, Ni, Nj all have
a common keyL andNh is compromised. Assuming that the
key predistribution is done using a(v, b, r, k)-configuration,
we conclude thatNi and Nj can no longer communicate
directly. This is becauseNi andNj hold at only one common
key (namely,L) and this key has been compromised. In such
a situation, we say that the compromise ofNh affectsthe link
from Ni to Nj .

In general, an arbitrary link (i.e., a common keyL held
by two given nodesNi and Nj) is affected with probability
(r − 2)/(b − 2) by the compromise of some other random
node, because there arer−2 other nodes that contain the key
L. More generally, the compromise ofs random nodes will
affect a given link with probability roughly equal to

fail(s) = 1 −

(

1 −
r − 2

b − 2

)s

. (7)

We will use this as a very rough measure of the resiliency
of the DSN. In general, we wantfail(s) to be small, at least
whens is small.

Example 5:We return to Example 3 and consider the
resiliency of the DSN. Recall that we are using a
(1470, 2401, 49, 30)-configuration, so we haveb = 2401 and
r = 49. Thenfail(10) ≈ 0.17951, so any given link is affected

with a probability of about18% when 10 random nodes are
compromised.

IX. SHARED-KEY DISCOVERY

By its nature, a randomized KPS has no “structure”. As a
consequence, shared-key discovery between two nodesNi and
Nj typically requires the nodes to exchange the list of indices
of the keys they hold in order for them to be able to determine
if they share a common key. This increases the communication
complexity of the protocol, decreases battery life, etc.

One advantage of using deterministic KPS based on
(v, b, r, k)-configurations (as opposed to a randomized KPS)
is that the(v, b, r, k)-configurations may have a compact and
efficient algebraic description. This may yield nice algorithms
for shared-key discovery, in which very little information
needs to be broadcast.

To illustrate, suppose we are using a KPS based on a
transversal design TD(k, p) as constructed in Theorem 6. In
the resulting DSN, each node is identified by an ordered
pair (i, j) ∈ Zp × Zp. We will show that it is sufficient for
two nodes to exchange their identifiers. Suppose that the two
nodes are denotedN(i,j) and N(i′,j′). These two nodes can
independently determine if they share a common key inO(1)
time, as follows:

1) If i = i′ (and hencej 6= j′) thenN(i,j) andN(i′,j′) do
not share a common key.

2) Otherwise, computex = (j′ − j)(i − i′)−1 mod p. If
0 ≤ x ≤ k−1, thenN(i,j) andN(i′,j′) share the common
key L(x,ix+j). If x ≥ k, thenN(i,j) andN(i′,j′) do not
share a common key.

Further, if the two nodesN(i,j) and N(i′,j′) do not share a
common key, then they can easily determine if there are two-
hop paths joining them, given the identifiers of all the nodes
in the intersection their neighborhoods.
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