On perpendicular arrays with ¢t > 3
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Abstract. We begin an investigation of perpendicular arrays with t > 3, and deter-
mine some necessary and sufficient conditions for existence. In particular, a perpendic-
ular array PA3(3,4,v) exists forallv > 4.

1. Introduction
A perpendicular array PAy(t,k,v) is a A(}) by k array, A, of the symbols
{1,---,v}, which satisfies the following properties:
i) every row of A contains k distinct symbols
i) for any t columns of A, and for any t distinct symbols z;(1 < 1 < t),
there are exactly A rows of A that contain every z;(1 < 1 < t).

Notice that property ii) implies property i) if t > 2. We also note that property
1) implies that k < v in a perpendicular array. Finally, observe that if we delete
any k — 7 columns from a PAy(t, k,v), we obtain a PAy(t,J,v).

The arrays PA; (2, k,v) have been investigated by several researchers in com-
binatorial design theory (see for example [3], [10], [11], [13]). In this paper, we
begin an investigation of the arrays PA,(t, k,v),t > 3. In particular, the spec-
trum of PA3(3,4,v) is completely determined.

Let’s firstdetermine some necessary conditions for the existence of a P A, (¢, k, v).

Theorem 1.1. Suppose0 < t' < t and ('t‘) > (f) Then, a PA,(t, k,v) is also

aPA,(t, k,v), where
v—t E
220 20)/(0)

Hence,

Proof: Let A be a PAy(t, k,v), and name the columns by 1,--- k. LetY be
any set of t' distinct symbols. For any set J’ of t' columns, define I(J') to be the
number of rows of A in which the symbols in Y are all contained in the columns
in J'. We obtain some linear equations in the J(J') as follows. For any set J of ¢
columns, we get an equation

N _fv—=1
) I(J)-A(t_t,>.

J'CI =t
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for every J'. Consequently, A is a PA,(t', k,v), where  is as above. §
Corollary 1.2. IfaPA,(2,3,v) exists, thenv is odd.

Corollary 1.3. If a PA,(3,4,v) exists, thenv = 1 or 2 modulo 3. If a
PA,(3,5,v) exists, thenv = 2 modulo3.

In this way we get (¥) equations in (
has the unique solution

) unknowns. If (5) > (&), then the system

The following observations are immediate.
Theorem 1.4. A PAy(t,v,v) isalsoaPAy(v—t,v,v).
Theorem 1.5. For all v, there existsa PA (1,v,v) anda PA;(v — 1,v,v).

Proof: A PA,(1,v,v) is a Latin square of order v. By Theorem 1.4, it is also a
PA(v—-1,v,v). 1

2. Recursive constructions for PA,(t, k,v)

Let v and t be positive integers, and let K C {t,--- ,v — 1}. A (v, K,)\)-
tB D (t-wise balanced design) is a pair (X, B), where X is a set of v elements
(called points) and B is a collection of subsets of X (called blocks), such thatevery
(unordered) t-subset of points occurs in exactly X blocks B € B, and |B| € K for
every B € B. Inthecase K = {k},a(v,{k}, \)-tBD isalsodenoted S\(t, k, v).

Our main recursive construction for P As uses t BDs, as follows.

Construction 2.1. & BD Construction) Suppose (X ,B) isa(v, K,\)tBD, and
foreverym € K, suppose there exists a PA,(t, k,n). Then we can construct a
PAy,(t,k,v), by taking a PA,(t,k, |B|) on symbol set B, forevery B € B.

Using the P As constructed in Theorem 1.5, we have the following.

Theorem 2.2. Suppose there is an S\(k — 1,k,v). Then there is a
PAy(k—-1,k,v).

As a corollary, we can obtain the following infinite class of PA,5(5,6,v).
Theorem 2.3. Foralla > 2, thereisa PA5(5,6,2% + 2).

Proof: Jungnickel and Vanstone have shown in [9] that there is an Sy5 (5,6, 2%+
Q) forallaa >2. 1

Examples of PA;(k — 1,k,v) can be obtained whenever a Steiner system
S1(k — 1, k,v) is known to exist. For example, we have the following results.
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Theorem 2.4. There exists a PA,(k — 1, k,v) whenever (k,v) = (5,11),(6,
12),(5,23),(6,24),(5,47),(6,48),(5,83),(6,84),(5,71), 0or(6,72).

Proof: The corresponding Steiner systems all exist ([1], [12], [15]). §

3. The arrays PA)(3, k,v)

In this section, we investigate the existence of PA;(3,4,v) and PA;3(3,4,v).
First, we give several examples of small arrays. In some of the following exam-
ples, we use some notation to economize the listing of starting blocks; namely, let
C(x1,x2,- -+, xs) represent the k cyclic shifts of the row z1xy - - - zk.

Example 3.1: A PA,(3,4,4). Develop the following row modulo 4.

0 1 2 3

Example 3.2: A PA,(3,5,5). Develop the following rows modulo 5.

0 1 2 3 4 0 2 4 1 3

Example 3.3: A PA;(3,6,6). Develop the following 12 rows modulo 5.

C(z 0 1 2 4 3) Cz 0 2 4 3 1)

Example 3.4: A PA,(3,4,7). Develop the following rows modulo S.

coCs
— =R <
W - O
Ry W
Ce O
o O
< =8
A

Example 3.5: A PA,(3,8,8) [14]. Develop the following rows modulo 7.

z 01 2 3 4 5 6 0O z 3 6 1 5 4 2
1 3 z 4 0 2 6 5 2 6 4 5 1 3 0
31 0 5 z 6 2 4 4 5 2 1 6 z 0 3
5 4 6 3 2 0 z 1 6 2 5 0 4 3 1 z

Remark: This PA has AGL(1,8) as its automorphism group.

Example 3.6: A PA3(3,4,9). This is constructed by applying the tB D con-
structiontoa (9,{4,5},3)-3 BD. To construct thc 3 B D, take three copies of an
S1(3,4, 8),and adjoin a new point oo to all the blocks of one of these S1 (3,4, 8).
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Example 3.7: A PA,(3,4,11). Obtain 15 rows by multiplying each row by all
quadratic residues in Z,;. Then, develop modulo 11.

2 01 6 01 7 3
3 7 0

Example 3.8: A PA,(3,4,13). Develop the following 26 blocks modulo 11,
(i.e. points 12 and 13 are fixed).

1 2 5 6 1 5 6 12 1 10 5 3 1 13 10 2

1 2 6 7 1 6 3 8 1 11 6 8 12 1 6 2

1 2 9 5 1 6 4 10 1 11 12 9 12 4 2 1
1 2 11 3 1 6 9 3 1 11 13 7 13 1 5 3

1 3 8 9 1 8 4 5 1 12 4 7 13 1 12 6

1 4 2 13 1 9 13 4 1 12 5 13

1 4 3 2 1 10 3 12 1 13 7 8

Example 3.9: A PA3(3,4,15). Develop the following 91 blocks modulo 15.

1 2 7 8 1 4 2 5 1 6 12 11 1 11 13 8
1 2 7 9 1 4 2 11 1 7 2 1 1 11 14 12
1 2 8 10 1 4 2 14 1 7 8 15 1 12 3 13
1 2 9 1 1 4 3 2 1 7 9 1 1 12 6 13
1 2 9 13 1 4 5 10 1 7 10 2 1 12 7 11
1 2 9 14 1 4 7 10 1 7 12 3 1 12 8 2
1 2 10 12 1 4 7 12 1 7 12 9 1 12 8 7
1 2 10 14 1 4 8 11 1 7 15 12 1 12 11 10
1 2 11 13 1 4 8 12 1 8 5 4 1 12 13 14
1 2 12 14 1 4 9 2 1 8 11 12 1 13 2 4
1 2 13 10 1 4 10 9 1 8 14 15 1 13 5 14
1 2 14 1 1 4 15 13 1 9 3 5§ 1 13 8 9
1 3 4 9 1 5 3 13 1 9 4 8 1 13 10 11
1 3 5 1 1 5 6 2 1 9 6 3 1 13 12 4
1 3 5 12 1 5 7 3 1 9 6 5 1 14 10 15
1 3 7 9 1 5 8 6 1 9 11 4 1 14 11 5
1 3 7 10 1 5 12 13 1 9 13 1 1 14 11 15
1 3 7 1 1 6 2 14 1 9 14 7 1 14 15 6
1 3 &8 12 1 6 3 8 1 10 4 2 1 14 15 12
1 3 8 13 1 6 3 12 1 10 9 7 1 15 § 2
1 3 9 12 1 6 7 10 1 10 15 11 1 15 11 6
1 3 9 13 1 6 8 2 1 11 3 2 1 15 14 7
1 3 10 13 1 6 11 3 1 11 7 4
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Example 3.10: A PA3(3,4,19). Multiply each of the following rows by the
quadratic residues in Z )9, i.¢. apply powers of the permutation (14 16 7 9 17 11
6 5)(2813 14 18 153 12 10) to get 17 - 9 rows. Then develop modulo 19.

c(1 2 3 13 1 5 2 4 1 13 18 19
c(1 2 5 14 1 8 6 5 1 18 17 16
1 2 3 8 1 9 18 19 1 19 15 3
1 2 3 1 1 13 14 16

Example 3.11: A PA;(3,4,23). Obtain 77 rows by multiplying each row by
all quadratic residues in Z»3. Then, develop modulo 23.

11 0 1 5 4 3 0 1
0O 2 1 5 0 1 14 5
2 0 19 1 1 0 4 18
5 0 1 22

Example 3.12: A PA3(3,4,27). LetG be the group generated by (1357 9 11
1315 17 19 21 23 25(2 4 6 8 10 12 14 16 18 20 22 24 26)(27) and
(139)(21221)(4718) (520 17)(6 10 11)(8 25 15)(13 26 27) (14 22 16)
(19 24 23). Then G is a group of order 27 - 13. Let G act on the following 25
TOWS

c1 2 3 12 1 2 23 3 1 15 7 2
c(1 2 3 15 1 2 24 5 1 17 5 15
c(1 2 5 21) 1 4 2 5 1 23 24 2
cr 2 7 16 1 7 13 16
1 2 6 7 1 12 15 7

Example 3.13: A PA3(3,4,31). Let the permutation (1 9 19 16 20 25
810284 514218 7) (327 26 17 29 13 24 30 22 12 15 11 6 23 21)(31)
act on the following 29 rows, yielding 29 - 15 rows. Then develop modulo 31.

c(l 2 316 12 3 7 1 7 8 6
c1 2 3 19 12 7 31 128 2 3
C(1 2 4 5) 1 2 27 28 1 31 3 13
c(1 2 5 26 1 2 30 4 1 31 12 5
c(1 2 5 10) 16 4 3

Example 3.14: A PA;(3,32,32) [14]. The group AT L(1,32) is a sharply
3-homogeneous permutation group of degree 32. If we write the 32 - 31 - 5 per-
mutations as rows of an array A, we geta PA;(3,32,32).

Define P4 = {v : thereexistsa PA;(3,4,v)}. From the examples above,
we have that4,5,7,8,11,13,23,and 32 € P,. First, we observe that we can
determine precisely what even values are in Py.
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Theorem 3.1. Ifv is even, then there is a PA,(3,4,v) ifand only ifv =2 or
4 modulo6.

Proof: This condition is necessary, by Corollary 1.3. Sufficiency follows from
Theorem 2.2, noting that S1(3,4,v) existforallv = 2 or4 modulo 6 ([4]). &

We can now show that several other small values of v are in P4 by applying
the tB D construction. Our main source of 3 B Ds are inversive planes 1P(q), ¢
a prime power. An inversive plane IP(gq) isan 51(3,q9+ 1, q> + 1). These werc
first shown to exist by Witt [15], [16]. Also, note that if we truncate points from
an I P(g), we obtain a 3 BD having different block sizes.

Only a few other general constructions for 3 B Ds are known. One of the most
useful (for our purposes) is duc to Heinrich and Nonay ([8] p. 60) (see also Fu [2,
Lemma 2.4]).

Lemma 3.2. Supposem >2,m ¥ 3,5. Then thereisa(8m + 1,{4,5,2m+
1},1)-3BD.

Corollary 3.3. Supposev > 5 is odd, v # 7 or1l. IfaPA;(3,4,v) exists,
then so too does a PA, (3,4 ,4v — 3) exist.

A generalization of Lemma 3.2 has been given by Hartman and Phelps in [7].
In order to state the construction, we need to define transversal t-designs. A
TD(t, k,v) is a triple (X, G, B), where X is a set of kv elements (points), G
is a partition of X into k groups containing v points each, and B is a set of k-
subsets of X (blocks), each of which is a transversal of G, such that every setof ¢
points from distinct groups occurs in a unique block. The following construction
is a straightforward modification of [7, Theorem 2.2].

Lemma 3.4. Let K be a set of block sizes such that4 € K. Suppose there is
aTD(3,4,v— w) containing w disjoint subdesigns TD(2,4,v — w), where
v — w is even. Suppose also that there is a(v, K, 1) -3 B D which contains at least
one block of size w. Then there is a (4(v — w) + w, K, 1)-3BD.

The following theorem summarizes our knowledge about PA:1(3,4,v) forodd
v < 100.

Theorem 3.5. There cxistsa PA1(3,4,v) forv=15,7,11, 13,17,23,25,29,
49 53,65,85,89, and97.

Proof: The cases v = 5,7,11,13, and 23 were given in the examples. Forv =
25 and 29, apply Construction 2.1 as follows. For v = 25 usea(25,{4,5}, -
3 BD which can be constructed by deleting a point from a (26, {5}, )-3BD
(6]. For v = 29, we employ a (29, {4,5}, 1)-3BD constructed by K. T. Phelps
(private communication). For v = 17,49, 65,89, and 97, apply Corollary 3.3.
Forv = 53, apply Lemma 3.4 and Construction 2.1 with the equation 53 = 4(17 —
5) + 5. The existence of a T'D(3, 5,12) (Example 3.15) implies the existence
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aTD(3,4,12) containing 12 disjoint TD(2,4,12); and an inversive plane of
order4isa(17,{5}, 1)-3 BD which contains at least one block of size 5. Finally,
forv = 85, apply Lemma 3.4 and Construction 2.1 with the equation 85 = 4(25 —
5)+5. TheexistenceofaT'D(3,5,20) [7, Theorem 2.3 (b)] implies the existence
of aTI(3,4,20) containing 20 disjoint TD(2,4,20); and a (25,{4,5},1)-
3 BD which contains at least one block of size 5 was mentioned earlier in this
proof. N

Example 3.15. ATD(3,5,12). Foreveryg andh € Z, x Z¢, construct 12
blocks as follows.

{9, 9, h, g+h, h}
{9, g+ (0,1), h+(1,1), g+h+(0,3), h}
{9, 9+(0,2), h+(1,5), g+h+(1,0), h}
{9, g+ (0,3), h+(1,2), g+ h+(0,1), h}
{9, 9+(0,4), h+(1,4), g+h+(1,3), h}
{9, g+ (0,5, h+(0,2), g+h+(1,5), h}
{9, g+ (1,0), h+(0,5), g+ h+(0,2), h}
{9, g+ (1,1, h+(0,4), g+h+(1,2), h}
{9, 9+(1,2), h+(0,3), g+ h+(0,5), h}
{9, 9+(1,3), h+(1,3), g+h+(0,4), h}
{9, g+(1,4), h+(0,1), g+h+(1,1), h}
{9, 9+(1,5), h+(1,0), g+h+(1,4), h}

We can completely determine the spectrum of P A3 (3 ,4,v). Note that there
are no congruential restrictions on v here.
Theorem 3.5. ThereisaPA3(3,4,v) ifand only ifv > 4.

Proof: Hanani showed in [5] that thereisa (v, {4,5,6,7,9,11,13,15,19,23,
27,29,31},1)-3BD for any v > 4. From the examples, we already know that
thereisa PA3(3,4,v) forv=4,5,6,7,9,11,13,15,19,23,27,29, and 31.
Apply Construction 2.1 §
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