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Abstract. The obvious necessary conditions for the existence of a (v, 4, 1) balanced
incomplete block design (BIBD) containing as a subdesign a (w,4,1)-BIBD arev = 1
or 4 modulo 12, w = 1 or 4 modulo 12, and v > 3w + 1. More generally, we can
consider the existence of pairwise balanced designs on v points, having blocks of size
4, except for one block of size w. Such a design can exist only if v > 3w + 1; and

= 1 or 4 modulo 12 and w = 1 or 4 modulo 12, or v = 7 or 10 modulo 12 and
w = 7 or 10 modulo 12. We show that these conditions are sufficient for the existence
of such a design.

1. Introduction.

A pairwise balanced design (or, PBD) is a pair (X, .A), such that X is a set
of elements (called points) and A is a set of subsets of X (called blocks), such
that every unordered pair of points is contained in a unique block of A. If v is a
positive integer and K is a set of positive integers, then we say that (X, A) is a
(v; K)-PBD if | X| = v, and |A| € K for every A € A. The integer v is called
the order of the PBD.

Using this notation, we can define (v, 4, 1)-BIBDtobe a (v; {4 }) -PBD. Itis of
course well-known that a (v, 4, 1)-BIBD exists if and only if v = 1 or 4 modulo
12.

Let (X,.A) be a PBD. If a set of points Y C X has the property that, for any
A€ A,either Y NA| < 1orA C Y, then we say that Y is a subdesign or
Jlat of the PBD. The order of the subdesign is [Y'|. The subdesign Y is proper if
Y # X. If Y is a subdesign, then we can delete all blocks A C Y and replace
them by a single block, Y, and the result is a PBD. Also, any block or point of a
PBD is itself a subdesign.

The problem of constructing (v,4, 1)-BIBDs containing subdesigns was first
studied by Brouwer and Lenz ([7] and [8]) and more recently by Wei and Zhu
([28] and [29]). The obvious necessary conditions for the existence of a (v, 4, 1)-
BIBD containing a (w,4, 1)-BIBD as a proper subdesign are v > 3w+ 1,v =1
or 4 modulo 12, and w = 1 or 4 modulo 12. An almost complete solution to the
problem has recently been given by Wei and Zhu. They have proved the following
in [28] and [29].
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Theorem 1.1. Supposev = 1 or4 modulo 12, w = 1 or4 modulo 12,v > w,
andw > 88, w ¥ 133. Then there existsa(v,4 1) -BIBD containinga(w, 4, 1) -
BIBD as a subdesign if and only ifv > 3w + 1.

In this paper, we shall prove an analogous result for the remaining small values
of w not covered by Theorem 1.1, thus completing the spectrum.

If we allow a subdesign of a PBD to be missing (i.e., a hole), we have an in-
complete PBD, as follows. An incomplete PBD (or IPBD) is a triple (X,Y, A),
where X is a set of points, Y C X, and A is a set of blocks which satisfies the
following properties:

1) forany A€ A,|JANY| < 1,and
2) any two points z, y, not both in Y, occur in a unique block.

Hence, Y is the hole. Note that (X,Y, A) is an IPBD if and only if (X, AU{Y'})
is a PBD. We say that (X,Y, A) is a (v,w; K)-IPBD if | X| = v, |Y| = w, and
|A| € K forevery A € A.

There is a (v, w; {4 }) -IPBD whenever the hypotheses of Theorem 1.1 are sat-
isfied. However, existence of a (v, w; {4 })-IPBD does not require that v = 1 or
4 modulo 12 and w = 1 or 4 modulo 12. The necessary conditions (when v > w)
are easily seen to be as follows:

1) v>3w+1,and
2) v=1or4 modulo 12 and w = 1 or 4 modulo 12;
orv =7 or 10 modulo 12 and w = 7 or 10 modulo 12.
An ordered pair (v, w), where v > w, which satisfies 1) and 2), is said to be
admissible .
The existence of (v,7; {4 }) -IPBDs was studied by Brouwer in [4]. He proved
the following result.

Theorem 1.2. Forallv =7 or 10 modulo 12,v > 22, thereis a (v,7,{4})-
IPBD.

A similar result concerning (v, 10; {4 })-IPBDs was proved by Bermond and
Bond in [2].

Theorem 1.3. Forallv =7 or 10 modulo 12,v > 31, there is a (v,10,{4})-
IPBD,

In this paper, we study the existence of (v, w; {4 })-IPBDs for w = 7 or 10
modulo 12, w > 19. We show that there exists a (v, w; {4 })-IPBD for all admis-
sible ordered pairs (v, w).

Let us also observe that a (v, w; {4 })-IPBD is equivalent to another type of
design introduced in [11]. A parallel class is a set of blocks that form a partition
of the point set. A partially resolvable partition PRP 2-(p, s, v; m) can be defined
to be a (v; {p, s})-PBD in which the blocks of size p can be partitioned into m
parallel classes. It is not difficult to see thata PRP 2-(s — 1, s, v; m) is equivalent
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toa (v + m,m; {s})-IPBD. Thus, our results completely determine the spectrum
of PRP 2-(3,4,v; m).

Finally, let us remark that the existence of (v, w; {3})-IPBDs has been deter-
mined in [9] and [11].

2. Definitions and results concerning related designs.

We need to define several types of designs. First, we define a useful generalization
of a PBD called a group-divisible design. A group-divisible design (or GDD), is
atriple (X, G, A), which satisfies the following properties:

1) G is a partition of X into subsets called groups,

2) A is a set of subsets of X (called blocks) such that a group and a block
contain at most one common point, and

3) every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a GDD (X,G, A) is the multiset {|G]: G € G}.
We usually use an “exponential” notation to describe group-types: a group-type
1°273*% .. denotes 1 occurrences of 1, j occurrences of 2, etc. As with PBDs, we
will say thata GDD is a K-GDD if |A| € K forevery A € A.

We will also use the notation GD[ K, M; z] to denote a GDD(X, G, A) where
|X|=z,|G| € M forevery G € G,and |A| € K forevery A € A.

As our first observation, we note that a (v, w; {4 })-IPBD is equivalent to a
{4 }-GDD of type 3(v=/3 (w — 1)1,

In this paper, we shall make extensive use of {4 }-GDDs. The following result
has been proved by Brouwer, Hanani and Schrijver [6] concerning {4 }-GDDs
where every group has the same size.

Theorem 2.1. Suppose u > 1. Then, there exists a {4 }-GDD of type t* if
and only ifu > 4,t(u— 1) = 0 modulo 3,t*u(u — 1) = 0 modulo 4, and
(t,u) #(2,4) or(6,4).

A PBD or GDD is resolvable if the block set can be partitioned into parallel
classes. It is not difficult to sec that if a {k}-GDD is resolvable, then all groups
have the same size. We also observe that we can add a “point at infinity” to any
parallel class in a design. Hence, it follows that a resolvable { k }-GDD of type t*
is equivalent to a {k + 1}-GDD of type t“r', where r = t(u — 1) /(k — 1). We
call this process completing the resolvable design.

The existence of resolvable {3 }-GDDs has recently been studied in several
papers. The following summarizes the known results.

Theorem 2.2. (/18], [1]) Suppose g and u are positive integers such thatu > 3,
tu = 0 modulo 3,t(u — 1) iseven, and (t,u) % (2,3),(2,6),0r(6,3). Then,
there exists a resolvable {3 }-GDD of type t*, except possibly whent = 2 or 10
modulo 12andu = 6.
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Of course, this result contains as a special case the result that a resolvable
(v,3,1)-BIBD (i.e., a Kirkman triple system of order v, or KTS(v)) exists if
and only if v = 3 modulo 6 ([17]). As well, we note that the designs having
group-size two are known as nearly Kirkman triple systems.

The authors have also studied the existence of Kirkman triple systems which
contain subdesigns which also are Kirkman triple systems (where we require that
the parallel classes of the subdesign are induced from the larger design). The
following is proved in [20].

Theorem 2.3. Suppose v = w = 3 modulo 6 and v > 3w. Then there is a
Kirkman triple system of order v which contain as a subdesign a Kirkman triple
system of order w.

The existence of resolvable (v, 4,1)-BIBDs was determined by Hanani, Ray-
Chaudhuri and Wilson [10]. They proved the following.

Theorem 2.4. There exists a resolvable (v, 4 ,1)-BIBD if and only if v = 4
modulo 12,

Now, we define the idea of a GDD with a hole. Informally, an incomplete GDD,
or IGDD, is a GDD from which a sub-GDD is missing (this is the “hole”). We
give a formal definition. An IGDD is a quadruple ( X, Y, G, A) which satisfies the
following properties:

1) X isasetof points,andY C X,

2) G is a partition of X into groups,

3) Ais a set of blocks, each of which intersects each group in at most one
point,

4) no block contains two members of Y, and

5) every pair of points {z,y} from distinct groups, such that at least one of
z, y isin X \Y', occurs in a unique block of A.

We say that an IGDD (X,Y,G, A) is a K-IGDD if |A] € K for every block
A € A. The type of the IGDD is defined to be the multiset of ordered pairs {(]G],
|GNY|): G € G}. As with GDDs, we shall use an exponential notation to describe
types. Note that if Y = ¢, then the IGDD is a GDD.

We have already defined the idea of a PBD having a hole. We also employ a
more general type of incomplete PBD. We are interested in the situation when
we have two subdesigns , of given sizes, which intersect in a third subdesign
of a given size. However, as usual, the subdesigns nced not be present, that is,
we allow holes. We will refer to these designs as O-IPBDs, in order to suggest
the structure of the holes. We give a formal definition. A ¢-IPBD is a quadru-
ple (X,Y1,Y2,A), where Y] C X,Ys C X, and A is a set of blocks such
that every pair of points {z, y} occurs in a unique block, unless {z,y} C Y or
{z,y} C Y2, in which case the pair occurs in no block. We say that the O-IPBD is
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a(v;wy,w2; ws; K)-Q-IPBDIif | X| = v, |[Yi| = wy, |V2| = wa, [Y1 NY2| = ws,
and |A| € K forevery A € A.

We also utilize (incomplete) transversal designs, which we now define. A transver-
sal design TD(k,n) is a {k}-GDD of type n*. It is well-known that a TD( k, n)
is equivalent to k — 2 mutually orthogonal Latin squares (MOLS) of order n.
We also define a TD( k, n) - TD( k, m) (anincomplete transversal design) to be a
{k}-IGDD of group-type (n, m)*.

We now record the known results concerning TDs with 4, 5, or 6 groups (see
[3], [22], [26], and [27]).

Theorem 2.5. There exists a TD(4 ,n) if and only if n # 2 or 6. There-exists
aTD(5,n) ifn > 4,n ¥ 6,10. There exists a TIX6,n) ifn > 5,n¥ 6,
10,14 ,18,22,26,28,30,34,38,42,44 , or52.

We shall make extensive use of incomplete TDs with four groups. The existence
of these designs was completely determined by Heinrich and Zhu in [12].

Theorem 2.6. For all positive integers v and w such thatv > 3w, (v,w) #
(6,1), thereisa TD(4,v) - TD(4,w).

Finally, we record the existence of several small GDDs which we shall use in
recursive constructions.

Theorem 2.7. Thereexist{4 }-GDDs of the following types: 643',6'3%,623%,
6491,6°9',6631,6%121,6%122,946',956',923%,1823'2 ,and6°121 15! .
Also, there exists a resolvable {4 }-GDD of type 3.

Proof: The designs of types 643!, 946!, 956!, and 923° are constructed in
[19]. The designs of types 653! and 6234 are constructed in [21). The design
of type 6°9! is constructed in [18]. The designs of types 64122, 18232, and
6512115 are constructed in the Appendix. A resolvable {4 }-GDD of type 3°
is constructed in [13]. The remaining three designs are obtained by completing
resolvable {3 }-GDDs. |

Theorem 2.8. There exists a{5}-IGDD of type (16, 4)8.

Proof: Start with a {5}-GDD of type 46 (obtained from an affine plane of order
5) and give every point weights (4, 1). Apply the Fundamental Construction (de-
fined in Section 3), using {5 }-IGDDs of type (4,1)3, which are just TD(5,4) -
TD(S, 1). |

~ Theorem 2.9. Fork = 5 and 6, and for all0 < i < k, there exists a {4 }-IGDD
of type (9,3)" (6,0)+".

Proof: These designs are constructed in [18], [19], and [21]. |
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3. General constructions for designs containing subdesigns.

It will be necessary for us to build families of IGDDs. Our basic construction for
IGDD:s is the “Fundamental IGDD Construction” (see [16] and [19]).

Construction 3.1 Fundamental IGDD Construction: Suppose (X,Y,G, A) is
an IGDD, and let ¢, s: X — Z* U {0} be functions such that t(z) < s(z), for
every x € X. For every block A € A, suppose that we have a K-IGDD of type
{(s(z),t(x)): = € A}. Suppose also that we have a K -IGDD of type {(} .conv
$(2), Y secny 1(Z)): G € G}. Then there exists a K-IGDD of type {(Xzec
s(a:),)jzect(:r)): G egG}.

As an immediate corollary, we obtain Wilson’s Fundamental GDD construction
(see [30]). 7
Construction 3.2 Fundamental GDD Construction: Suppose (X,G, A) is a
GDD, and let s: X — Z* U {0} be a function. For every block A € A, suppose
that we have a K-GDD of type {s(z): x € A}. Then there exists a K-GDD of
type {EzeG s(z): G € G}.

We will refer to both Constructions 3.1 and 3.2 by the abbreviation FC. It will
be clear from the context which applies.

We defined $-IPBDs in Section 2. Our main application of these designs in-
volves using them to fill in the groups of IGDDs. The next construction was pre-
sented in [25].

Construction 3.3 Filling in groups: Let K be a set of positive integers, and let
b > a > 0. Suppose that the following designs exist:

1) a K-IGDD of type {(t1,u1), (t2,u2),... , (tn, un) };
2) a(ti+ byui+a,b;a; K)-O-IPBD, for1 < i < n— 1:and
3) a(ty + b,u, + a; K)-IPBD.
Then there exists a (t + b, u + a; K)-IPBD, wheret = 5 t; and u = 5 ug.
As a simpler form of filling in groups, we have the following corollary (see, for
example, [16]).
Construction 3.4 Filling in groups: Let K be a set of positive integers, and let
a > 0. Suppose that the following designs exist:
1) a K-IGDD of type {(t1,u1),(t2,u2),...,(ts,u,)}; and
2) a(t;+a;u;+ a; K)-IPBD, for1 < i <nmn
Then there exists a (t + a, u + a; K)-IPBD, where t = Yotiandu =" u;.
Finally, we mention the special case when we start with a GDD (see, for exam-
ple, [30]).
Construction 3.5 Filling in groups: Let K be a set of positive integers, and let
a > 0. Suppose that the following designs exist:
1) a K-GDD of type {t1,%2,...,t,}; and
2) a(t;+a;0; K)-IPBD,for1 <1< n—1.
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Then there exists a (¢ + a, t, + a; K)-IPBD, where t = §_ ¢;.

We refer to any of Constructions 3.3, 3.4, or 3.5 as Filling in Groups. Again, it
will be clear from the context which one applies. We will say that the new points
have been adjoined to the groups of the IGDD or GDD.

We now mention several constructions which are known as the product con-
structions. The most general form is the following, first stated in [25].

Construction 3.6: (Generalized singular indirect product, or GSIP) Suppose

there exists a TD (4,7 — b) - TD (4,3 — a), an (r; 3,b; a; {4 })-O-IPBD, and a

(b,a; {4})-IPBD. Then there is a (4(r — b) + b,4(s — a) + a; {4 })-IPBD.
The following special case of GSIP was first stated in [16].

Construction 3.7:  (Singular indirect product, or SIP) Suppose there exists a

TD(4,r—a) -TD(4,s5—a),and an (7, s; {4 })-IPBD. Then there is a (4(r —
a) + a,4(s — a) + a; {4})-IPBD.

A further specialization of SIP is as follows.
Construction 3.8: (Singular direct product, or SDP) Suppose there is a TD
(4,7—s) and an (7, s; {4 })-IPBD. Then there is a (4(r — s) + s, s; {4 })-IPBD
and a (4(r — 8) + s, 7; {4 })-IPBD.

Now, we present several specific constructions for designs with block-size four,

by applying the recursive constructions described above. All GDDs required as
ingredients have been shown to exist in Section 2.

Lemma 3.9. Suppose there is a (v, w; {k: k = 0 or1 modulo 4}) -IPBD. Then
there existsa(3v+ 1,3w+ 1; {4}) -IPBD.

Proof: Give every point weight 3, and apply FC. We require {4 }-GDDs of types
3%, for all relevant k = 0 or 1 modulo 4. Then adjoin a = 1 new point, filling in
(4;{4})-PBDs. .

Lemma 3.10. Suppose there is a TD(5,m), and0 < u < m. Then there is a
{4}-GDD of type (3m)*(3u)!.

Proof: Give points in four groups of the TD weight 3, give the points in the fifth
group weights 0 or 3. Apply FC, filling in {4 }-GDDs of types 3 or 3°. ]

Lemma 3.11. Suppose there is a TD(6,m), andm < u < 2m. Then there is a
{4}-GDD of type (3m)*(6m)' (3u)’.

Proof: Give points in four groups of the TD weight 3, give the points in the fifth

- group weights 3 or 6, and give the points in the sixth group weight 6. Apply FC,

filling in {4 }-GDDs of types 3462 or 336!, |

Lemma 3.12. Suppose there is a TD(6,m), and0 < u < m. Then there is a
{4}-GDD of type (3m)>(6u)' .
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Proof: Give points in five groups of the TD weight 3, and give the points in the
sixth group weights 0 or 6. Apply FC, filling in {4 }-GDDs of types 3° or 356 .
|

Lemma 3.13. Suppose there is a TD(6,m), and m <vw<2m,andm < u <
2m. Then there is a {4 }-GDD of type (6 m)* (6 u)' (6u')!.

Proof: Give points in four groups of the TD weight 6, and give the points in the
fifth and sixth groups weights 6 or 12. Apply FC, filling in {4 }-GDDs of types
66,6512, 0r64122, ]

4. Designs with large holes.

In this section, we give several constructions for (v,w; {4})-IPBDs when 3w <
v < 4w. These constructions are generalizations and/or modifications of con-
structions used by Brouwer and Lenz, and by Wei and Zhu.

Lemma 4.1. Suppose there is a resolvable {4}-GDD of type t*, and 0 < s <
t(u—1)/3. Letb > a > 0. Suppose thereis a(3t+ b; t+ a, b; a; {4 }) <O-IPBD,
anda(3s+ b,a; {4})-IPBD. Then there is a(3tu + 3s + b,tu+ a;{4})-IPBD.

Proof: Adjoin infinite points to s of the parallel classes of the GDD. This pro-
duces a {4,5}-GDD of type t¥s! in which every block of size 5 hits the group
of size s. Assign weights (3,1) to every point of the original GDD, and assign
weights (3,0) to the s infinite points. Apply FC, using {4 }-IGDDs of types
(3,1)* (3,0)! and (3,1)*. (These arise by deleting a block from {4 }-GDDs of
types 3° and 34, respectively.) This yields a {4 }-IGDD of type (3t,t)* (3s)’.
Then, we fill in the groups of this IGDD with -IPBDs. This gives us the desired
IPBD. |

Lemma 4.2. (Brouwer and Lenz [1], Wei and Zhu 128]). Suppose w = 4
modulo 12, v = 1 or4 modulo 12, and3w + 1 < v < 4w — 3. Then there is a
(v,w;{4})-IPBD and a (v,v — 3w; {4 })-IPBD.

Proof: Sett=4,u=w/4, s= (v=3w-1)/3,b=1,anda = 0. Apply Lemma
4.1. There is a resolvable {4 }-GDD of type 4 * for all u = 1 modulo 3 (Theorem
24). We fillin (13;4, 1; 0; {4 })-O-IPBDs, which are just (13, 4; {4})-IPBDs;
anda(3s+ 1,0; {4})-IPBD, which is justa (v — 3w; {4})-PBD. B

Lemma4.3. Forallt = 0 modulo3, thereisa(3t+4;t+1,4; 1; {4 }) <>-IPBD,

Proof: This design is constructed by adjoining t+ 1 points at infinity to the parallel
classes of a resolvable (2t + 3,3, 1)-BIBD (Theorem 2.2). A block of size four
is then deleted, giving the desired ¢-IPBD. ]
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Lemma 4.4. Supposew = 1 modulo 12, w # 13 or25,v = 1 or4 modulo 12,
and3w+ 1 < v < (15w+ 1)/4. Then there is a (v, w; {4}) -IPBD.

Proof: Setu =4,t=(w—-1)/4, s=(v-3w-1)/3, b=4,anda = 1.
Apply Lemma 4.1. The necessary ¢-IPBDs are constructed in Lemma 4.3. |

Lemma 4.5. For allt = 0 modulo 3,t > 3, there is a (4t + 1;t + 1,
t+1;1;{4})<-IPBD.

Proof: The desired designs are equivalent to {4 }-GDDs of type t232!/3, Fort =
0 or 3 modulo 12, start with a TD(4,t), and replace each of two groups by {4 }-
GDDs of type 3*/3. Fort = 6,9, and 18, the designs are given in Theorem 2.7.
Fort = 6 or 9 modulo 12,t > 21, we proceed as follows. Start with a TD(4,t)
- TD(4, 6). Replace each of two groups by {4 }-GDDs of type 63 (=9/3 (such
a GDD is obtained by deleting a point from a (t + 1,7; {4 })-IPBD). Now, we
have a {4 }-IGDD of type (t,6)2 (3,0)2*=12/3 (6,6)2. Fill in the hole with a
{4 }-GDD of type 623, This produces the required GDD. ]
Remark: Fort # 6,9, 18, 21, and 33, similar designs were constructed by Wei
and Zhu in [29].

Lemma 4.6. Suppose w = 1 modulo 12, w # 13 or25,v = 1 or4 modulo 12,

and (13w —9)/4 <v <4w—3. Then there is a(v, w; {4}) -IPBD.

Proof: Setu=4,t=(w—-1)/4,8=(4v—-13w+9)/12,b=t+1,anda = 1.

Apply Lemma 4.1. The necessary ¢-IPBDs are constructed by Lemma 4.5. |}
Combining Lemmata 4.4 and 4.6, we have

Lemma 4.7. Suppose w = 1 modulo 12, w # 13 or25,v = 1 or4 modulo 12,
and3w+ 1 < v <4w— 3. Then there is a (v, w; {4 }) -IPBD.

We derive two more corollaries to Lemma 4.1.

Lemma 4.8. Suppose w =7 modulo 12, w > 67,v = 7 or 10 modulo 12, and
3w+ 1 <v < (15w —17) /4. Then there is a (v, w; {4 }) -IPBD.

Proof: Set u=4,t=(w—-7/4,s=(v—-3w—-1)/3,a=7,and b = 22.
The required ¢-IPBDs can be constructed from a Kirkman triple system of order
(w + 23) /2 which contains as a subdesign a Kirkman triple system of order 15
(Theorem 2.3). B

Lemma 4.9. Supposew = 10 modulo 12, w > 94 ,v =7 or 10 modulo 12, and
Jw+ 1 <v << (15w —26) /4. Then there is a (v, w; {4 }) -IPBD.

Proof: Setu=4,t=(w—-10)/4,8=(v—-3w—1)/3, a=10,and b = 31.
The required $-IPBDs can be constructed from a Kirkman triple system of order

(w + 32) /2 which contains as a subdesign a Kirkman triple system of order 21
(Theorem 2.3). i

Finally, we note the following.
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Lemma 4.10. For allw = 1 modulo 3, there exists a (3w + 1,w; {4})-IPBD.

Proof: Adjoin w infinite points to aresolvable (2w + 1, {3})-PBD (whichis just
a Kirkman triple system of order 2w+ 1). ]

5. A general construction when v —w = 3 or 9 modulo 12.

In this section, we prove an analogue of Lemma 3.2 in [21]. This is a general
construction that applies when v and w ar¢ of opposite parity.

Lemma 5.1. Suppose (X,G, A) isaGD({5,6},{2,3,4,5,6,7,8,9,10,11,
15,r*}; s8], wherer > 1, having more than one group. Let O, denote the number
of groups having odd size, and suppos¢ 30 < u <38, u= 30, modulo 6.
Then there is a GD{4,{3,u*}, 65+ u + 3].

Proof: Let G' be the group of size r. Defined: X — {0,3} such that the follow-
ing conditions are satisfied:

1) for every group G, |{z € G: d(z) = 3}| = |G| mod 2,
2) 3 .ex d(z) = u,and
3) Yopeq d(z) =0,3,0r3r.

This can always be done, as follows. Suppose r is even (the argument is similar
if  is odd). We can define d satisfying 1) so that ) -.cx\c d(z) takes on any
value = 30, modulo 6 between 30, and 3(s — 7). Also, 3, cr d(z) can take
on the value 0 or 3. Hence, we can attain all desired values u provided 30,
+3r<3(s—1)+6,0r equivalenty, O, + 27 < s+ 2. Now, no group has size 1
(since r is even), so we have , % (3—r) /3. Also, every block has size at least 5,
sowe have s > 4r+ 1. Thesetwo inequalities imply that Og+ 271 < (9s—5)/12
< 8+ 2, as desired.

Next, define w(z) = 6 +d(z) forevery z € X, and apply the Fundamental
IGDD Construction (Construction 3.1). For each block A € A, we require an
IGDD of type (9,3)'(6,0)!=%, for some i, 0 < 1 < |A]. Since |A| = 5 or
6 for every A € A, the required IGDDs exist by Theorem 2.9. We now fill in
the groups of this large IGDD with the {4 }-GDDs listed in Table 1 (incorporating
a = 3 new points). These GDDs have the form 3utl. Whent = 3, the GDDs exist
by Theorem 2.1. Whent = 6 or 9, the GDDs are constructed by deleting points
from (v,7; {4 })-IPBDs or from (v, 10; {4 })-IPBDs, which exist by Theorem
1.2 and Theorem 1.3. When t = (3u — 3)/2, the desired {4 }-GDD is obtained
by adjoining t infinite points 10 a Kirkman triple system of order 3 u, as indicated
in Table 1. The remaining GDDs are constructed later in this paper or elsewhere;
we give references in Table 1. |



Table 1

IGI I{xe G:d(x)=3)l (4)-GDD IGI  I{xe G:d(x)=3}l {4)-GDD
2 0 35 2 2 356! (KTS(15))
3 1 38 3 3 3791 (KTS(21))

4 0 39 4 2 396!

4 4 39121 (KTS(27)) 5 1 312

5 3 31191 5 5 31151 (KTS(33))
6 0 313 6 2 31361

6 4 31312 (Thm. 6.1) 6 6 31318! (KTS(39))
7 1 316 7 3 31591

7 5 31515! (Thm. 6.1) 7 7 315211 (KTS(45))
8 0 317 8 2 31761

8 4 317121 (Table 2) 8 6 317181 [15])

8 8 317241 (KTS(51)) 9 1 320

9 3 31991 9 5 319151 (Table 2)
9 7 319211 [14] 9 9 319271 (KTS(57))

10 0 32 10 2 32161
10 4 321121 (Table 2) 10 6 321181 [15]

10 8 321241 (Thm. 6.1) 10 10 321301 (KTS(63))
11 1 324 11 3 32391
11 5 323151 (Table 2) 11 7 323211 [14]

11 9 3827 (Lem. 4.2) 11 11 323331 (KTS(69))
15 1 332 15 3 33191
15 5 331151 (Table 2) 15 7 331211 [14]

15 9 331271 (Thm. 6.1) 15 11 331331 (Table 5)
15 13 331391 (Lem. 4.2) 15 15 331451 (KTS(93))
r r 32 +1(3r)! (KTS(6r + 3))

r (even) 0 3u+1
r (odd) 1 3u+2

Lemma 5.2. Suppose (X,G,A) is a GD[{5,6}, {2,3,4,5,6,7,8,9,10,
11,15,r*}; s], where r > 1, having more than one group. Let O, denotc thc
number of groups having odd size, and suppose 40, + 1 < s. Fmdlly suppose
thatv—w=6s43,3w+ 1 <v<9w+4, :md(v,w) is admissible. Then there
isa(v,w,{4})-IPBD.

Proof: Sincev < 9w+ 4,wehavev —w < 8w+ 4. Bulv—w = 65+ 3 >
6(4 04+ 1) +3 = 24 0y+9. Hence, w > (24 0y+9 —4) /8 > 30,. Furthermore,
since (v, w) is ddmxssxblc it follows thatw—1 = 304 modulo 6. chcc Lemma
5.1 can be applied. ]

“Theorem 5.3. Suppose thatv —w = 65+3,3w+1< v < w44, and (v, w)
is admissible. If s > 24, s # 31,32,33,34, then there is a (v, w ,{4})-IPBD,

Proof: It suffices to show that there exist GDDs which satisfy the hypotheses of
Lemma 5.2 for the stated values of s. For s € {24,25,28,29 ,30,36,40,44 ,45,
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52,59,60,63,64,65} U{n: 68 < n< 80} uU{n > 88}, the GDDs constructed
in [21, Theorem 3.4] satisfy the requirements. The remaining values of s are han-
dled as follows.

s= 26,27 adjoin a group of size 1 or 2 to an affine plane of order 5
35 < s<42 delete 42 — s points from a group of a TD(6,7)
=43 delete 5 points from a group of a TD(6, 8)

45 < s < 54 delete 54 — s points from a group of a TD(6,9)

55 < s <66 delete 66 — s points from a group of a TD(6,11)

s =607 adjoin a group of size two to a resolvable (65,5, 1)-BIBD
81 < s < 87 delete 90 — s points from a group of a TD(6,15).

It is easy to check that4 O, + 1 < s in each case. |
We can do most of the cases corresponding to s = 31, as follows.

Lemma 5.4. Suppose thatv—w = 189,28 < w < 94, and (v, w) is admissible.
Then there is a (v, w, {4 }) -IPBD.

Proof: Apply Lemma 5.1 with s = 31, usinga {5}-GDD of type 337! (this GDD
is constructed by completing the resolvable {4 }-GDD of type 3® constructed in
Theorem 2.7). Adjoin one new point to the groups of the resulting GDD. | ]

6. BIBDs with subdesigns: completing the spectrum.
The following result, proved by Wei and Zhu in [28], will be useful.

Theorem 6.1. Suppose w = 1 or4 modulo 12, v = 1 or4 modulo 12, and
4w —12 <v < 5w —4. Then there is a (v, w; {4}) -IPBD.

Recall that there always exists a (3w + 1, w, {4 })-IPBD (Lemma 4.10). After
applying Theorems 5.3 and 6.1, and Lemmata 4.2, 4.7 and 5.4, the only cases
remaining when v — w is odd and v < 9w + 4 are listed in Table 2, together with
constructions in each case.

Table 2

w oV Construction

13 64 Lemma 3.9, delete 4 points from a group of a TD(S, 5), 21 =4-5+ 1

13 76 Lemma 3.9, (25, 4, 1)-BIBD

13 88 Lemma 3.9, udjoin a point at infinity to a resolvable (28, 4, 1)-BIBD.

13 100 Lemma 3.9, delete 7 points from a group of a TD(S, 8) 33 =48 + 1)

13 112 Lemma 3.9, delete 8 points from a group of a TD(5, 9) (37 = 49+ 1)

16 85 Lemma 3.9, adjoin infinite points to the groups and to 3 parallel
classes of a resolvable {4}-GDD of type 3%, constructing a {4, 5}-
GDD of type 47
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16
16
16

16
16

25
25

25

25

25

28

28

28

28
37

37

40

49

49

97

109
121
133
145
124
136

148

160

220

145

157

169
229
232

244

244

256

Table 2 (continued)

Lemma 3.9, adjoin 4 infinite points to a resolvable (28, 4, 1)-BIBD
Lemma 3.9, delete 4 points from a group of a TD(S, 8) (36 = 4-8 + 4)
Lemma 3.9, TD(5, 8) (40 = 5-8)

Lemma 3.9, delete 1 point from a group of a TD(S, 9) (44 = 4.9 + 8)
Lemma 3.9, adjoin 8 infinite points 1o a resolvable (40, 4, 1)-BIBD
Lemma 3.9, delete 4 points from a block of a TD(5,9) (41 =4-8 +9)
start with a {5}-GDD of type 46, and give every point weight 6, except
for three points in one group, which get weight 3. Apply FC,
using{4)-GDDs of types 65 and 643!, This yields a {4}-GDD of type
24515'. Fill in the groups with a = 1 new point.

start with a {5)-GDD of type 46, and give every point weight 6, except
for one point, which gets weight 9. Apply FC, using {4)-GDDs of
types 65 and 649! This yields a {4)-GDD of type 245271, Fill in the
groups with a = 1 new point.

apply Lemma 3.12 with m = 9, u = 4, producing a {4)-GDD of type
273241, Fill in the groups with a = 1 new point.

Lemma 3.9, delete 8 points from a block of a TD(9,9) (73=8-8+9)
delete 4 points from a block of a TD(5, 4), giving rise to a (4, 5}-GDD
of type 3441, Then give every point weight 9, and apply FC, to get a
{4}-GDD of type 27436!. Fill in the groups with a = 1 new point.
there is a {4)-GDD of type 663!, which givesrisetoa (4, 7}-IGDD of
type (3, 1)7(3, 0)6. Give every point weight 4 and apply FC, obtaining
a (4)-1GDD of type (12, 4)7(12,0)6. Fill in the groups with one new
point (a=0,b = 1), 10 get a (157, 28; (4))-IPBD.

apply GSIP with the equations 169 = 4(43 - 1) + 1, 28 = 4(7 — 0) +0.
Lemma 3.9, delete 5 points from a group of a TD(9, 9) (76 = 8:9 + 4)
if we delete points from the hole of a {5)-1GDD of type (16, 4)6
(Theorem 2.8), we can construct a (4, S5}-IGDD of type
(16, 4)1(13, 1)1(12, 0)4, and hence a (77, 12; (4,5, 12))-1PBD. Now
apply Lemma 3.9,

if we delete points from the hole of a {5)-1GDD of type (16, 4)6
(Theorem 2.8), we can construct a (4, 5}-IGDD of type
(16,4)2(13,1)1(12, 0)3, and hence an (81, 12; {4, 5,9, 12))-IPBD.
Now apply Lemma 3.9.

if we delete points from the hole of a {5}-IGDD of type (16, 4)6
(Theorem 2.8), we can construct a {4, 5}-1GDD of type
(16,4)1(13, 1)4(12, 0)!, and hence an (80, 13; (4, 5, 8, 12))-1PBD.
Now apply Lemma 3.9.

adjoin one infinite point to an affine plane of order 4, giving rise to a
(4,5)-GDD of type 441'. Give all original points weight (5, 1) and
give the new point weight (1, 0), and apply FC, using (4, 5)-1GDDs of
types (5, 1)4 and (5, 1)4(1, 0)!. This produces a {4, 5)-1GDD of type
(20,4)4(1, 0)1, from which we obtain an (81, 16; {4, 5))-IPBD. Now
apply Lemma 3.9,

if we delete points from the hole of a {5}-1GDD of type (16, 4)6
(Theorem 2.8), we can construct a {4, 5)-IGDD of type
(16,4)3(13,1)1(12, 0)2, and hence an (85, 16: {4, 5, 12))-IPBD. Now
apply Lemma 3.9.
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So, to this point, we have proved the following.

Theorem 6.2. Ifv = 1 or4 modulo 12, w = 1 or4 modulo 12, v — w is odd
and3w+ 1 < v < 9w+ 4, then there exists a (v, w; {4 }) -IPBD.

Next, we consider when v — w is even. Brouwer and Lenz have proven several
results concerning these cases in [7] and [8]. However, they do not deal with small
values of w. Here, we give a complete proof for all values of w, using very similar
techniques.

Lemma 6.3. Suppose (X,G,.A) isa GDD in which every block has size at least
4. Leta = 1 ord4. Then, forevery G € G, there is a (12| X| + a, 12|G| + a,
{4})-IPBD.

Proof: Give every point weight 12 and apply FC, using {4 }-GDDs of type 12%,
k > 4. Then adjoin a new points. ]
Applying Lemma 6.3 to truncated TDs, we have the following.

Lemma 6.4.

1) Suppose thereisa TD(k,t), wherek > 4. Leta = 1 or4. Then for all s
such thatdt < s < kt, thereisa(12s+ a,12t + a, {4 }) -IPBD.

it) Suppose there is a TD(k,n), where k > 5. Leta = 1 or4 and let
0 <t < n Thenforalls suchthatdn+t < s < (k—1) n+t, there is
a(12s+ a,12t + a, {4 })-IPBD.

Define Ty = {n > 5} \{6,10,14,18,22,26,28,30,34,38,42,44 /52}.
Then, for every n € T, there exists a TD(6,7n) (Theorem 2.5). The following
property can be easily verified.

Lemma6.5. Ifn € Ty andn > 7, then there exists anny > msuch thatn, € T
and4n; < 5n+ 1.

Consequently, we obtain

Lemma 6.6. Supposet > 1,n € T¢ andn > max{7,t}. Then, for all s >
dn+t,and fora = 1,4, thereisa(12s+ a,12t + a,{4}) -IPBD.

Proof: This is an immediate consequence of Lemmata 6.4 and 6.5. |

Similarly, we have

Lemma 6.7. Supposet € Tg andt > 7. Then, forall s > 4t, and fora = 1,4,
there exists a(12s + a,12t + a,{4 }) -IPBD.

Some missing cases will be supplied by
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Lemma 6.8. Suppose there isa TD(5,t + 1), wheret >4.Leta=1 ord,and
letr=1,2,0r3. Then there exists a(12(5t+ r) + a, 12t + a, {4 }-IPBD).

Proof: Delete 5 — r points from a block of a TD(5,t + 1). Take the blocks (and
group) through one of the deleted points as groups of a new GDD. Apply Lemma
6.3 |

Now, we have

Lemma 6.9. Supposet > 7 ands > 4t. Leta = 1 ord4. Then there is a
(12s+ a, 12t + a, {4 }) -IPBD.

Proof: If t € Ts, t > 7, then Lemma 6.7 applics. If ¢ & Te, t > 7 proceed as
follows. First, applying Lemma 6.6 with n =t + 1 handles the cases s >5t+4.
Lemma 6.8 handles the cases St+ 1 < s < 5t+ 3, and then, Theorem 6.1 handles
the cases 4t < s < 5t. |

At this point, we consider the cases corresponding tot < 6. Some constructions
for these cases are done in Table 3. These include all cases corresponding tot > 4
and s > 4t, proving

Lemma 6.10. Suppose4 <t < 6 ands > 4t. Leta = 1 or4. Then there is a
(12s+a, 12t + a, {4}) -IPBD.

Table 3

t s Construction

2 22<s5<27 apply Lemma 6.4 ii) withk=6andn =5

3 23<s<28 apply Lemma 6.4 ii) withk=6andn =5

4 s232 apply Lemma 6.6

4 s =30, 31 apply Lemma 6.3, adjoining 2 or 3 points to a resolvable
(28, 4, 1)-BIBD

4 24<s<29 apply Lemma 6.4 ii) withk =6andn =5

4 20<s<24 apply Lemma 6.3, deleting up to 4 points from a group of a
(5)-GDD of type 4¢

4 16<s<20 Theorem 6.1

5 s233 apply Lemma 6.6

5 s=31,32 a resolvable TD(S, 7) gives rise to a (5, 7}-GDD of type
57. Delete 3 or 4 points from a group of this GDD and
apply Lemma 6.3.

5 20<s<30 apply Lemma 6.4 i) withk=6andt=5

6 s234 apply Lemma 6.6

6 31<s<33 Lemma 6.8

6 24<s5<30 Theorem 6.1



Next, the cases corresponding to t = 1 are casy.

Lemma 6.11. Supposcs > 4,anda =1 or4. Then there isa(12s+a, 12+ a,
{4 })-IPBD.

Proof: Adjoin a = 1 or 4 new points to a {4 }-GDD of type 12°. |

When t = 2 and 3, observe that we have (12s + a, 12t + a, {4})-1PBDs for
s > 28+ t, applying Lemma 6.6 withn= 7. Thecases 20+t < s < 25+t were
done in Table 3. So, it remains to do the following cases (when s > 41):

t=2, 8<s<21, s=28,29
=3, 12 <s<22,5=29,30.

Four difficult cases are done in Lemmata 6.12 and 6.13, and the remaining cases
are handled in Table 4. Most of the constructions arc applications of the singular
indirect product. Many of the others consist of adjoining a = 1 or 4 points 10 a
suitable {4 }-GDD.

Lemma 6.12. There is a (205,37; {4})-IPBD and a (208, 40; {4 }) -IPBD.

Proof: Delete three points from a block of a TD(5,4), constructing a {4,5}-
IGDD of type (4, 1)233. Give every point weight 12 and apply FC, obtaining a
{4}-1GDD of type (48, 12)236°. To construct a (205,37; {4 })-IPBD, adjoin
o = 1 infinite point, filling in (49, 13; {4})-IPBDs and (37;{4})-PBDs, and
a (25,{4})-PBD. To construct a (208,40; {4 })-IPBD, adjoin a = 4 infinite
points, filling in (52, 16; {4})-IPBDs, (40, 4; {4 })-IPBDs, and a (28, 4,{4})-
[PBD. |

Lemma 6.13. There is a (349 ,37;{4})-IPBD and a (352 ,40; {4})-IPBD.

Proof: Adjoin 2 infinite pointstoa resolvable (28,4, 1) -BIBD, and then delete an
old point, constructing a {4, 5}-1GDD of type (4, 1)237. Proceed as in Lemma

6.12. |
Table 4

t s a W v Construction
2 8 1 25 97 (4)-GDD of type 244
2 9 1 25 109 apply SIP, 109 =431 —5)+5,25=4(10—5)+5
2 10 1 25 121 apply SIP, 121 =4(31 = 1)+ 1,25 =47 - 1) + 1
2 11 1 25 133 apply SIP, 133=434-1)+1,25=47 -1) +1
2 12 1 25 145 (4)-GDD of type 246
2 13 1 25 157 apply SIP, 157=4(43—5)+5,25=4(10—5)+5
2 14 1 25 169 apply SIP,169=4(43—-1)+1,25=4(7-1)+1
2 15 1 25 181 apply SIP, 181 = 4(46 - 1)+ 1,25 =4(7 - 1) + 1
2 16 1 25 193 (4)-GDD of type 248
2 17 1 25 205 apply SIP, 205 = 4(55-5)+5,25= 4(10-5)+5
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Table 4 (continued)

217
229
241
253
337
349
100
112
124
136
148
160
172
184
196
208
220
232

172
184
196
208
220
232
244
256
268
352
364

apply SIP, 217 =4(55~ 1)+ 1,25=4(7 - 1) + |
apply SIP, 229 = 4(58 - 1)+ 1,25 = 4(7 - 1) + |
{4)-GDD of type 2410

apply SIP, 253 = 4(67 = 5) + 5,25 = 4(10 - 5) + 5
{4)-GDD of type 2414

apply SIP, 349 = 4(91 - 5) + 5,25 = 4(10 -5)+5
(4)-GDD of type 244

apply SIP, 112 = 4(31 - 4) + 4,28 = 4(10 - 4) + 4
apply SIP, 124 = 4.31, 28 = 4.7

apply SIP, 136 = 4.34, 28 = 4.7

{4}-GDD of type 246

apply SIP, 160 = 4(43 ~4) + 4,28 = 4(10 - 4) + 4
apply SIP, 172 = 4.43, 28 = 4.7

apply SIP, 184 = 4.46, 28 = 4.7

(4)}-GDD of type 248

apply SIP, 208 = 4(55-4) + 4,28 = 4(10 - 4) + 4
apply SIP, 220 = 4-55, 28 = 4.7

apply SIP, 232 = 4.58, 28 = 4.7

{4)-GDD of type 2410

apply SIP, 256 = 4(67 - 4) + 4, 28 = 4(10-4)+4
{4)-GDD of type 2414

apply SIP, 352 = 4(91 - 4) + 4,28 = 4(10 - 4) + 4
apply SIP, 145 =4(40-5) + 5,37 =4(13 - 5) + 5

{4]-GDD of type 245361 (give every point in a {4}-GDD of

type 639! weight 4 and apply FC)

apply SIP, 169 = 4(43 - 1) + 1,37 = 4(10~ 1) + 1
apply SIP, 181 = 4(46 — 1) + 1,37 = 4(10 - 1) + 1
apply SIP, 193 = 4(52 - 5)+5,37=4(13-5)+5
Lemma 6.12

apply SIP, 217 = 4(55— 1) + 1,37 = 4(10 — 1) + |
apply SIP, 229 =4(58 = 1) + 1,37 = 4(10— 1) + |
apply SIP, 241 =4(64-5)+ 5,37 = 4(13-5)+5
{4}-GDD of type 367

apply SIP, 265 = 4(67 - D+1,37=4(10-1) +1
Lemma 6.13

apply SIP, 361=4(91 - 1)+ 1,37 = 4(10— 1) + |
apply SIP, 148 = 4(40 - 4) + 4, 40 = 4(13 — 4) + 4

(4)-GDD of type 245361 (give every point in a {4)-GDD of

type 659! weight 4 and apply FC)

apply SIP, 172 = 4.43, 40 = 4-10

apply SIP, 184 = 4-46, 40 = 4-10

apply SIP, 196 = 4(52 - 4) + 4, 40 = 4(13 -4)+4
Lemma 6.12

apply SIP, 220 = 4-55, 40 = 4-10

apply SIP, 232 = 4.58, 40 = 4-10

apply SIP, 244 = 4(64 — 4) + 4, 40 = 4(13 - 4) + 4
{4]-GDD of type 367

apply SIP, 268 = 4-67, 40 = 4-10

Lemma 6.13

apply SIP, 364 = 4.91, 40 = 4-10
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So, we have the result for t = 2 and 3.

Lemma 6.14. Supposet =2 or3 ands > 4t. Leta =1 ord . Then there is a
(12s+a, 12t + a, {4 }) -IPBD.

We now can prove our main Theorem.

Theorem 6.15. Supposev = 1 or4 modulo 12 andw = 1 or 4 modulo 12.
Then there exists a (v, 4, 1) -BIBD containing a (w,4,1) -BIBD as a subdesign
ifand only ifv > 3w+ 1.

Proof: First, suppose v — w is even. If v > 4w — 3, then the design exists by
Lemmata 6.9, 6.10, 6.11 and 6.14. If 3w + 4 < v < 4w — 3, then the design
exists by Lemmata 4.2 and 4.7, unless w = 25 and v = 85. This case is done by
adjoining a = 1 point to a {4 }-GDD of type 12 5241 (1o construct this GDD, give
cvery point in a {4 }-GDD of type 3°6' weight 4 and apply FC).

Next, suppose v — w is odd. 3w+ 1 < v < 9w + 4, apply Theorem 6.2.
Ifv > 9w + 4, then there exists a (3w + 1,w; {4})-IPBD by Lemma 4.10,
and a (v, 3w + 1;{4})-IPBD, since v — (3w + 1) is even. Hence, the desired
(v, w; {4 })-IPBD exists. This completes the proof. |

7. IPBDs where v — w = 3 or 9modulo 12, 3w+ 1 <v < 9w+ 4.

We have noted that there always exists a (3w + 1, w; {4 })-IPBD (Lemma 4.10).
After applying Theorem 5.3, the only cases remaining when v — w is odd and
v < 9w + 4 are listed in Table 5, together with constructions in most cascs.

Table 5

w oV Construction

19 70 Muills [15]

19 82 Mills [15]

19 94 using Construction 3.12 with m = 5, u = 2, build a {4}-GDD of type
155121, Adjoin a = 7 points, filling in (22, 7; (4})-1PBDs.

19 106 Mills[15]

19 118  delete 3 points from a group of a TD(S, 8) - TD(5, 1), constructing a
(4, 5)-1GDD of type (8, 1)4(5, 0)!. Give every point weight 3 and
apply FC, to build a (4)-IGDD of type (24, 3)4(15, 0)!. Adjoina=7
new points, filling in (31, 10; {4})-IPBDs and a (22,7; {4))-1PBD.

19 130  delete 4 points from a group of a TD(S, 9) ~ TD(5, 1), constructing a
(4, 5}-1IGDD of type (9, 1)4(5, 0)'. Give every point weight 3 and
apply FC, to build a (4}-IGDD of type (27, 3)4(15,0). Adjoina =7
new points, filling in (34, 10; {4))-1PBDs and a (22, 7; (4})-IPBD.

19 142 delete a block from a {4)-GDD of type 95, constructing a {4)-IGDD
of type (9, 1D4(9, 0)!. Give every point weight 3 and apply FC, to
build a {4}-1GDD of type (27, 3)4(27,0)!. Adjoin a =7 new points,
filling in (34, 10; (4))-IPBDs and a (34, 7; (4})-1PBD.

19 154  start with a (4)-GDD of type 956!. Give every point weight 3 and
apply FC, producing a (4}-GDD of type 27518!. Now, adjoin a = 1
new point, filling in (28, (4})-PBDs.
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22
22
22
22

22

22

22
31

31

31

31

31

31

31

151

163
106

118

130

142

154

166

226

238

.~ Table 5 (continued)
Mills [14]
Mills [14]
Mills [15]
Mills [14]
start with a TD(S, 8) - TD(S, 1), give every point weight 3 and apply
FC, to build a (4)-IGDD of type (24, 3)5. Adjoin a = 7 new points,
filling in (31, 10; {4)})-1PBDs.
delete 1 point from a group of a TD(S, 9) — TD(5, 1), constructing a
{4,5)-1GDD of type (9, 1)4(8, 1)!. Give every point weight 3 and
apply FC, to build a (4}-1GDD of type (27, 3)4(24, 3)!. Adjoina =7
new points, filling in (34, 10; (4})-IPBDs and a (31, 10; (4})-IPBD.

a TD(6, 10) - TD(6, 2) is presented in [S). Delete all points in the
hole, to constructa a {5)-GDD of type 86. Then, delete a block from
this design, constructing a {5)-IGDD of type (8, 1)5(8, 0)!. Give
every point weight 3 and apply FC, to build a {4)-1GDD of type
(24,3)3(24,0)!. Adjoin a = 7 new points, filling in (31, 10; {4})-
IPBDs and a (31, 7; (4))-IPBD.

Mills [15]

start with a TD(S, 8) - TD(5, 2) (see [24]). Delete one point of the
hole from each group, producing a (4, 5}-IGDD of type (7, 1) in
which every block of size 5 hits the hole. Give the 30 original points
weight (3, 1) and give the 5 new points weight (3, 0) and then apply
FC. In this way, we build a {4}-1GDD of type (21, 6)5. Now, adjoin
one new point, filling in (22, 7; (4))-IPBDs.

delete 3 points from a group of a TD(S, 8), constructing a (4, 5}-GDD
of type 845!, Give every point weight 3 and apply FC, to build a (4}-
GDD of type 24415!. Adjoin a = 7 new points, filling in (31, 7; (4})-
IPBDs and a (22, 7; (4))-IPBD.

a (43, 10; (4})-IPBD gives rise to a {4}-GDD of type 13310!. Give
every point weight 3 and apply FC, obtaining a {4)-GDD of type
33330!. Fillina = 1 new point.

start with a TD(S, 5) - TD(S, 1). Give every point weight 6, except for
3 points in the last group which get weight 3. Apply FC to build a
{4)-1GDD of type (30, 6)*(21,6)!. Adjoin a = 1 new point, filling in
(31,7; (4])-IPBDs and a (22, 7; (4))-IPBD.

start with a TD(5, 5) - TD(S, 1). Give every point weight 6 and apply
FC, to build a (4)-1GDD of type (30, 6)5. Adjoin b = 4 new points,
incorporating a = 1 of them into the hole, filling in (34; 7, 4; 1; {4})-0-
IPBDs and a (34, 7; {4))-1PBD.

start with a TD(6, 5) — TD(6, 1), and delete 3 points from a group,
constructing a {5, 6}-IGDD of type (5, 1)5(2,0)!. Give every point
weight 6 and apply FC, to build a {4)-IGDD of type (30, 6)5(12, 0)!.
Adjoin b = 4 new points, incorporating a = 1 of them into the hole,
filling in (34; 7, 4; 1; (4))-0-IPBDs and a (16, {4))-PBD.

start with a TD(9, 9), and delete 8 points from a block, constructing an
(8,9)-GDD of type 889!, Give every point weight 3 and apply FC,
building a (4}-GDD of type 24827!. Adjoin a = 7 new points, filling
in (31, 7; {4))-IPBDs and a (34, 7; {(4]})-IPBD.

start with a TD(6, 7). Delete a point, and let a group be the hole in a
new {6, 7}-1GDD of type (5, 1)7(6, 0)!. Next, delete two points from
the hole, constructing a {35, 6, 7}-1GDD of type (5, 1)5(4, 0)2(6, 0)1.
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34
34

34

34

34

34
34

43
43
43

43

115
127

139

151

163

175

142
154
166

178

238

250

Table 5 (continued)
Give one point in the group of size 6 weight 9, and give all other
points weight 6. Apply FC. This builds a {4)-1GDD of type
(30, 6)3(24, 0)2(39, 0) 1. Adjoin a = 1 new point, filling in (31, 7;
(4))-IPBDs, (25, (4))-PBDs, and a (40; {4))-PBD.
apply SDP with the equation 115 =4(34 -7) + 7
delete 1 point from a group of a TD(S, 8), constructing a {4, 5}-GDD
of type 847!, Give every point weight 3 and apply FC, to build a {4)-
GDD of type 244211, Adjoin a = 10 new points, filling in (34, 10;
(4})-1PBDs and a (31, 10; {4})-IPBD.
delete 1 point from a group of a TD(5, 9), constructing a {4, 5)-GDD
of type 948! Give every point weight 3 and apply FC, to build a {4)-
GDD of type 27424!, Adjoin a = 7 new points, filling in (34, 7; (4))-
IPBDs and a (31, 7; (4))-1PBD.
start with a TD(S, 4), and delete 4 points from a block, constructing a
(4, 5)-GDD of type 344!, Give every point weight 9 and apply FC,
building a {4}-GDD of type 27436'. Adjoin a = 7 new points, filling
in (34,7; {4))-1PBDs and a (43, 7; (4))-IPBD.
start with a TD(S, 5) - TD(S, 1). Give every point weight 6, except for
3 points in the last group which get weight 9. Apply FC to build a
(4)-1GDD of type (30, 6)4(39, 6)!. Adjoin a = 4 new points, filling in
(34, 10; {4))-IPBDs and a (43, 10; (4))-IPBD.
start with a TD(6, 5) — TD(6, 1). Delete two points in a group,
constructing a {5, 6)-1GDD of type (5, 1)5(3, 0)!. Give every point
weight 6, except for 1 point in the last group which gets weight 9.
Apply FC 10 build a (4)-IGDD of type (30, 6)3(21, 0)!. Adjoin a = 4
new points, filling in (34, 10; {4))-IPBDs and a (25, 4; (4))-IPBD.
Lemma 5.4
start with a TD(9, 9), and delete S points from a block, constructing a
(4, 8,9)-GDD of type 8394, Give every point weight 3 and apply FC,
building a {4)-GDD of type 245274, Adjoin a = 7 new points, filling
in (34,7; (4))-1PBDs and (31, 7; (4})-IPBDs.
Mills [15]
Mills [15]
start with a TD(S, 4), give every point weight 9, except for 3 points in
the last group, one of which gets weight 6 and two of which get weight
0. Apply FC, to build a (4)-GDD of type 36415!. Adjoin a = 7 new
points, filling in (43, 7; {4))-IPBDs and a (22, 7; (4))-IPBD.
start with a TD(5, 4), give every point weight 9, except for 3 points in
the last group, which get weight 6. Apply FC, 10 build a (4}-GDD of
type 36427!. Adjoin a = 7 new points, filling in (43, 7; {4))-1PBDs
and a (34, 7; (4})-IPBD.
start with a TD(6, 13), and delete 6 points from one group, giving rise
toa {5, 6}-GDD of type 1357!. Give the points in the group of size 7
weight 6, and give all other points weight 3. Apply FC, constructing a
{4}-GDD of type 395421, Adjoin a = | new point, filling in (40, {4))-
PBDs.
start with a TD(S, 19) - TD(S, 3) (see [23]). Delete 14 points in a
group, constructing a {4, 5]-1GDD of type (19, 3)4(5, 0)!. Give every
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46

46

46

46

46
46

55

55

55

58

151

163

175

187

235
247

178

190

250

262

187

199

Table 5 (continued)

point weight 3 and apply FC, building a {4)-IGDD of type
(57,9)4(15,0)!. Adjoin a = 7 new points, filling in (64, 16; {4})-
IPBDs and a (22, 7; {4))-1PBD.

start with a TD(6, 7), give every point in § groups weight 3, and give
every point in the last group weight 6. Apply FC, to build a {4)}-GDD
of type 213421, Adjoin a = 4 new points, filling in (25, 4; (4))-1PBDs.
start with a TD(6, 7), give every point in 4 groups weight 3, give every
point in the fifth group weight 6, give 4 points in the sixth group
weight 6, and give the remaining 3 points in the sixth group weight 3.
Apply FC. This builds a (4)-GDD of type 214421331, Adjoina = 4
new points, filling in (25, 4; (4})-IPBDs, and a (37, 4; (4})-1PBD.
start with a TD(5, 4), give every point weight 9, except for 3 points in
the last group, two of which get weight 6, and one of which gets
weight 0. Apply FC. This builds a {4}-GDD of type 36421!. Adjoin
a = 10 new points, filling in (46, 10; {4))-IPBDs and a (31, 10; {4})-
IPBD.

start with a TD(S, 4), give every point weight 9, except for 1 point in
the last group which gets weight 6. Apply FC, building a (4}-GDD of
type 364331, Adjoin a = 10 new points, filling in (46, 10; {4))-IPBDs
and a (43, 10; (4})-IPBD.

Lemma 5.4

start with a TD(6, 8). Delete a point, yielding a new {6, 8)}-GDD of
type 587!, Next, delete 7 points from B, one of the blocks of size 8,
constructing a {5, 6, 8}-GDD of type 475!71. Give all points weight 6,
except for the point not deleted from B, which gets weight 9. Apply
FC. This builds a {4)-GDD of type 24733142!. Adjoin a = 4 new
points, filling in (28, 4; (4})-IPBDs and a (37, 4; (4))-IPBD.

apply Lemma 3.11 withm = 8, u =9, 1o construct a {4}-GDD of type
244481271, Adjoin a = 7 new points, filling in (31, 7; {4})-IPBDs and
a (34,7, {4))-IPBD.

apply Lemma 3.11 with m = 8, u = 13, to construct a (4}-GDD of type
24448139!, Adjoin a = 7 new points, filling in (31, 7; (4})-IPBDs and
a (46, 7; {4))-1PBD.

start with a TD(S, 17), and delete 4 points from a block, constructing a
{4, 5)}-GDD of type 16*17}. Give every point weight 3 and apply FC,
building a (4}-GDD of type 484511. Adjoin a = 7 new points, filling
in (§5,7; (4))-1PBDs and a (58, 7; {4))-1PBD.

start with a TD(S, 20) = TD(S, 4) (this can be constructed by taking the
direct product of a TD(S, 4) and TD(S, 5)). Delete 15 points in a
group, constructing a {4, 5}-IGDD of type (20, 4)4(5, 0)!. Give every
point weight 3 and apply FC, building a {4)-1GDD of type
(60, 12)4(15,0)!. Adjoin a = 7 new points, filling in (67, 19; {4})-
IPBDs (Table 7) and a (22, 7; {4})-1PBD.

apply Lemma 3.11 withm =8, u = 11, to construct a {4)-GDD of type
244481331, Adjoin a = 10 new points, filling in (34, 10; {4))-IPBDs
and a (43, 10; {4))-IPBD.

apply Lemma 3.11 with m = 8, u = 15, to construct a {4}-GDD of type
24448145!, Adjoin a = 10 new points, filling in (34, 10; (4))-1PBDs
and a (55, 10; {4]))-IPBD.
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Table 5 (continued)

58 247 Lemma5.4

58 259  start with a TD(S, 17), and delete 1 point from a group, constructing a
{4, 5)-GDD of type 17416!. Give every point weight 3 and apply FC,
building a {4}-GDD of type 514481, Adjoin a = 7 new points, filling
in (58, 7; (4))-IPBDs and a (55, 7; (4))-1PBD.

67 262  start with a TD(S, 20), and delete 15 points from a group, constructing
a {4, 5)-GDD of type 20#5!. Give every point weight 3 and apply FC,
building a {4}-GDD of type 6015!. Adjoin a = 7 new points, filling
in (67,7; (4))-1PBDs and a (22, 7; (4))-IPBD.

67 274  start with a TD(S, 20), and delete 11 points from a group, constructing
a {4, 5})-GDD of type 20*9!. Give every point weight 3 and apply FC,
building a (4)-GDD of type 60427!. Adjoin a = 7 new points, filling
in (67,7; (4))-1PBDs and a (34, 7, {4))-1PBD.

70 259  Lemma 5.4

70 271 start with a TD(5, 20), and delete 13 points from a group, constructing
a (4, 5)-GDD of type 20#7!. Give every point weight 3 and apply FC,
building a {4}-GDD of type 604211, Adjoin a = 10 new points, filling
in (70, 10; {4))-IPBDs and a (31, 10; (4))-IPBD.

79 274 Lemma4.8

79 286  Lemma4.8

82 271 Lemma 5.4

82 283  apply Lemma 3.11 with m = 12, u = 19, to construct a {4}-GDD of
type 364721571, Adjoin a = 10 new points, filling in (46, 10; (4))-
IPBDs and a (67, 10; (4))-1PBD.

1 286 Lemma4.8

91 298 Lemma4.8

94 295 Lemmad49

Hence, we have

Lemma 7.1. Supposew = 7 or 10 modulo 12,v = 7 or 10 modulo 12,v — w
isodd, and3w+ 1 < v < 9w+ 4. Then there is a (v, w; {4 }) -IPBD.

8. IPBDs where v — w = 0 modulo12.

First, we shall consider the situation when v > 4w — 30, w = 7 or 10 modulo
12, and v — w = 0 modulo 12. We construct many of the designs in this section
by giving all points in a GDD weight 12, and then filling in groups with 7 or
10 new points. We will use the (v,7, {4 })-IPBDs and (v, 10; {4 }) -IPBDs from
Theorems 1.2 and 1.3. These constructions are analogous to ones given in Section
6.

Lemma 8.1.

1) Suppose (X,G, A) isa GDD in which every block has size at least 4, and
every group has size at least 2. Leta = 7 or10. Then, forevery G € G,
thereis a(12|X | + a, 12|G| + a, {4 }) -IPBD.

1) Suppose (X, G, A) is a GDD in which every block has size at least 4, and
every group has size at least 2, excepl for onc group Gy, which has size 1.
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Leta =17 or10. Then thereisa(12|X|+ o, 12 + a, {4}) -IPBD.

1ii) Suppose (X,G, A) isa GDD in which every block has size at least 4, and
every group has size at least 4. Leta = 19 or2?2. Suppose that there exists
a(12|G|+ a, a; {4 })-IPBD, for cvery G € G. Then, forevery G € G,
there is a (12| X | + a, 12|G| + a, {4 }) -IPBD.

Proof: Give every point weight 12 and apply FC, using {4 }-GDDs of type 12 %,
k > 4. Then adjoin a new points. When a = 7 or 10, the necessary designs exist
by Theorems 1.2 and 1.3. ]

Then, analogous to Lemma 6.4, we have

Lemma 8.2.

1) Suppose there is a TD(k,t), wherek > 4. Leta = 7 or10. Then for
all s such that4t < s < kt, s # 4t + 1, thereisa(12s + a, 12t + aq,
{4})-IPBD.

ii) Suppose there is a TD(k,n), where k 2 5. Leta =7 or10 and let
0 <t < n Then for all s such that4n + t <s< (k=1 n+t,
s7F4n+t+ 1, thereisa(12s+ a, 12t + a, {4 })-IPBD.

One can easily verify

Lemma8.3. Ifne Ty andn > 7, then there exists anmy > n such thatn; € Ty
anddn; < 5n—1.

As a consequence of the two preceding lemmata, we get

Lemma 8.4. Supposet > 1, n ¢ Ts and n > max{7,t}. Then, forall s >
dn+t,s #4dn+t+ 1, and fora = 7,10, thereisa(12s+a, 12t + a,{4})-IPBD.

Similarly, we have

Lemma 8.5. Supposet € Ty andt 2> 7. Then, foralls > 4t, s F4t+ 1, and
fora=17,10, thereisa (12 s + a,12t + a,{4})-IPBD.

Some missing cases will be supplied by

Lemma 8.6. Suppose there is a TD(6,t+ 1), wheret > 6. Leta = 7 or 10,
andletr = 1,2 3, orS. Then there is a(12(5t+ 1) + a, 12t + q, {4})-1PBD.

Proof: Whenr = 1,2, 0r 3, delete 4 — » points from a group of a TD(5,t+ 1).
From another group of the TD, delete a point z, and take the blocks (and group)
through z as groups of a new GDD. When 7 = 5, delete all the points in a block
BofaTD(6,t+1). For some group G, delete t — 5 further points in . Take the
blocks (and group) through any point z € B\G as groups of a ncw GDD. Apply
~Lemma 8.1. ]

Another class of missing cases is dealt with as follows.
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Lemma 8.7. Supposcs = 4t+ 1,t > 5. Leta = 7 or10. Then there is a
(125+a,12t + a,{4}) -IPBD.

Proof: Start with a TD (5,4t — 4), and delete 4¢ — 20 points from one group.
Give all points weight 3, and apply FC. This yiclds a {4 }-GDD of type (12t —
12)*(48)'. Now adjoin 12+ a new points, filling in ( 12 ¢+ a,12+a; {4})-1PBDs
anda(60+ a, 12+ a; {4 })-IPBD (thesc are (v, 19; {4 })-IPBDs or (v, 22; {4})-
[PBDs, and will be shown to exist in this section). ]

Theorem 8.8. Supposet > 7 ands > 4t. Leta = 7 or10. Then there is a
(125 +a,12t + a,{4})-IPBD.

Proof: Ift > 7, t € T, then apply Lemmata 8.5 and 8.7. If ¢ >T7,t ¢ T,
then proceed as follows. Apply Lemma 8.4 with n =t + 1 to handle s >5t+4,
s#5t+5. Whens € {St+1,5t+2,5t+3,5t+ 5}, apply Lemma 8.6. When
t# 10,4t < s < St,s#4t+ 1, delete points from a group of a TD(5,t) and
apply Lemma 8.1. When s = 4t + 1, apply Lemma 8.7. It remains only to handle
the cases whent = 10,4t < s < 5t,s # 4t + 1. Thecaset = 10, s = 40 is
done by Lemma 8.1 i), using a TD(4,10). The cases t = 10, 42 < s < 50 are
done by Lemma 8.1 iii), by deleting points from two groups of a TD(6,9) (the
required IPBDs are given in Table 7). This completes the proof. ]

We still have to handle the cases corresponding 1o ¢t < 6. Some further con-
structions are given in Table 6.

Table 6
t S Construction
1 21 apply Lemma 8.2 i) withn=5,k =6
1 23<s<26 apply Lemma 8.2 i) withn =5,k =6
2 22 apply Lemma 8.2 ii) withn =5,k =6
2 24 <s<27 apply Lemma 8.2 ii) withn=5,k =6
3 23 apply Lemma 8.2 ii) withn=5,k =6
3 24 apply Lemma 8.1, using a {4}-GDD of type 3462
3 25<s<28 apply Lemma 8.2 ii)) withn=5,k =6
4 16 apply Lemma 8.2 1) withk = 5§
4 18<s<20 apply Lemma 8.2 i) withk =5
4 22<s<24 delete 0, 1, or 2 points from a group of a {5)-GDD of type

46 and apply Lemma 8.1 i)

4 26<s<29 apply Lemma 8.2 ii) withn =5,k =6

4 30, 31 adjoin 2 or 3 infinite points to a RBIBD (28, 4, 1) and apply
Lemma 8.1 1)

S 20 apply Lemma 8.2 i) with k = 6

S 21 Lemma 8.7

S 22<s<30 apply Lemma 8.2 1) withk = 6

5 32<s<34 a resolvable TD(S, 7) gives rise to a {5, 7)-GDD of type

57. Delete 1, 2, or 3 points from a group of this GDD and
apply Lemma 8.1 1)

142



6 24 apply Lemma 8.1 i), using a {4}-GDD of type 3462

6 25,26 apply Lemma 8.1 iii), deleting 0 or 1 point from a TD(S, 5)
(see Table 7)

6 27 apply Lemma 8.1 i), using a {4)-GDD of type 316¢

6 29, 30 apply Lemma 8.1 iii), deleting a point from 1 or 2 groups of

aTD(6, 5) (see Table 7)
6 31€s<33 Lemma 8.6
6 35 Lemma 8.6

By Lemma 8.4, we already have constructed (125 + a,12¢ + a, {4 })-IPBDs
fors > 28 +t,s # 29 + t. So, it remains to do the cases corresponding to the
following values of ¢t and s.

t=1, 5<s<20, s=22,27,28,30
t=2, 8<s<21, s=23,28,29 31
t=3, 12 <s<22, s=29,30,32.
t=4, s=17,21,25,33

t=5, s=31.

t=6, s=28.

At this point, we eliminate several of the more difficult cases.
Lemma 8.9. There isa(91,19; {4 1) -IPBD and a (94 ,22; {4 })-1PBD.

Proof: Adjoin infinite points to the groups, and to § parallel classes of aresolvable
{4 }-GDD of type 3%, constructing a {4,5}-GDDoftype4 6. Give cvery point
weight 3 and apply FC, obtaining a {4 }-GDD of type 12¢18", Adjoina =1 or
4 new points, filling in (12 + q, a; {4 })-1PBDs. |

Lemma 8.10. There is a (187, 19; {4 1) -IPBD and a (190, 22; {4} -1IPBD.

Proof: Delete a point from a TD(5,7), constructing a {5,7}-GDD of type 47
6'. Give cvery point on the group of size 6 weight 3, and give every other point
weight 6. Apply FC, obtaining a {4 }-GDD of type 247181, Adjoina = 1 or 4
new points, filling in (24 + a,a; {4 })-IPBDs. ]
Lemma 8.11. There is a(235,19; {4 })-IPBD.

Proof: Use Lemma 4.8 to construct a (235 ,67;{4 })-IPBD. Now fill in a (67,
19; {4 })-IPBD (sce Table 7). |

Lemma 8.12. There is a (331, 19; {4 })-IPBD and a (334 ,22;{4})-IPBD.

Proof: Adjoin w points to a resolvable (88,4, 1)-BIBD. Then, apply Lemma 3.9
with (v,w) = (110,22) and (111,23) 10 build a (331,67; {4 })-IPBD and a
(334,70; {4 })-IPBD. Now fill in a (67,19; {4 })-IPBD and a (70, 22; {4H-
IPBD, respectively (see Table 7). |
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Lemma 8.13. There is a (238,22; {4})-IPBD and a (238,70; {4 }) -IPBD.

Proof: Start witha {4 }-GDD of type 6°12'15' (Theorem 2.7). Give every point
weight4 and apply FC, constructing a {4 }-GDD of type 24° 48 160 ' . Now, adjoin
a = 10 new points, filling in (34,10; {4 })-IPBDs and a (58, 10; {4 })-IPBD.
This yields a (238,70; {4 })-IPBD. If we construct a (70,22; {4 })-IPBD on the
hole (Table 7), we get a (238, 22; {4 })-IPBD. ]

Lemma 8.14. There is a(211,43; {4 })-IPBD and a (214 ,46; {4 }) -IPBD.

Proof: Delete a point from a TD(5,7), constructing a {5,7 }-GDD of type 476 .
Give every point weight 6 and apply FC, obtaining a {4 }-GDD of typc 24736 !.
Adjoin a = 7 or 10 new points, filling in (24 + a, a; {4 })-IPBDs. |

Lemma 8.15. There is a(355,43; {4})-IPBD and a (358 ,46; {4 }) -IPBD.

Proof: Adjoin 5 infinite points to a resolvable {4 }-GDD of type 3%, constructing
a{4,5}-GDDof typc 385!, Give every point weight 12 and apply FC, obtaining
a {4}-GDD of type 36860'. Adjoin a = 7 or 10 new points, filling in (36 +
a,a; {4})-IPBDs and a (60 + a,a; {4 })-IPBD. ]

Lemma 8.16. Thercis a(379,67; {4 })-IPBD and a (382 ,70; {4 }) -IPBD.

Proof: Adjoin infinite points to the groups, and to 5 parallel classes of a resolvable
{4}-GDDof type 3%, constructing a {4, 5}-GDD of type 4 66 . Give every point
weight 12 and apply FC, obtaining a {4 }-GDD of typc 48°72!. Adjoin a = 19
or 22 new points, filling in (48 + a,a; {4 })-IPBDsand a (72 + a,a; {4 })-IPBD
(Table 7). |

We now climinate all the remaining cases in Table 7. Most are done by means
of the singular indirect product. Also, several make use of {4 }-GDDs constructed
by completing resolvable {3 }-GDDs given in Theorem 2.2 (when we complete
a resolvable {3 }-GDD of type t*, we get a {4 }-GDD of type t¥r!, where r =

t(u—1)/2).

Table 7 .
t S a wov construction
1 S 7 19 67 {4}-GDD of type 12418!
1 6 7 19 79 apply SIP,79=4(22-3)+3,19=4(7-3) +3
1 7 7 19 91 Lemma 8.9
1 8 7 19 103 apply SIP, 103 =431 -7)+7,19=4(10-7) + 7
1 9 7 19 115 apply SIP, 115=4(31-3)+3,19=4(7-3) +3
1 10 7 19 127 apply SIP, 127 =4(34-3)+3,19=4(7-3) + 3
1 11 7 19 139 adjoin 6 points to a resolvable (40, 4, 1)-BIBD and apply

Lemma 3.9 with (v, w) = (46, 6)

1 12 7 19 151 apply SIP, 151 =4(43-7)+7,19=4(10-7) + 7
1 13 7 19 163 apply SIP, 163 =4(43~-3)+3,19=4(7-3) + 3
1 14 7 19 175 apply SIP, 175=4(46-3)+3,19=4(7-3) +3
1 15 7 19 187 Lemma 8.10

1 16 7 19 199 apply SIP, 199 =4(55-7)+7,19=4(10-7) + 7
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Table 7 (continued)

211
223
235
247
271
331
343
367

70

82

94
106
118
130
142

154
166
178
190
202
214
226
238
250
274
334
346
370
103
115
127
139
151
163
175
187
199
211
223
235
247
259
283
343
355
379
106
118
130

apply SIP, 211 =4(55-3)+3, 19 =4(7-3)+3
apply SIP, 223 = 4(58 - 3) + 3,19 =4(7 - 3) + 3
Lemma 8.11

apply SIP,247 =4(67-7)+7,19=4(10-7) + 7
apply SIP, 271=4(70-3) + 3, 19=4(7 - 3) + 3
Lemma 8.12

apply SIP, 343 =4(91-7) + 7, 19 = 4(10 -N+7
apply SIP, 367 = 4(94 - 3) + 3,19 = 4(7 - 3)+3
{4]-GDD of type 412221

apply SIP, 82 =4(22-2) +2,22=4(7-2) +2
Lemma 8.9

apply SIP, 106 = 4(31 - 6) + 6,22 = 4(10 - 6) + 6
apply SIP, 118 =4(31-2)+2,22 =4(7-2) +2
apply SIP, 130 =4(34 - 2) +2,22=4(7-2) +2
adjoin 7 points 1o a resolvable (40, 4, 1)-BIBD and apply
Lemma 3.9 with (v, w) = (47, 7)

apply SIP, 154 = 4(43 - 6) + 6, 22 = 4(10 — 6)+6
apply SIP, 166 = 4(43 -2) +2,22 = 4(7 -2) +2
apply SIP, 178 = 4(46 - 2) + 2,22 = 4(7 = 2) + 2
Lemma 8.10

apply SIP, 202 = 4(55-6) + 6,22 =4(10-6) + 6
apply SIP, 214 = 4(55-2) + 2,22 = 4(7 = 2) + 2
apply SIP, 226 =4(58 ~2) +2,22=4(7 -2) +2
Lemma 8.13

apply SIP, 250 = 4(67 - 6) + 6, 22 = 4(10 - 6) +6
apply SIP, 274 = 4(70 - 2) + 2,22 = 4(7 - 2)+2
Lemma 8.12

apply SIP, 346 = 4(91 - 6) + 6, 22 = 4(10 - 6) + 6
apply SIP,370=4(94-2)+2,22=4(7-2) +2
{4)-GDD of type 244

apply SIP, 115 =4(31 -3) + 3, 31 = 4(10 -3)+3
apply SIP, 127 = 4(34 - 3) + 3, 31 = 4(10 - 3H+3
apply SIP, 139 = 4(40-7) + 7, 31 =4(13-7+7
(4)-GDD of type 246

apply SIP, 163 = 4(43-3) + 3,31 = 4(10 - 3)+3
apply SIP, 175 = 4(46 - 3) + 3, 31 = 4(10 - 3) + 3
apply SIP, 187 = 4(52-7) + 7, 31 = 4(13 - +7
{4]-GDD of type 248

apply SIP, 211 = 4(55 - 3) + 3, 31 = 4(10 - 3H+3
apply SIP, 223 = 4(58 - 3) + 3, 31 = 4(10 - N+3
apply SIP, 235 =4(64 -7) + 7, 31 = 4(13 -D+7
{4}-GDD of type 2410

apply SIP, 259 = 4(67-3) + 3,31 = 4(10-3)+3
apply SIP, 283 =4(76 ~7) + 7, 31 = 4(13 -N+17
{4}-GDD of type 2414

apply SIP, 355 = 4(91 - 3) + 3,31 = 4(10 — 3)+3
apply SIP, 379 =4(100-7) + 7, 31 = 413 -7 +7
{4]-GDD of type 244

apply SIP, 118 = 4(31 - 2) + 2, 34 = 410 ~-2)+2
apply SIP, 130 =4(34-2) + 2,34 = 410-2)+2
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55
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Table 7 (continued)

142
154
166
178
190
202
214
226
238
250
262
286
346
358
382
151
163

175
187
199
211
223
235
247
259

271
355
367
391
154
166

178
190
202
214
226
238
250
262

274
358
370
394
211
259
307

apply SIP, 142 = 4(40 - 6) + 6, 34 = 4(13 - 6) + 6
{4)-GDD of type 246

apply SIP, 166 = 4(43 ~2) +2, 34 = 4(10 - 2) + 2
apply SIP, 178 = 4(46 - 2) + 2, 34 = 4(10 - 2) + 2
apply SIP, 190 = 4(52 - 6) + 6, 34 = 4(13 - 6) + 6
{4)-GDD of type 248

apply SIP, 214 = 4(55-2) + 2,34 =4(10 - 2) + 2
apply SIP, 226 = 4(58 - 2) + 2, 34 = 4(10 - 2) + 2
apply SIP, 238 = 4(64 - 6) + 6,34 = 4(13 - 6) + 6
{4)-GDD of type 2410

apply SIP, 262 = 4(67 - 2) + 2,34 =4(10-2) + 2
apply SIP, 286 = 4(76 - 6) + 6, 34 = 4(13 - 6) + 6
{4}-GDD of type 2414

apply SIP, 358 =491 -2) +2,34=4(10-2) +2
apply SIP, 382 = 4(100 - 6) + 6,34 =4(13 - 6) + 6
apply SIP, 151 = 4(40 - 3) + 3,43 = 4(13 - 3) + 3
{4)-GDD of type 24536! (give every pointin a {4}-GDD of
type 659! weight 4 and apply FC)

apply SIP, 175 = 4(49 ~ 7) + 7,43 = 4(16 = 7) + 7
apply SIP, 187 =4(49-3) + 3,43 =4(13-3) + 3
apply SIP, 199 = 4(52 - 3) + 3,43 = 4(13 - 3) + 3
Lemma 8.14

apply SIP, 175=4(61-7)+7,43=4(16 -7) + 7
apply SIP, 235=4(61-3)+3,43=4(13-3)+3
apply SIP, 247 =4(64-3) +3,43=4(13-3) + 3
{4)}-GDD of type 36572! (give every pointin a {4}-GDD of
type 356! weight 12 and apply FC)

apply SIP,271=4(73-7)+ 7,43 =4(16 - 7) + 7
Lemma 8.15

apply SIP,367=4(97-7)+7,43=4(16 -7) +7
apply SIP, 391 =4(100-3) + 3,43 =4(13-3) + 3
apply SIP, 154 = 4(40 = 2) + 2, 46 = 4(13 = 2) + 2
[4)-GDD of type 24336! (give every point in a (4}-GDD of
type 6591 weight 4 and apply FC)

apply SIP, 178 =4(49-6) + 6,46 = 4(16 - 6) + 6
apply SIP, 190 = 4(49 - 2) + 2, 46 = 4(13 = 2) + 2
apply SIP, 202 =4(52-2)+2,46=4(13-2) + 2
Lemma 8.14

apply SIP, 226 = 4(61 - 6) + 6, 46 = 4(16 — 6) + 6
apply SIP, 238 = 4(61 - 2) + 2, 46 = 4(13 - 2) +2
apply SIP,250=4(64-2) +2,46=4(13 -2) +2
{4)-GDD of type 365721 (give every point in a {4}-GDD of
type 336! weight 12 and apply FC)

apply SIP, 274 = 4(73 - 6) + 6, 46 = 4(16 — 6) + 6
Lemma 8.15

apply SIP, 370 = 4(97 — 6) + 6, 46 = 4(16 — 6) + 6
apply SIP, 394 = 4(100 - 2) + 2, 46 = 4(13 - 2) + 2
apply SIP, 211 =4(58-7)+7,55=4(19-7) + 7
apply SIP, 259 = 4(76 — 15) + 15, 55 = 425 - 15) + 15
apply SIP, 307 = 4(88 - 15) + 15,55 =4(25 - 15) + 15
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82

403
214
262
310
406
379
382
343
346

apply SIP, 403 =4(112-15) + 15,55=4(25-15) + 15
apply SIP, 214 = 4(58 - 6) + 6, 58 =4(19-6) + 6
apply SIP, 262 =4(76 - 14) + 14, 58 =4(25-14) + 14
apply SIP, 310 = 4(88 - 14) + 14, 58§ =4(25 - 14) + 14
apply SIP, 406 = 4(112 - 14) + 14, 58 = 4(25-14) + 14
Lemma 8.16

Lemma 8.16

apply Lemma 3.9 with (v, w) = (114, 26)

apply Lemma 3.9 with (v, w) = (115, 27)

The constructions given in Tables 6 and 7 prove the following.

Lemma 8.17. Suppose w = 7 or 10 modulo 12, v = w modulo 12, and v >

4w — 30. Then there is a (v, w; {4 }) -IPBD.

We have several cases to consider when w < 82, 3w+ 1 < v < 4w — 30.
Constructions are given in Table 8. As in Table 7, most of the required {4 }-GDDs

are obtained by completing resolvable {3 }-GDDs.

43
46
55
55
58
58
67
67
67
70
70
70
79
79

79

139
142
175
187
178
190
211
223
235
214
226
238
247
259

Table 8

construction

{4}-GDD of type 128421

{4)-GDD of type 42446!

{4)-GDD of type 121054!

apply SIP, 187 =4(49-3) +3,55=4(16-3) + 3

{4)-GDD of type 43058!

apply SIP, 190 =4(49 -2) + 2,58 =4(16 - 2) + 2

(4)-GDD of type 121266!

apply SIP, 223 =4(58 -3)+3,67=4(19-3)+3

Lemma 4.8

{4}-GDD of type 43670!

apply SIP, 226 = 4(58 - 2) + 2,70 = 4(19 - 2) + 2

Lemma 8.13

{4)-GDD of type 121478!

apply Lemma 3.11 with m = 12, u = 12 to build a {4}-GDD of type
36721, Adjoin a =7 new points.

apply Lemma 3.11 with m = 12, u = 16 10 build a {4)-GDD of type
364721481, Adjoin a = 7 new points.

apply Lemma 3.11 with m = 12, u = 20 to build a {4)-GDD of type
364721601, Adjoin a =7 new points.

{4)-GDD of type 44282!

apply Lemma 3.11 with m = 12, u = 12 to build a {4)-GDD of type
363721, Adjoin a = 10 new points.

apply Lemma 3.11 with m = 12, u = 16 to build a (4)-GDD of type
364721481, Adjoin a = 10 new points.

apply Lemma 3.11 with m = 12, u = 20 to build a (4}-GDD of type
36472160!. Adjoin a = 10 new points.
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So, we have proved

Lemma 8.18. Suppose w = 7 or 10 modulo 12, w < 82, and v = w modulo
12. Then there is a (v, w; {4 }) -IPBD.

Finally, we consider the interval 3w+ 1 < v < 4w — 30, v — w = 0 modulo
12, w > 91.

We use the following four corollaries to Lemma 3.11.

Lemma 8.19. Suppose w = 7 modulo 24, w > 55, w # 175, 271, or 319,
v =7 orl0 modulo 12, and (Tw — 35)/2 < v < 4w — 21. Then there is a
v,w; {4 })-IPBD.

Proof: Apply Lemma 3.11 withm = (w —7)/6 and u = (v — 18m — 7/3.
Then a TD(6,m) exists, and m < u < 2m. This builds a {4 }-GDD of type
(3m)* (6m)' (3u)!. Note that every group size is = 0 or 3 modulo 12, so we
can fill in groups with a = 7 ncw points. |

Similarly, we have the following three variations, using a = 10, 19, and 22 new
points.

Lemma 8.20. Suppose w = 10 modulo 24, w > 58, w # 178,274, or 322,
v =7 or10 modulo 12, and (7w — 50) /2 < v < 4w — 30. Then there is a
(v,w;{4})-IPBD.

Lemma 8.21. Suppose w = 19 modulo 24, w > 115, w # 187, 283, or331,
v =7 or 10 modulo 12, and (7w — 95) /2 < v < 4w — 57. Then there is a
(v,w;{4})-IPBD.

Lemma 8.22. Suppose w = 22 modulo 24, w > 118, w # 190,286, or334,
v =7 or10 modulo 12, and (Tw — 110) /2 < v < 4w — 66. Then there is a
(v,w;{4})-IPBD.

After application of Lemmata 4.8, 4.9, and 8.19 - 8.22, several cases remain.
Some of these are disposed of in Table 9.

Table 9
WV construction
175 655, 667 apply Lemma 3.13 with m = 16, u = 28, u' = 16 and
18. Adjoin a = 7 new points.
178 670 apply Lemma 3.13 with m = 16, u = 28, v’ = 18.

Adjoin a = 10 new points.
271 1015, 1027, 1039, 1051 apply Lemma 3.13 with m = 24, u = 44, u' = 28, 30,
32, and 34. Adjoin a =7 new points.

274 1030, 1042, 1054 apply Lemma 3.13 with m = 24, u = 44, u' = 30, 32,
and 34. Adjoin a = 10 new points.

283 1063, 1075 apply Lemma 3.13 with m = 24, u = 46, u' = 34 and
36. Adjoin a =7 new points.

286 1078 apply Lemma 3.13 with m = 24, u = 46, u' = 36.
Adjoin a = 10 new points.

319 1195 apply SIP, 1195 =4(304-7) + 7,319 =4(85-7) +7

331 1243 apply SIP, 1243 =4(316 -7) + 7,331 =488 -7) + 7
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Lemma 8.23. Suppose w = 319 andv = 1207, 1219,1231, or 1243 ; orw =
322 andv = 1210, 1222 ,1234, 0or 1246 . Then there isa(v,w;{4})-IPBD.

Proof: If w = 319, apply Lemma 3.10 with m = 80 and u = 56,60, 64, or 68.
This constructs a {4 }-GDD of type 240 (3u)'. Then, adjoina = 79 new points,
filling in (319,79; {4 })-IPBDs and a (3u + 79,79; {4 H-IPBD. If w = 322,
adjoin a = 82 new points. |
Lemma 8.24. Supposc w = 331 andv = 1255 or 1267; orw = 334 and
v = 1258 or1270. Then there is a (v, w; {4 }) -IPBD.

Proof: If w = 331, apply Lemma 3.10 with m = 84 and v = 56 or 60. This
constructs a {4 }-GDD of type 252* (3u)'. Then, adjoin a = 79 new points,
filling in (331,79; {4 })-IPBDs and a (3u + 79,79; {4 })-IPBD. If w = 334,
adjoin a = 82 new points. B

Also, for all w = 19 modulo 24, we need to handle v = 4w — 45 and 4 w — 33:
and for all w = 22 modulo 24, we need to handle v = 4 w — 54 and 4 w—42.

Lemma 8.25. Supposew = 19 modulo 24.andv = 4 w—45 ; orw = 22 modulo
24,v=4w—54,andw > 67. Then there is a (v, w; {4 1) -IPBD.

Proof: For w = 19 modulo 24, w < 163, we have (15w — 17) /4 > 4w —45.
Similarly, for w = 22 modulo 24, w < 190, we have (I5w—26)/4 >4w—54.
Hence, Lemma 4.8 or Lemma 4.9 applies in these cases. Hence, we can assume
thatw > 187. If w = 19 modulo 24, apply Lemma 3.10 with m = (w — 55)/3
and u = 40. This constructs a {4 }-GDD of type (w — 55)*120'. Now, adjoin
a = 55 new points, filling in (w, 55; {4 })-IPBDs and a (175, 55; {4 })-IPBD. If
w = 22 modulo 24, apply Lemma 3.10 with m = (w — 58)/3 and u = 40, and
adjoin a = 58 new points. 1

Lemma 8.26. Supposew = 19 modulo 24 andv = 4 w— 33, orw = 22 modulo
24andv = 4w — 42, andw > 91. Then there is a (v, w; {4 }) -IPBD.

Proof: For w = 19 modulo 24, w < 115, we have (15w — 17) /4 > 4w — 33.
Similarly, for w = 22 modulo 24, w < 142, we have ( 15Sw—-26)/4 >4w-—-42.
Hence, Lemma 4.8 or Lemma 4.9 applies in these cases. Hence, we can assume
thatw > 139. If w = 19 modulo 24, apply Lemma 3.10 with m = (w — 43) /3
and u = 32. This constructs a {4 }-GDD of type (w — 43)*96'. Now, adjoin
a = 43 new points, filling in (w, 43; {4 })-1PBDs and a (139 ,43; {4 })-IPBD. If
w = 22 modulo 24, apply Lemma 3.10 with m = (w — 46)/3 and u = 32, and
adjoin a = 46 new points. ]

Now, summarizing previous results, we can prove

Lemma 8.27. Supposew =7 or 10 modulo 12,v = w modulo 12 andv > 3w.
Then there is a (v, w; {4 }) -IPBD.
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Proof: Whenv > 4w — 30, Lemma 8.17 applies, and when w < 82, Lemma
8.18 applies. Hence, assume 3w+ 1 < v < 4w — 33 and w > 91. These cases
are covered by Lemmata 4.8, 4.9, 8.19 - 8.26, and Table 9. |

Theorem 8.28. Suppose w = 7 or10 modulo 12, v = 7 or 10 modulo 12 and
v > 3w. Then there is a (v, w; {4 }) -IPBD.

Proof: If v—wiseven, apply Lemma8.27. If v—wisoddandv < 9w+4,Lemma
7.1 applies. If v—w isodd and v > 9w+ 4, then there exists a (3w+ 1, w; {4 })-
IPBD by Lemma4.10, and a (v, 3w+ 1; {4 })-IPBD, since v— (3w + 1) is even.
Hence, the desired (v, w; {4 }) -IPBD exists. [
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Appendix

A {4}-GDD of type 12264

points: (Z;y x {1,2,3}) u {ao,al,bo,bl} Ufooi:1 <1< 8}

groups: {Zy2 x {3}} U {{ao0,a1,b0,b1} U {o0i:1 <i< 8}}U
{{0+4,2+4,4+41,6+1,8+1,10+1}x{j}:i=0, 1,7=1,2}

blocks: develop the following modulo 12 (second coordinates are written as
subscripts; develop subscripts on a and b modulo 2):

{01,11,02,32}  {05,00,01,31} {03,a1,05,5} {03,b0,11,6,}
{03,b1,12,22} {03,001,21,62} {03,002,41,92} {03,003,51,112}
{03,004,71,42} {(}_;,005,81,32} {03,00(,,91,102} {03,007,101,82}
{03,003,111,72}

A {4}-GDD of type 182312

points: (Z1g x {1,2,3}) U{ao,a1,0a2,b0,b1,c0,c1,do,di, €0, e JU
groups: {Zig x {3}} U {{ao0,a1,a2,b0,b1,c0,c1,do,d1,e0,e }U
{00i: 1<i<TIU{{0+ 14,6+ 14,12+ 1}x{;}:1=0,1,2,3,4,5,
J=1,2}
blocks: develop the following modulo 18 (second coordinates are written as

subscripts; develop subscripts on a modulo 3, and on b, ¢, d, and e
modulo 2):

{01,91,02,92}  {01,81,12,5}  {11,51,02,8;} {03,00,01,62}
{03,01,92, 11} {03,a2,11,31}  {03,b0,61,9,} {03,01,32,82}
{03,60,81,151} {03,61,42,152} {03,61(),41,171} {O3,d1,02,172}
{03,60,101,111} {03,61,72,102} {03,001,21,1()2} {03,002,161,22}
{03,003,51,132} {03,004,131,52} {03,005,121,142} {03,006,141,122}
{03,007,71,12}

A {4}-GDD of type 65121 15!

points: (Zys x {1,2,3}) U{ao,a1,a2,b0,b1,b2}U{o0;:1 < i< 6}

groups: {Zys x {3}}U{{ao,a1,a2,b0,b1,b2} U{oo;: 1 <1< 6}}U
{{0+4,5+4,10+4} x {1,2}:i=0,1,2,3,4}

blocks: develop the following modulo 15 (second coordinates are written as
subscripts; develop subscripts on a and b modulo 3):

{01,31,12,7,} {05,01,2,61}  {03,12,2,,145} {03,0a0,8;,9 }
{03,a1,32,72} {03,02,31,60}  {03,b0,41,11;} {03,b1,0,,8;)}
{03,b2,141,112} {03,001,11,102} {03,002,51,42} {()3,003,71,132}
{03,004,101,122} {03,005,121,52} {03,005,131,92}



