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Abstract

In the study of cryptography and information security, combinatorial
structures arise in a natural and essential way, especially in the context
of unconditional security (also termed information-theoretic security). In
this expository paper, I will discuss several interesting examples of inter-
actions between cryptography and combinatorics.

1 Introduction

In 1993, I gave an invited talk at the Fourteenth British Combinatorial Confer-
ence. The paper [25] I wrote to accompany my talk was entitled “Combinatorial
Designs and Cryptography.” It contained the following introduction:

Recent years have seen numerous interesting applications of combi-
natorics to cryptography. In particular, combinatorial designs have
played an important role in the study of such topics in cryptography
as secrecy and authentication codes, secret sharing schemes, and re-
silient functions. The purpose of this paper is to elucidate some of
these connections. This is not intended to be an exhaustive survey,
but rather a sampling of some research topics in which I have a
personal interest.

I was also an invited speaker at the 23rd, 33rd, 43rd and 48th Southeastern
Conferences, and in each case my talks explored some aspect of combinatorial
cryptography. For example, my 2002 talks at the 33rd Southeastern Conference
were entitled “Combinatorial Structure Lurks Everywhere: the Symbiosis of
Combinatorics and Cryptography”. Clearly this has been an ongoing theme of
my research for many years!

*The author’s research is supported by NSERC discovery grant RGPIN-03882.



Now, 26 years after my talk at the 14th BCC, to honour the occasion of
the 50th Anniversary Southeastern International Conference on Combinatorics,
Graph Theory & Computing, I am writing another paper on the same topic. A
considerable amount of research in combinatorial cryptography has taken place
in the intervening years, so there is much work to draw from. In the interests of
space, I will just write about a few topics that have been of particular interest
to me.

First, I will discuss the connections between the One-time Pad, perfect se-
crecy and latin squares in Section 2. I think it is fair to say that this classical
material can be regarded as the origin of combinatorial cryptography. In the
later sections of this chapter, I will dwell on three topics of continuing and/or
recent interest, namely, threshold and ramp schemes, in Section 3; all-or-nothing
transforms, in Section 4; and algebraic manipulation codes, in Section 5. For
each of these topics, along with other results, I will provide some combinatorial
characterizations which state that a certain cryptographic primitive exists if
and only if a particular combinatorial structure exists.

2 The One-time Pad and Shannon’s Theory

Any discussion of the interaction of combinatorics and cryptography must begin
with the famous One-time Pad of Vernam [30], which was proposed in the mid-
1920’s. It is quite simple to describe. A message, or plaintext, consists of an
n-bit binary vector x € (Z2)™. The value of n is fixed.

The key K is also an n-bit binary vector. K should be chosen uniformly at
random from the set (Z3)" of all possible keys. It should be shared “ahead of
time” in a secure manner by the two parties wishing to communicate, who are
traditionally named Alice and Bob.

Now, at a later time, when Alice wants to send a “secret message” to Bob,
she computes the ciphertext y € (Z2)™ using the formula y = x + K, where
addition is performed in (Z3)". (Equivalently, she computes the exclusive-or of
the bit-strings x and K.) When Bob receives y, he decrypts it using the formula
x=y+ K.

After its proposal, it was conjectured for many years that the One-time Pad
was “unbreakable.” Let’s consider what this actually means. The setting is that
there is an eavesdropper (named FEve, say) who observes the ciphertext y but
who does not know the value of K. It is desired that Eve should not be able to
compute “any information” about the plaintext x after observing y.

It is important to point out that K must only be used to encrypt a single
message (that is why it is called the One-time Pad, after all). For, if K is used
to encrypt two messages, say x and x’, then the two corresponding ciphertexts
arey = x+ K and y’ = x’ + K. From these equations, it is easy to see that
x +x' =y +y’. Thus, Eve can compute the exclusive-or of the two plaintexts
given only the two ciphertexts, which would be considered a serious loss of
security.

Now, given that the key K is used to to encrypt only one message, how do



we argue that the One-time Pad is secure? It might be helpful to look at a small
example, say for n = 3. We construct the encryption matric M = (mx i) for
the scheme. The rows of this matrix are indexed by the eight possible plaintexts,
the columns are indexed by the eight possible keys, and the entry my g is the
ciphertext x + K. The following encryption matrix is obtained:

K

x |[000 001 010 011 100 101 110 111
000 | OO0 001 010 011 100 101 110 111
001 | 001 000 011 010 101 100 111 110
010 | 010 011 000 001 110 111 100 101
011 | 011 010 001 000 111 110 101 100
100 | 100 101 110 111 000 001 010 011
101 | 101 100 111 110 001 000 011 010
110 | 110 111 100 101 010 011 000 001
111|111 110 101 100 011 010 001 000

Suppose Eve observes the ciphertext y = 110. She can easily identify all occur-
rences of 110 in the encryption matrix:

K

X 000 001 010 011 100 101 110 111
000 | 000 001 010 011 100 101 110 111
001 | 001 000 011 010 101 100 111 110
010 | 010 011 000 001 110 111 100 101
011} 011 010 001 000 111 110| 101 100
100 | 100 101 110( 111 000 001 010 O11
101 | 101 100 111 110 001 000 011 010
110 | [110] 111 100 101 010 011 000 001
111 | 111 110 101 100 011 010 001 000

It is clear that the encryption matrix is a latin square of order 8 and the boxed
entries form a transversal. Thus, for every possible value of the plaintext x,
there is a unique key K (depending on x) such that the encryption of x with
this key yields the observed ciphertext. Consequently, every possible value of
the plaintext is compatible with the given ciphertext. Intuitively, this provides
some compelling evidence that Eve cannot determine any information about the
plaintext simply by observing the ciphertext.

The above informal argument might be fairly convincing, but it is not a
rigorous proof. In fact, the first mathematical proof of the security of the
One-time Pad was given by Shannon [24] in 1949. Shannon’s insight was to
introduce probability distributions on the plaintexts and keys, which in turn
induce a probability distribution on the ciphertexts. Shannon showed that the
One-time Pad satisfied the property of perfect secrecy, which states that

PriIX=x|Y =y]=Pr[X =x]



for all x,y € (Z2)™, where X,Y are random variables corresponding to the
plaintext and ciphertext, respectively. That is, the a prior: probability that the
plaintext takes on any particular value is the same as the a posteriori probability
that it takes on the same value, given that a particular ciphertext has been
observed.

Shannon observed that, in any cryptosystem achieving perfect secrecy, the
number of keys is at least the number of ciphertexts, which is in turn at least
the number of plaintexts. Further, he established the following characterization
concerning “minimal” codes that satisfy the perfect secrecy property.

Theorem 2.1. [2/] Suppose a cryptosystem has the same number of keys, plain-
texts and ciphertexts. Then the cryptosystem provides perfect secrecy if and only
if the encryption matriz is a latin square.

The encryption matrix of the One-time Pad is the group operation table of
(Zo)™, which, as we have already noted, is a latin square of order 2™.

3 Threshold Schemes and Ramp Schemes

Suppose 1 < t < n, where ¢t and n are integers. A (t,n)-threshold scheme
(invented independently by Blakley [2] and Shamir [23] in 1979) allows secret
information (called shares) to be distributed to n players, so that any ¢ (or
more) of the n players can compute a certain secret, but no subset of t — 1 (or
fewer) players can determine the secret. The integer ¢ is called the threshold.
The shares are computed by a dealer and distributed to the players using a
secure channel. At some later time, a threshold of ¢ players can “combine” their
shares using a certain reconstruction algorithm and thereby obtain the secret.

It is well-known that the number of possible shares in a threshold scheme
must be greater than or equal to the number of possible secrets. If these two
numbers are equal, the scheme is an ideal threshold scheme.

Shamir’s original construction yields ideal (t,n)-threshold schemes. Let’s
denote the dealer by D and the n players by Pi,...,P,. The scheme is based
on polynomial interpolation over a finite field F,, where ¢ > n + 1. In an
initialization phase, D chooses n distinct, non-zero elements of IFy, denoted z;,
where the value x; is associated with P;, 1 <17 < n.

Suppose K € I, is the secret that D wants to share. D secretly chooses
(independently and uniformly at random) values ai,...,a;—1 € F,. Then, for
1 < <n, D computes y; = a(x;), where

t—1
alz) =K+ Zajxj.
j=1

Finally, D gives the share y; to P;, for 1 <1i < n.

The reconstruction algorithm is just polynomial interpolation. Given ¢
points on the polynomial a(z), which has degree at most ¢ — 1, it is a sim-
ple matter to use the Lagrange interpolation formula to determine a(x). Then



the secret is obtained as K = a(0). To see that no information about K is
revealed by ¢ — 1 shares, it suffices to observe that any possible value of K is
consistent with any ¢t — 1 shares. That is, given any ¢ — 1 shares and given a
“guess” K = K, there is a unique polynomial ag(x) of degree at most ¢t — 1
such that it agrees with the ¢ — 1 shares and a¢(0) = K.

Here are a few details about how reconstruction can be accomplished effi-
ciently using polynomial interpolation. Remember that all computations are to
be done in the field F,. Given ¢ shares, say v;,,...,¥;,, the Lagrange interpola-
tion formula states that

o@=> v, J[ =) o

xX;.
j=1 1<k<t,kz#j " e

However, the ¢ players P;,, ..., P;, do not need to compute the entire polynomial
a(x); it is sufficient for them to determine the constant term K = a(0). Hence,
they can directly compute K as follows:

K:Z Yi; H x%

j=1 1<k<tk#j "k K

The above formula is obtained by substituting = 0 into (1).
Now, suppose we define

b= I —=—

X €Z;.
1<k<tk#j "~ Ki

1 < j <t. These values can be precomputed, and their values are independent
of the secret K. Then we have the simplified formula

t
j=1

Hence, the key is a linear combination (in F,) of the ¢ shares, where the coeffi-
cients by, ..., b; are public.

Now, whenever I see a combinatorial structure defined by evaluating points
on a polynomial, I naturally think of a Reed-Solomon code, or more generally,
any orthogonal array with A = 1. So I will pause briefly to define orthogonal
arrays. An orthogonal array, denoted OA (¢, k,v), is a Av! by k array A, defined
on a symbol set X of cardinality v, such that any ¢ of the k columns of A contain
all possible t-tuples from X' exactly ) times.

It is not difficult to see that an OA;(t,n + 1,v) gives rise to an ideal (¢,n)-
threshold scheme with shares (and secret) from an alphabet of size v. Let A be
an OA;(t,n+ 1,v) defined on symbol set X of size v. Label the n 4+ 1 columns
of A with the n players and the dealer, D. Each row of A is a distribution rule,
where the secret K is the value in column D. Given a desired value for K, D



chooses a random row r in A such that the entry in column D is K (there are
v!~! such rows to choose from). Then D distributes the remaining n entries in
row r to the n players.

As an example, here is an OA;(2,4,3), which gives rise to a (2, 3)-threshold
scheme with shares and secrets in {0, 1,2}. There are nine distribution rules,

three for each possible value of the secret.

N = o = o~ o
— oo —n e~ o3
cw - o= ol
N N =R =R=]l ]

Given an OA;(t,n+ 1,v), say A, it is not hard to see that the above process
yields a (t,n)-threshold scheme. First, ¢ shares determine a unique row r of A,
which then allows the secret to be computed as A(r, D). If a subset of players
only have access to t — 1 shares and they guess a value K| for the secret, this
again determines a unique row of A. Thus any set of ¢ — 1 shares is “consistent”
with any possible guess for the secret.

Interestingly, the converse is also true. That is, if there exists an ideal (¢, n)-
threshold scheme defined on an alphabet of size v, then the distribution rules of
the threshold scheme form an OA;(¢,n + 1,v). This more difficult fact was first
shown by Keith Martin in 1991 in his PhD thesis [17], and it was also proven
independently by Dawson, Mahmoodian and Rahilly [8]. This is summarized as
follows.

Theorem 3.1. [8, 17] There exists an ideal (t,n)-threshold scheme on an al-
phabet of size v if and only if there exists an OA;1(t,n + 1,v).

3.1 Ramp Schemes

A generalization of a threshold scheme, called a ramp scheme, was invented by
Blakley and Meadows [3] in 1984. Suppose 0 < s < t < n. An (s,t,n)-ramp
scheme has two thresholds: the value s is the lower threshold and t is the upper
threshold. 1t is required that t of the n players can compute the secret, but no
subset of s players can determine any information about the secret. Note that
a (t — 1,t,n)-ramp scheme is identical to a (t,n)-threshold scheme.

Ramp schemes provide a tradeoff between security and storage. This is
because the size of the secret (relative to the sizes of the shares) can be larger in
the case of a ramp scheme, as compared to a threshold scheme. More precisely,
it can be shown that, in an (s, ¢, n)-ramp scheme with shares from a set of size
v, there can be as many as v'~* possible secrets. If this bound is met with



equality, then the ramp scheme is ideal. (Note that the definition of “ideal” for
a (t —1,t,n)-ramp scheme coincides with the notion of an ideal (¢, n)-threshold
scheme.)

There is a fairly obvious way to construct an ideal (s, ¢, n)-ramp scheme from
an OAq(t,n +t — s,v). The idea is to label n columns of the OA with the n
players and label the remaining ¢t — s columns (collectively) with D. A row of
the OA comprises a distribution rule for the (¢ — s)-tuple in the columns labelled
by D.

A very interesting question is to ask if a converse result holds (as it does for
threshold schemes). The first progress in this direction is found in the 1996 paper
by Jackson and Martin [13]. It is shown in [13, Theorem 9] that a strong ideal
(s,t,n)-ramp scheme is equivalent to an OA; (t,n +t — s,v). Unfortunately, the
definition of a strong ramp scheme is rather complicated and it is perhaps not
what would be considered a “natural” definition. So this result is not completely
satisfying. Indeed, in [13], the authors ask if it is possible to construct ideal ramp
schemes that are not strong.

This was a question that intrigued me for many years, and I worked on
it sporadically. Most of my effort was spent trying to prove that any ideal
(s,t,m)-ramp scheme is equivalent to an OA;(¢,n +t — s,v), i.e., to remove the
“strong” requirement from [13, Theorem 9]. I was not successful in proving the
modified result because it is not true! I eventually came to the realization the the
right way to look at the problem was to work with the “obvious” combinatorial
structure (which is somewhat weaker than an orthogonal array) that captures
the desired properties of an ideal ramp scheme. Thus, I ended up defining a
structure that I termed an “augmented orthogonal array.” As far as I am aware,
this definition had not previously appeared in the literature (for example, I could
not find it in Hedayat, Sloane and Stufken [10], which is the standard reference
for orthogonal arrays).

Thus, I defined an augmented orthogonal array, denoted AOA(s,t,n,v), to
be a v by n + 1 array A that satisfies the following properties:

1. the first n columns of A form an orthogonal array OA(¢,n,v) on a symbol
set X of size v

2. the last column of A contains symbols from a set ) of size v!~*

3. any s of the first n columns of A, together with the last column of A,
contain all possible (s + 1)-tuples from X'* x Y exactly once.

I proved the following result in [27] in 2016.

Theorem 3.2. [27] There exists an ideal (s,t,n)-ramp scheme with shares cho-
sen from a set of size v if and only if there exists an AOA(s,t,n,v).

Note that Theorem 3.2 by itself does not answer the question posed by
Jackson and Martin. In order to fully answer their question, it is necessary to
consider the relation between OAs and AOAs. It is rather obvious that the
existence of an OA;(t,n + ¢ — s,v) implies the existence of an AOA(s,t,n,v),



as it suffices to “group” the last ¢ — s columns of the OA and treat the entries
in these columns as (t — s)-tuples. But what about the converse? It turns out
that it is possible to construct infinite classes of AOA(s,t,n,v) for parameter
situations where it can be proven that OA; (¢, n+t—s,v) do not exist. I provided
some constructions in my paper [27], and additional results of this type can be
found in Wang et al. [31] and Chen et al. [4].

Here is a small example, from [27], of an AOA(1,3,3,3). Let X = F3 and
Y = T3 x F3. The AOA has 27 rows of the form

la[B[~r](a+B,a+q)]
where «, 8,7 € F3. The entire AOA(1, 3,3, 3) is as follows:

0[0]0](0,0) 1100 (1,1) 270[0](2,2)
0[0][1](0,1) 1[0[1](1,2) 2(0][1](2,0)
0[0[2](0,2) 110[2](1,0) 2(0]2](21)
0[1]0](1,0) 1[1[0](21) 2(1]0](0,2)
0[1[1](1,1) 1[1[1](22) 2[1]1](0,0)
0[1[2](1,2) 1[1]2](20) 2(1]2](0,1)
0[2]0](2,0) 112]0](0,1) 2(2]0](1,2)
02121 112[1](0,2) 221 (1,0)
02222 1[2]2](0,0) 2 (2] 2] (1,1)

However, as noted in [27], an OA(3,5, 3) does not exist, because the parameters
violate the classical Bush bound.

Finally, I would like to point out a nice alternative characterization of AOAs
given by Wang et al. [31].

Theorem 3.3. [31, Theorem 1.3] There exists an AOA(s,t,n,v) if and only if
there exists an OA(t,n,v) that can be partitioned into v'=% OA(s,n,v).

4 All-or-nothing Transforms

In 1997, Rivest [22] introduced all-or-nothing transforms. His motivation was
to slow down potential exhaustive key searches by someone trying to break a
cryptosystem. In general, a block cipher encrypts plaintext in fixed-size chunks,
e.g., in 128-bit blocks. A list of s plaintext blocks, say z1,...,xs, will be en-
crypted using a key K to obtain s ciphertext blocks, say z1,...,2s. Perhaps
each z; is the encryption of z; using K, i.e., z; = ex(x;) for 1 < i < s (this is
called electronic codebook mode or ECB mode). Alternatively, a more sophisti-
cated mode of operation, such as cipher-block chaining, might be used. However,
most commonly used modes of operation will allow an attacker to obtain one
particular plaintext block by trial decryption of one particular ciphertext block
using all possible keys (this is called an “exhaustive key search”).

Rivest’s idea was to develop a technique whereby no individual plaintext
block could be computed without first decrypting every ciphertext block (thus



he coined the term “all-or-nothing transform”). So, if s = 1000, for exam-
ple, this would slow down the adversary’s exhaustive key search by a factor of
1000. In [22], Rivest described methods for achieving this goal in the standard
cryptographic setting of computational security. One such method involves a

pre-processing step in which z1, ...,z is converted into y1,...,ys using an ap-
propriate public bijective transformation, followed by an encryption of y1, ..., ys
in ECB mode.

I thought it would be interesting to consider whether Rivest’s objective could
be achieved in the setting of unconditional security. I presented a simple positive
answer to this question in a 2001 paper [26]. Mainly, I considered linear all-or
nothing transforms, where every y; is a linear function of x1,...,zs. Before
stating the main result from [26], I will give a formal mathematical definition.

Let X be a finite set of cardinality v. Let s > 0 and suppose that ¢ : X* —
X*. Then ¢ is an (s,v)-all-or-nothing transform (or (s,v)-AONT) provided
that:

1. ¢ is a bijection, and

2. Suppose (y1,...,ys) = ¢(x1,...,x5). If any s — 1 of the s output values
Y1,-.-,Ys are fixed, then the value of any one input z; (1 < i < s) is
completely undetermined.

The following easy result was stated in [26].

Theorem 4.1. [26, Theorem 2.1] Suppose that q is a prime power and M is
an tnvertible s by s matriz with entries from F, such that no entry of M is
equal to 0. Then the function ¢ : (Fq)® — (Fq)® defined by ¢(x1,...,z5) =
(x1,...,25)M ™t is a linear (s, q)-all-or-nothing transform.

Various examples of matrices M satisfying the conditions of Theorem 4.1
are discussed in [26], including Hadamard matrices, Vandermonde matrices and
Cauchy matrices.

Now I jump forward abut 15 years. Jeroen van de Graaf was visiting the
University of Waterloo and he asked me if anyone had studied more general
versions of AONT in which no information about any ¢ inputs could be obtained
from any s — ¢ outputs (the original definition is just the special case t = 1 of
this more general definition). Such a function defined over an alphabet of a size
v will be termed a (¢, s, v)-all-or-nothing transform (or (¢, s,v)-AONT).

I thought this was an intriguing question and it has led to a number of recent
research papers by myself (in conjunction with various co-authors) and others.
I will now survey a few of the known results on this more general problem.

First, the generalization of Theorem 4.1 to ¢t > 1 is the following.

Theorem 4.2. [7] Suppose that q is a prime power and M is an invertible s by
s matriz with entries from Fy, such that every t xt submatriz of M is invertible.
Then the function ¢ : (F,)* — (F,)* defined by ¢(z1,...,25) = (21,...,25) M~}
is a linear (t, s, q)-all-or-nothing transform.



Cauchy matrices provide useful examples of linear (¢, s, q)-AONTSs for arbi-
trary values of . An s by s Cauchy matriz can be defined over F, whenever ¢ >
2s. Let a1, ...,as,b1,...,bs be distinct elements of Fy. Define ¢;; = 1/(a; —b;),
for 1 <i < sand 1 < j <s. Then the Cauchy matrix C = (c¢;;) has the
property that any square submatrix of C' (including C' itself) is invertible over
F,. The next result follows immediately.

Theorem 4.3. [7, Theorem 2] Suppose q is a prime power, ¢ > 2s and 1 <t <
s. Then there is a linear (t,s,q)-AONT.

4.1 Binary AONT with t =2

The cases not covered by Theorem 4.3 are when s > ¢/2. When ¢ = 2, this result
does not say anything useful, so the paper by D’Arco, Esfahani and Stinson [7]
investigated this case in detail, concentrating on ¢ = 2. It is not difficult to
prove that there is no linear (2,s,2)-AONT if s > 2, so our paper [7] studied
how “close” one could get to a (2, s,2)-AONT. More precisely, Ra(s) was used
to denote the maximum density of invertible 2 x 2 submatrices in an invertible
s X s binary matrix, where “density” is computed as the number of invertible
2 x 2 submatrices, divided by (3)2 (Here, invertibility refers to invertibility in
Fs.)
First, observe that there are exactly six 2 by 2 invertible 0-1 matrices:

1 1 11 0 1 1 0 1 0 0 1
1 0 0 1 11 11 0 1 1 0/
As an example, we showed in [7] that R2(3) = 7/9, and this bound is met
by the following matrix:

— = =

11
01
10
It is easy to see that seven of the nine 2 x 2 submatrices of this matrix are
invertible. Further, a short case argument can be used to show that this is best

possible.
Using quadratic programming, we proved in [7, Corollary 19] that

5s
RQ(S) S 78(8 _ 1).
Thus the asymptotic density of invertible 2 x 2 submatrices is at most 5/8.
Later, the upper bound on Ry(s) was improved by Zhang, Zhang, Wang and
Ge [34], where it was shown that lims_, . Ra2(s) < 0.5.

Existence results comprise both random methods and deterministic construc-
tions. We observed in [7] that a random 2 by 2 binary matrix, in which every
entry equals 1 with probability 4/1/2, is invertible with probability 1/2. Thus,
a random s by s binary matrix that is constructed in the same fashion has an
expected density equal to 0.5. Such a matrix may or may not be invertible, but

10



a non-invertible matrix can be adjusted slightly to obtain an invertible matrix,
by altering some of the entries on the main diagonal (see [34]). This does not
affect the asymptotic density.

Various types of deterministic constructions have been considered in [7, 34].
We suggested to use the incidence matrix of a symmetric (v, k, A)-BIBD in [7].
It is straightforward to count the exact number of invertible 2 x 2 submatrices
in such an incidence matrix, and thereby compute the density. It turns out that
the resulting density is close to 1/2 when the ratio k/v is “close” to /1/2.

The points and hyperplanes of the m-dimensional projective geometry over
F3 yield a

m+1 mo__ m—1 _
3 L3n 13 N\ <pmp,
2 2 2
We noted in [7] that the incidence matrix of this design is invertible and has

density equal to
40 x 32m=3

T E" - 1)

which asymptotically approaches 40/81 = .494.

We also proposed in [7] to use cyclotomic classes in Z,, where p = 4f + 1
is prime and f is even, to construct a certain binary matrix. After doing some
computations involving the cyclotomic numbers of order 4, we showed that
the matrices thus obtained have asymptotic density equal to 63/128 =~ .492,
which is not quite as good as the projective geometry example (the matrices
also might not be invertible, but they can be “adjusted” using the method
from [34]). An identical approach involving cyclotomic numbers of order 7
was subsequently used in [34] to obtain matrices with asymptotic density equal
1200/2401 ~ 0.4997917. This is the best deterministic construction known at
the present time.

4.2 General AONT with ¢t =2

Esfahani, Goldberg and I studied the existence of (2,s,v)-AONTs in [9], with
particular emphasis on the case of linear AONT defined over a finite field F,.
By using a connection with orthogonal arrays, we showed that a (2, s,v)-AONT
can exist only if s < v +1 (see [9, Corollary 25]). In the linear case, we showed
a stronger result, namely that, for a prime power ¢ > 2, a linear (2, s, q)-AONT
defined over F, can exist only if s < ¢ (see [9, Theorem 14]). As I already
mentioned, a Cauchy matrix defined over F, can be used to construct a linear
(2,s,9)-AONT whenever s < ¢/2, so the cases of interest are where ¢/2 < s < q.

We observed in [9] that it is easy to construct a ¢ by ¢ matrix with entries
from Iy such that any 2 by 2 submatrix is invertible over F,. The matrix M =
(my.c) where m, . = r + ¢ (for all r,c € Fy) has this property. Unfortunately,
this matrix M is not invertible, so it does not give rise to an AONT.

In [9], we provided some structural results for linear (2, ¢, ¢)-AONT defined
over F, and we performed some computer searches for small values of g. We

11



found examples of linear (2,p,p)-AONT defined over Z, for all odd primes
p < 29. We posed several questions in [9], one of which was to determine
if linear (2,p,p)-AONT exist for all odd primes p > 3. This question was
answered in the affirmative by Wang, Cui and Ji in [32], who gave a very nice
direct construction that we describe now.
Let p be prime, and define a p by p matrix A = (a;;), where 0 < 4,5 <p—1,
as follows:
0 if i = j
(i—4)7" if§ >0, #j.
The following theorem is proven in [32].
Theorem 4.4. [32] The matriz A defined in (3) is a linear (2,p,p)-AONT.

Here is the linear (2,7,7)-AONT obtained from Theorem 4.4:

0 6 3 25 41
1 06 3 2 5 4
110 6 3 2 5
1410 6 3 2
15410 6 3
1 2 5 410 6
1 3 25 410

5 Algebraic Manipulation Detection Codes

Algebraic manipulation detection codes (or, AMD codes) were introduced by
Cramer et al. [5] in 2008 (see also [6]). These codes are a type of information
authentication code that protect against certain types of active attacks by an
adversary. In this section, I will discuss results I proved with Maura Paterson in
[21] and with Bill Martin in [18], as well as some new results by other authors.

Let G be an additive abelian group and let A = {4;,..., A} consist of
m pairwise disjoint k-subsets of G. Then the pair (G,.A) is an (n,m, k)-AMD
code, which can be used to encode information as follows. A source i, such that
1 <i < m, is encoded by choosing an element g €g A;. This notation means
that g € A; is chosen uniformly at random.! Clearly any g € G is the encoding
of at most one 1.

It is desired that an AMD code has certain security properties. There are
two flavours of AMD code that I will discuss; they are termed weak and strong
AMD codes.

5.1 Weak and Strong AMD Codes
I will begin with the definition of a weak AMD code.

1Some authors have considered a more general definition, where this encoding is not done
uniformly at random, but rather, according to a certain probability distribution.
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Definition 1 (Weak AMD code).
Suppose (G, A) is an (n,m,k)-AMD code. Consider the following game:
1. The adversary chooses a value A € G\ {0}.
2. The source i € {1,...,m} is chosen uniformly at random.
3. The source is encoded by choosing g €Er A;.
4. The adversary wins if and only if g+ A € A; for some j # i.

The adversary is free to choose A in any manner that they wish, so it is
natural to assume that the adversary chooses A in order to maximize their
probability of winning the above game.

Now I will define strong AMD codes.

Definition 2 (Strong AMD code).

Suppose (G, A) is an (n,m,k)-AMD code. Consider the following game:
1. The source i € {1,...,m} is specified and given to the adversary.
2. The adversary chooses a value A € G\ {0}.
8. The source is encoded by choosing g €r Aj;.
4. The adversary wins if and only if g+ A € A; for some j # 1.

Observe that, in a strong AMD code, the adversary knows the source (but
not the encoded source) before they choose A. On the other hand, in a weak
AMD code, the adversary is required to choose A before the source is deter-
mined. The other difference between weak and a strong AMD codes is that the
source is chosen uniformly at random in a weak AMD code, whereas there is no
such restriction for a strong AMD code.

The main goal when designing AMD codes is to prevent the adversary from
winning the above-described games. Later in this section, I will discuss some
constructions for “optimal” AMD codes, which are AMD codes in which the
adversary’s probability of winning is minimized.

5.2 An Application of AMD Codes to Threshold Schemes

Constructing robust threshold schemes has been considered by various researchers,
beginning with Tompa and Woll [28]. In 1996, Ogata and Kurosawa [19] sug-
gested using difference sets in conjunction with a Shamir threshold scheme to
provide an optimal solution to this problem. A similar construction using EDFs
can be found in [20]. In fact, any AMD code can be used in this way, as noted
by Cramer et al. in [5].

The problem that arises when using the basic Shamir threshold scheme (de-
fined over F,) in the presence of cheaters is that a single dishonest player can
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release a bogus share and thereby influence the value of the reconstructed se-
cret in a predictable way. Recall the formula (2) that players P, ..., P;, use to

compute the secret:
t
K= Z bjyij .
j=1

Suppose that P;, claims that their share is ygj instead of y;;. This will lead to
the secret being incorrectly computed as

t
K' =by;, + Z bivi, = K +b1(yi, — ¥i,)-
=2

Thus, even though P;, does not know the value of K, they know that the value
of the secret will be increased by the known quantity by (y;, —vi,) as a result of
the substitution y;, — y;, .

AMD codes provide a nice way to prevent (with some probability) a cheating
player from carrying out a successful attack of this type. Suppose first that
there are m possible secrets, denoted as {1,...,m}. Next, suppose that (F,,.A)
is an (n, m, k)-weak AMD code (note that we are assuming here that the group
G is the additive group of a field). Suppose also that the m possible secrets
{1,...,m} are equiprobable. Then consider the modified Shamir scheme which
works as follows:

1. Given a secret ¢ € {1,...,m}, D chooses an element K €r A;.

2. D computes shares for K using the usual Shamir threshold scheme over
F

-
To reconstruct a secret, t players proceed as follows:

1. The ¢ players first determine K using (2).

2. Then they determine the value i such that K € A;.

Now consider what happens if a player P;, releases a bogus share y; instead
of the correct share y;,. Then the value K’ = K + A would be computed in
the first stage of reconstruction where A = by(y;, — v;,). The adversary P;,
would win if K + A € A; for some j # i. Thus, the security of the threshold
scheme is determined by the security of the AMD code that is employed in the
construction.

If the m possible sources have a nonuniform distribution, we could instead
use a strong AMD code to thwart the adversary. A strong AMD code can
protect against a cheating player if even if the secret happens to be completely
determined ahead of time.
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5.3 Combinatorial Analysis of AMD Codes

AMD codes have been studied in a number of papers over the years, and various
interesting connections with combinatorial structures have been pointed out,
e.g., in [5, 6]. Maura Paterson and I thought it would be of interest to investigate
optimal AMD codes from a combinatorial viewpoint, which what we did in our
2016 paper [21]. Roughly speaking, the term “optimal” means that the AMD
code has the property that the adversary’s probability of winning the game
described in Definition 1 is minimized.

To be more precise, consider the following analysis. For any source i, there
are exactly k(m — 1) values of A # 0 for which the adversary will win this game.
It follows that a random choice of A # 0 will result in the adversary winning
the game with probability k(m —1)/(n— 1), since sources are equiprobable. We
defined a weak (n,m, k)-AMD code to be R-optimal if the adversary’s optimal
strategy is a random choice of A £ 0.

There are interesting connections between R-optimal weak AMD codes and

certain types of difference families, which I will describe now. The following
definition from [20] is relevant to the subsequent discussion. (I should mention
that the more general concept of a difference system of sets was defined earlier,
by Levenshtein, in [15].)
Definition 3 (External difference family). Let G be an additive abelian group of
order n. An (n,m, k, \)-external difference family (or (n,m,k,\)-EDF) is a set
of m disjoint k-subsets of G, say Ay,..., Am, such that the following multiset
equation holds:

U {9-h:gedined}=xG\{0}).
{i,4:1#5}
In words, the multiset of differences obtained from elements in different A;’s

yields every mon-zero element of G exactly A times.

It is obvious that, if an (n,m, k, \)-EDF exists, then n > mk and
An —1) = kE*m(m — 1). (4)

Also, note that an (n,m, 1, \)-EDF is the same thing as an (n,m, \) difference
set.
Here is a nice infinite class of EDF's due to Tonchev.

Theorem 5.1. [29] Suppose that g = 2ul + 1 is a prime power, where u and
¢ are odd. Let o € Fy be a primitive element and let C be the subgroup of Fg*
having order u and index 2¢. Then the ¢ cosets a®'C (0 <i</l—1) comprise
a(q,u,l,(¢q—2¢—1)/4)-EDF in F,.

The following example illustrates Theorem 5.1.

Example 5.1. Let G = (Zy9,+). Then a = 2 is a primitive element and
C = {1,7,11} is the (unique) subgroup of order 3 in Zi9*. A (19,3,3,3)-EDF
is given by the three sets {1,7,11}, {4,9,6} and {16,17,5}.
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Given a weak (n,m, k)-AMD code, because the source is chosen equiproba-
bly, it is not hard to see that the adversary’s optimal choice of A is the most
frequently occurring element in the multiset of differences

U {9—h:gedinea) (5)
{i,g:i#4}

Therefore, in order to minimize the adversary’s probability of winning the
game, all non-zero elements of G should occur equally often in (5). But this
happens precisely when the AMD code is an EDF. Thus, the following theorem
is obtained.

Theorem 5.2. [21, Theorem 3.10] An R-optimal weak (n,m,k)-AMD code is
equivalent to an (n,m,k, \)-EDF.

We also showed in [21] that “optimal” strong AMD codes can be charac-
terized in terms of certain types of difference families named “strong external
difference families.” (A related but more general object, called a differential
structure, was defined in [6].)

Definition 4 (Strong external difference family). Let G be an additive abelian
group of order n. An (n,m, k; X)-strong external difference family (or (n,m, k; \)-
SEDF) is a set of m disjoint k-subsets of G, say Ai,...,Am, such that the
following multiset equation holds for every i, 1 <i < m:

U {9—h:gedihe A} =xG\{0}). (6)
{3541}
The next theorem is an immediate consequence of Theorems 4.10 and 4.11
from [21].

Theorem 5.3. An R-optimal strong (n,m,k)-AMD code is equivalent to an
(n,m, k,\)-SEDF.

There did not seem to be any study of SEDF prior to our 2016 paper [21].
However, it is a natural problem to consider, and several researchers have since
obtained interesting results on these structures. I will now discuss some of the
known results on SEDF.

First, it is easy to see that a (n,m,k,A)-SEDF is an (n,m,k, m\)-EDF.
Therefore, from (4), a necessary condition for existence of an (n,m, k, \)-SEDF
is that

An —1) =k*(m—1). (7)

Here are some fairly trivial examples of SEDFs that we presented in [21].

Example 5.2. Let G = (Zy241,+), A1 = {0,1,...,k—1} and Ay = {k,2k,..., k*}.
This is a (k* +1,2;k;1)-SEDF.

Example 5.3. Let G = (Zp,+) and A; = {i} for 0 < i <n—1. Thisis a
(n,n;1;1)-SEDF.
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The following result states that these two examples are the only SEDFs with
A = 1. It is proven using elementary counting arguments.

Theorem 5.4. [21, Theorem 2.3] There exists an (n,m, k,1)-SEDF if and only
ifm=2andn=%k>+1, ork=1 and m =n.

When we first defined SEDF's, I thought they would not be difficult to find,
e.g., using cyclotomic classes, in a manner similar to Theorem 5.1. I wrote a
short computer program to search for examples of this type in finite fields Z,
for primes p < 1000. But my searches were unsuccessful, surprisingly to me at
least. So, at the end of our paper [21], we asked if there are examples of strong
external difference families with £ > 1 and m > 2.

The first progress on this question occurred when Bill Martin visited me in
September 2016. Bill suggested that we use character theory to try and learn
more about possible existence or non-existence of SEDF. This turned out be an
excellent idea and we were able to prove a few non-existence results which were
reported in [18]. The most important result we proved is the following.

Theorem 5.5. [18, Theorem 3.9] If v is prime, k > 1 and m > 2, then there
does not exist a (v,m,k,\)-SEDF.

After Bill and T posted the preprint version of [18] on ArXiV in October,
2016, there was a flurry of activity by several researchers on the topic of SEDFs
(see [1, 11, 12, 14, 33]). Several additional nonexistence results were obtained,
e.g., when v is the product of two odd primes or the square of an odd prime
(see [1, 14] for these and other nonexistence results). But perhaps the biggest
surprise was that two groups of researchers independently found a non-trivial
example of an SEDF with m > 2.

Theorem 5.6. [14, 33] There exists a (243,11,22,20)-SEDF.

The construction of the (243,11, 22, 20)-SEDF is fairly simple. Let Cy be the
subgroup of F35* having order 22, and let C1, . .., Cjg be its cosets. {C,...,Cio}
forms the desired SEDF.

The parameters of the SEDF constructed in Theorem 5.6 satisfy the equation
n = km + 1 and thus they have been termed near-complete. The parameter set
(243,11,22,20) is quite special; the following result concerning near-complete
SEDF was proven by Jedwab and Li in [14].

Theorem 5.7. [14] If there exists a near-complete (n,m,k,\)-SEDF, then
(n,m,k,A) = (v,2,(v—1)/2,(v—1)/4) for some v =1mod 4, or (n,m,k,\) =
(243, 11,22, 20).

Here is one more interesting result. Huczynska and Paterson [11] used com-
binatorial techniques to prove the following.

Theorem 5.8. [11] Suppose A > 2, m >3 and k > A\+1. Then an (n,m, k,\)-
SEDF exists only if

Ak —1)(m —2) < (A — Dk(m — 1).

Using this theorem, Huczynska and Paterson [11] gave a substantially com-
plete treatment of the case A\ = 2.
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5.4 Nonuniform AMD Codes

In [21], we also considered a more general definition of AMD codes, in which
the sets Ay,..., A, are not all required to be the same size. We will call an
AMD code of this type a nonuniform AMD code.

A study of optimal nonuniform weak AMD codes by Huczynska and Paterson
[12] introduced the notion of reciprocally-weighted external difference families.
These structures can be defined combinatorially (as in [12]), but a more concise
definition can be given using the group ring Q[G]. We write elements of Q[G]
as polynomials with rational coefficients and exponents in G. Associated with a
subset A C G we have A(z) € Q[G] defined as A(z) =3_ 4 29. We also define
Alz~h) = dgeat ?and G(z) =3 a7

Using this notation, we can define EDFs and SEDFs as follows:

e m disjoint k-subsets of G, say Ay, ..., A, comprise an (n, m, k, \)-EDF if

>Y 4@ = MGE) - ).

i=1 j=1,...;m,j#i
e m disjoint k-subsets of G, say Aj,..., A, comprise an (n,m, k, A\)-SEDF

if
> A@)A(rh) = MG(z) - )
G=1,...,m,j#i
forj=1,...,m.
The above two definitions also make sense in the group ring Z[G]. However, the

definition of reciprocally-weighted external difference families, which we give
next, is more natural in Q[G].

Definition 5 (Reciprocally-weighted external difference family). Let G be an
additive abelian group of order m. An (n,m,\)-reciprocally-weighted external
difference family (or (n,m,\)-RWEDF) is a set of m disjoint subsets of G, say
A1, ..., Ay (of possibly different sizes), such that the following equation holds
in Q[G]:
u 1
Y Y @A) = AGE) - ),
i=1j=1,...,mj#i "
(Note that, in this definition, X is not required to be an integer.) The notation
(nym;k1, ..., km; A\)-RWEDF is also used, where |A;| = k; for 1 <i<m.
We note that an (n,m;k; \)-EDF is equivalent to an (n,m;k, ..., k; A\/k)-

RWEDF Here is a nonuniform example.

Example 5.4. [21, Example 3.1] Let G = (Z19,+) and let A; = {0}, Ay =
{5}, A3 = {1,9} and Ay = {2,3}. We verify that this is a (10,4;1,1,2,2;2)-
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RWEDEF:

Ay(@)(As(z ™D + As(z ) + Ag(z7Y) = 2t +ab+2"+28+2°
Ag(x)(Ar(z™ ) + Az(z™ ) + Ag(z™Y) = 22+ 23 +2t 4 2% +aF
1 1 1 1 1
S A AT + 4@ ) + AY) = Gal et et 4 el 4 et
1 1 1 1 1
§A4(x)(A1(x_1)—l—Ag(x_l)—i—Ag(x_l)) = 5301 +x2+x3+§x4+§x7—|—§x8.

Summing the polynomials on the right sides of these four equations, we obtain
2(Z1o(x) — ), as claimed.

Huczynska and Paterson [12] proved the following equivalence.

Theorem 5.9. [12, Theorem 1.10] An R-optimal weak nonuniform (n,m)-
AMD code is equivalent to an (n,m, \)-RWEDF.

Turning now to strong AMD codes, the R-optimal codes can be characterized
in terms of the generalized strong external difference families that Paterson and
I defined in [21]. Here I give the group ring definition.

Definition 6 (Generalized strong external difference family). Let G be an addi-
tive abelian group of order n. An (n,m; Ay, ..., A\pm)-generalized strong external
difference family (or (n,m; A1, ..., A\m)-GSEDF) is a set of m disjoint subsets of
G, say Ay, ..., A (of possibly different sizes), such that the following equation
holds in Z|G]:

Y. A@)Aeh) = N(G(z) — %)

J=1,em g

fori=1,...,m, where the \;’s are positive integers. It is sometimes convenient
to use the notation (n,m;k1, ..., km; A, ..., Am)-GSEDF, where |A;| = k; for
1<t <m.

It is clear that an (n, m; k; \)-SEDF is equivalent to an (n,m; k, ... k; A, ..., \)-
GSEDF. Here is a nonuniform example.

Example 5.5. [21, Fxample 2.7] Let G = (Z7,+) and let Ay = {1}, As = {2},
As = {4} and Ay = {0,3,5,6}. It is straightforward to check that this is a
(7,4:1,1,1,4;1,1,1,2)-GSEDF.

In fact, Example 5.5 is a special case of the following more general theorem
that we proved in [21].

Theorem 5.10. [21, Theorem 2.4] Suppose Ai,...,An is a partition of an
abelian group G of order n, where |A;| = k; for 1 <i<m. Then Ay,..., Ay, is
an (n,m; ki, ... km; A1, ..., A )-GSEDF if and only if A; is an (n, ki, ki — A;)-
difference set in G, for 1 <i<m.

In Example 5.5, A, A; and A3 are difference sets with A = 0, while A4 is a
difference set with \ = 2.
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Theorem 5.11. [21, Theorems 4.10 and 4.11] An R-optimal strong nonuniform
(n,m)-AMD code is equivalent to an (n,m;A1,..., \pm)-GSEDF.

For additional existence and nonexistence results on GSEDF, see [16, 21].

6 Conclusion and Open Problems

There are many other topics that could be included in a survey paper such as this
one. The topics I chose are all research areas of current interest in which there
are interesting unsolved problems to investigate. Here are four open problems
that I find particularly interesting.

1. Construct further example of AOA(s, t, n, v) in parameter situations where
the corresponding OA;(t,n +t — s,v) do not exist.

2. Find a deterministic construction which shows that Rs(s) — 0.5 as s — co.

3. Determine if there exist (nonlinear) (2,v + 1,v)-AONT.

4. Determine if there exist any additional (other than the example provided
in Theorem 5.6) nontrivial (n, m, k, \)-SEDF with m > 2.
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