On the existence of Kirkman triple systems containing Kirkman subsystems

Rolf Rees and D. R. Stinson

Mount Allison University and University of Manitoba

Abstract. The obvious necessary conditions for the existence of a Kirkman triple system of order v containing a Kirkman subsystem of order w are $v \equiv w \equiv 3$ modulo 6, v > 3w. We show that these conditions are sufficient.

1. Introduction

A pairwise balanced design (or, PBD) is a pair (X, A), such that X is a set of elements (called points) and A is a set of subsets of X (called blocks), such that every unordered pair of points is contained in a unique block of A. If v is a positive integer and K is a set of positive integers, then we say that (X, A) is a (v, K)-PBD if |X| = v, and $|A| \in K$ for every $A \in A$. The integer v is called the order of the PBD.

Using this notation, we can define a *Steiner triple system* of order v, which we denote STS(v), to be a $(v, \{3\})$ -PBD. It is of course well-known that an STS(v) exists if and only if $v \equiv 1$ or 3 modulo 6.

Let (X, A) be a PBD. If a set of points $Y \subseteq X$ has the property that, for any $A \in A$, either $|Y \cap A| \le 1$ or $A \subseteq Y$, then we say that Y is a *subdesign* or *flat* of the PBD. The *order* of the subdesign is |Y|. The subdesign Y is *proper* if $Y \ne X$. If Y is a subdesign, then we can delete all blocks $A \subseteq Y$ and replace them by a single block, Y, and the result is a PBD. Also, any block or point of a PBD is itself a subdesign.

The problem of constructing Steiner triple systems containing subsystems was studied by Doyen and Wilson in [2]. The obvious necessary conditions for the existence of an STS(v) containing an STS(w) as a subsystem are $v \ge 2w + 1$, $v \equiv 1$ or 3 modulo 6, $w \equiv 1$ or 3 modulo 6. In [2], it is shown that these necessary conditions are sufficient.

A parallel class in a PBD is a set of blocks that form a partition of the point set. A PBD is resolvable if the block set can be partitioned into parallel classes. A Kirkman triple system of order v, or KTS(v), is defined to be a resolvable STS(v). In [14], Ray-Chaudhuri and Wilson showed that there exists a KTS(v) if and only if $v \equiv 3 \mod 6$.

In this paper, we are interested in KTS(v) which contain KTS(w) as subsystems. We say that a KTS(w) is a subsystem of a KTS(v) only if the parallel classes of the KTS(v) are induced by the parallel classes of the KTS(v). We shall describe the subsystem as a sub-KTS(w). The obvious necessary conditions for the existence of a KTS(v) containing a sub-KTS(w) is $v \ge 3 w$, $v \equiv w \equiv 3$ modulo 6. This problem has been studied in several recent papers, and the following results have been proved.

Theorem 1.1 [15, 12]. For all $v \equiv w \equiv 3 \mod 6$, $v \ge 4 - 9$, there exists a KTS(v) containing a sub-KTS(w).

Theorem 1.2 [11]. For all $w \equiv 3 \mod 6$, v = 3w, 3w + 6 or 3w + 12, there exists a KTS(v) containing a sub-KTS(w), except possibly when w = 45, 51, 63, or 87 and v = 3w + 12.

Theorem 1.3 [12]. Suppose $v \equiv w \equiv 3 \mod 0.6$, $v \ge 3w$, and v-w = 12s+6 or 12s+12, where $s \in \{0,1,2,3,4,5,6,7,20,24,25,28,29,30,31,36,40,44,45,52,59,60,63,64,65\}$ or $s \ge 68$. Then there exists a KTS(v) containing a sub-KTS(w).

There are precisely 884 ordered pairs (v, w), where $v \equiv w \equiv 3$ modulo 6 and $v \geq 3w$, which are not covered by any of the three theorems above. These are listed in the Appendix. In this paper, we eliminate all of these possible exceptions.

2. Constructions for Kirkman triple systems containing subsystems

We need to define several types of designs. First, we define a useful generalization of a PBD called a group-divisible design. A group-divisible design (or, GDD), is a triple $(X, \mathcal{G}, \mathcal{A})$, which satisfies the following properties:

- (1) G is a partition of X into subsets called groups;
- (2) A is a set of subsets of X (called *blocks*) such that a group and a block contain at most one common point;
- (3) every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a GDD $(X,\mathcal{G},\mathcal{A})$ is the multiset $\{|G|: G \in \mathcal{G}\}$. We usually use an "exponential" notation to describe group-types: a group-type $1^i 2^j 3^k \dots$ denotes i occurrences of 1, j occurrences of 2, etc. As with PBDs, we will say that a GDD is a K-GDD if $|A| \in K$ for every $A \in \mathcal{A}$. As well, we say that a GDD is resolvable if the blocks can be partitioned into parallel classes.

Now, we define the idea of a GDD with a hole. Informally, an *incomplete* GDD, or IGDD, is a GDD from which a sub-GDD is missing (this is the "hole"). We give a formal definition. An IGDD is a quadruple $(X, Y, \mathcal{G}, \mathcal{A})$ which satisfies the following properties:

- (1) X is a set of *points*, and $Y \subset X$;
- (2) G is a partition of X into groups;
- (3) A is a set of *blocks*, each of which intersects each group in at most one point;
- (4) no block contains two members of Y;
- (5) every pair of points $\{x, y\}$ from distinct groups, such that at least one of x, y is in $X \setminus Y$, occurs in a unique block of A.

We say that an IGDD $(X, Y, \mathcal{G}, \mathcal{A})$ is a K-IGDD if $|A| \in K$ for every block $A \in \mathcal{A}$. The *type* of the IGDD is defined to be the multiset of ordered pairs

 $\{(|G|, |G \cap Y|): G \in \mathcal{G}\}$. As with GDDs, we shall use an exponential notation to describe types. Note that if $Y = \emptyset$, then the IGDD is a GDD.

We have already defined PBDs with subdesigns. If we allow the subdesign to be missing (i.e., a hole), we have an incomplete PBD, as follows. An *incomplete* PBD (or IPBD) is a triple (X, Y, A), where X is a set of points, $Y \subseteq X$, and A is a set of blocks which satisfies the following properties:

- (1) for any $A \in \mathcal{A}$, $|A \cap Y| \leq 1$;
- (2) any two points x, y, not both in Y, occur in a unique block.

Hence, Y is the hole. Note that (X, Y, A) is an IPBD if and only if $(X, A \cup \{Y\})$ is a PBD. We say that (X, Y, A) is a (v, w; K)-IPBD if |X| = v, |Y| = w, and $|A| \in K$ for every $A \in A$.

We also employ a more general type of incomplete PBD. We are interested in the situation when we have two subdesigns, of given sizes, which intersect in a third subdesign of a given size. However, as usual, the subdesigns need not be present, i.e. we allow holes. We will refer to these designs as \diamond -IPBDs, in order to suggest the structure of the holes. We give a formal definition. An *incomplete* \diamond -PBD is a tuple (X, Y_1, Y_2, A) , where $Y_1 \subseteq X, Y_2 \subseteq X$, and A is a set of blocks such that every pair of points $\{x, y\}$ occurs in a unique block, unless $\{x, y\} \subseteq Y_1$ or $\{x, y\} \subseteq Y_2$, in which case the pair occurs in no block. We say that the \diamond -IPBD is a $(v; w_1, w_2; w_3; K)$ - \diamond -IPBD if |X| = v, $|Y_1| = w_1$, $|Y_2| = w_2$, $|Y_1 \cap Y_2| = w_3$, and $|A| \in K$ for every $A \in A$.

Our main application of \diamond -IPBDs involves using them to fill in the groups of IGDDs. This construction was presented in [17].

Construction 2.1 Filling in groups Let K be a set of positive integers, and let ba0. Suppose that the following designs exist:

- (1) a K-IGDD of type $\{(t_1, u_1), (t_2, u_2), \ldots, (t_n, u_n)\};$
- (2) a $(t_i + b; u_i + a, b; a; K)$ - \diamond -IPBD, for $1 \le i \le n-1$; and
- (3) $a(t_n + b; u_n + a)$ -IPBD.

Then there exists a (t + b, u + a; K)-IPBD, where $t = \sum t_i$ and $u = \sum u_i$.

In this paper, we also make extensive use of Kirkman triple systems with holes of various types. We refer to these as *incomplete* KTS, or IKTS. If we have a KTS(v) containing a sub-KTS(w), we can remove the subsystem, leaving a hole. We shall denote the resulting incomplete system by (v, w)-IKTS. (Of course, if we have a (v, w)-IKTS, where $v \equiv w \equiv 3 \mod 6$, then we can fill a KTS(w) into the hole, constructing a KTS(v) containing a sub-KTS(w).) Next, suppose we have a KTS(v) which contains sub-KTS(v) and sub-KTS(v) which intersect in a sub-KTS(v). If we remove these subsystems, we obtain an incomplete system which we denote by (v; v₁, v₂; v₃)-v-IKTS.

We also make extensive use of an object which can be thought of as a resolvable GDD having a spanning set of holes. A K-frame is a K-GDD $(X, \mathcal{H}, \mathcal{A})$, in which the set of blocks \mathcal{A} can be partitioned into holey parallel classes, each of

which is a partition of X/H, for some $H \in \mathcal{H}$. The members of \mathcal{H} are called holes. We refer to a $\{3\}$ -frame as a Kirkman frame.

As before, the *type* of a frame $(X, \mathcal{H}, \mathcal{A})$ is defined to be the multiset $\{|H|: H \in \mathcal{H}\}$. It can be shown (see [15] and [9]) that for each hole H of a $\{k\}$ -frame, there are |H|/(k-1) holey parallel classes which partition $X\setminus H$. It is also interesting to note that a $\{k\}$ -frame of type $\{t_1, t_2, \ldots, t_n\}$ is equivalent to a $\{k+1\}$ -IGDD of type $\{(kt_1/(k-1), t_1/(k-1)), (kt_2/(k-1), t_2/(k-1)), \ldots, (kt_n/(k-1), t_n/(k-1))\}$.

If we fill in the holes of Kirkman frames, we can construct KTS with sub-KTS, as follows.

Construction 2.2 Filling In Holes Let $a \ge 0$, and suppose that there exists a Kirkman frame of type $\{t_1, t_2, ..., t_n\}$; a KTS $(t_i + a)$ containing a sub-KTS(a), for $1 \le i \le n-1$; and a KTS $(t_n + a)$. Then there exists a KTS(t + a), where $t = \sum t_i$, containing a sub-KTS $(t_n + a)$.

We also use incomplete (Kirkman) frames, which bear the same relationship to Kirkman frames as IGDDs do to GDDs. An *incomplete K-frame* is a K-IGDD $(X,Y,\mathcal{H},\mathcal{A})$ in which the set of blocks \mathcal{A} can be partitioned into *holey parallel classes*, each of which is a partition of X/H, for some $H \in \mathcal{H}$, or a partition of $X\backslash (H\cup Y)$, for some $H\in \mathcal{H}$. It can be shown that for each hole H, there are $|H\cap Y|/2$ holey parallel classes which partition $X\backslash (H\cup Y)$, and $|H\backslash Y|/2$ holey parallel classes which partition $X\backslash H$.

We also construct KTS containing sub-KTS by filling in the holes of incomplete Kirkman frames with \diamond -IKTS.

Construction 2.3 Generalized Filling In Holes Let $b \ge a \ge 0$. Suppose that the following designs exist:

- (1) an incomplete Kirkman frame of type $\{(t_1, u_1), (t_2, u_2), \ldots, (t_n, u_n)\}$;
- (2) $a(t_i + b; u_i + a, b; a) \text{-IKTS}$, for $1 \le i \le n 1$; and
- (3) $a(t_n + b; u_n + a)$ -IKTS.

Then there exists a (t + b, u + a)-IKTS, where $t = \sum t_i$ and $u = \sum u_i$.

We also observe that if we fill in all but one group of a Kirkman frame (Construction 2.2), we obtain an IKTS, and if we fill in all but two groups, we obtain a \diamond -IKTS.

It will be necessary to build families of IGDDs. Our basic construction for IGDDs is a recursive one. We refer to it as the "Fundamental IGDD Construction" (see [8] and [11]).

Construction 2.4 Fundamental IGDD Construction Suppose (X, Y, \mathcal{G}, A) is an IGDD, and let $t, s: X \to \mathbf{Z}^+ \cup \{0\}$ be functions such that $t(x) \leq s(x)$, for every $x \in X$. For every block $A \in A$, suppose that we have a K-IGDD of type $\{(s(x), t(x)): x \in A\}$. Suppose also that we have a K-IGDD of type

 $\{(\sum_{x\in G\cap Y} s(x), \sum_{x\in G\cap Y} t(x)) : G\in \mathcal{G}\}$. Then there exists a K-IGDD of type $\{(\sum_{x\in G} s(x), \sum_{x\in G} t(x)) : G\in \mathcal{G}\}$.

We use a similar IGDD construction to build frames and incomplete frames (see [15]).

Construction 2.5 Fundamental Frame Construction Suppose (X, Y, \mathcal{G}, A) is an IGDD, and let $s: X \to \mathbf{Z}^+ \cup \{0\}$ be a function. For every block $A \in A$, suppose that we have a Kirkman frame of type $\{(s(x): x \in A\}$. Then there exists an incomplete Kirkman frame of type $\{(\sum_{x \in G} s(x), \sum_{x \in G \cap Y} s(x)): G \in \mathcal{G}\}$.

As applications of the above, we mention a family of constructions which are called the product constructions. These utilize (incomplete) transversal designs, which we now define. A transversal design TD(k, n) is a $\{k\}$ -GDD of type n^k . It is well-known that a TD(k, n) is equivalent to k-2 mutually orthogonal Latin squares (MOLS) of order n. We also define a TD(k, n) - TD(k, m) (an incomplete transversal design) to be a $\{k\}$ -IGDD of group-type $(n, m)^k$.

The most general product construction is referred to as the Generalized Singular Indirect Product, or GSIP.

Construction 2.6 Generalized Singular Indirect Product Suppose u, t, v, w, a, and b are non-negative integers such that $0 \le b - a \le v - w$, $a \le w \le v$. Suppose that the following designs exist:

- (1) a Kirkman frame of type t";
- (2) a TD(u, (v b)/t) -TD(u, (w a)/t);
- (3) $a(v; w, b; a) \rightarrow IKTS$; and
- (4) a(b,a)-IKTS.

Then there exists a (u(v-b) + b, u(w-a) + a)-IKTS.

Proof: Start with the given incomplete TD, give every point weight t, and apply the Fundamental Frame Construction. We get an incomplete Kirkman frame of type $(v - b, w - a)^u$. Now fill in the holes.

When b = a, we obtain the Singular Indirect Product, or SIP.

Construction 2.7 Singular Indirect Product Suppose u, t, v, w, and a are non-negative integers such that $0 \le a \le w \le v$. Suppose that the following designs exist:

- a Kirkman frame of type t^u;
- (2) a TD(u, (v-a)/t) -TD(u, (w-a)/t); and
- (3) a(v; w)-IKTS.

Then there exists a (u(v-a) + a, u(w-a) + a)-IKTS.

When b = a = w, we obtain the Singular Direct Product, or SDP.

Construction 2.8 Singular Direct Product Suppose u, t, v and w are nonnegative integers such that $w \le v$. Suppose that the following designs exist:

(1) a Kirkman frame of type tu;

- (2) a TD(u, (v w)/t);
- (3) a(v, w)-IKTS; and
- (4) a KTS(w).

Then, there is a (u(v-w)+w,w)-IKTS and a (u(v-w)+w,v)-IKTS.

3. Applications of the constructions

We now describe two recursive constructions for producing Kirkman triple systems containing Kirkman subsystems, which will eliminate all but 31 of the 884 exceptions. These constructions will make use of Kirkman frames constructed in [15].

Lemma 3.1. There exists a Kirkman frame of type t^u if and only if t is even, $u \ge 4$, and $t(u-1) \equiv 0 \mod 3$.

Proof: See [15, Theorem 4.5].

We shall use certain incomplete TDs.

Lemma 3.2. For all positive integers v and w such that $v \ge 3w$ and $(v, w) \ne (6, 1)$, there is a TD(4, v) - TD(4, w).

Proof: See [4].

We shall also require some particular classes of \diamond -IKTS.

Lemma 3.3. For all $m \ge 0$, there exists a $(18m + 9; 6m + 3, 9; 3) \Leftrightarrow \text{-IKTS}$.

Proof: For m = 0, the design exists trivially. For m > 0, start with a TD(4, 6 m+ 3)—TD(4,3) (Lemma 3.2). Delete all the points in one group. Then, on two of the remaining groups, fill in (6m + 3, 3)-IKTS.

Lemma 3.4. For all $m \ge 2$, there exists a $(18m + 15; 6m + 3, 15; 3) \Leftrightarrow -IKTS$.

Proof: For m = 2, use a Kirkman frame of type 12^4 , filling in two holes with (15,3)-IKTS. For $m \ge 3$, start with a resolvable $\{3\}$ -GDD of type 6^{m+1} (see [10] and [1]). Adjoin infinite points to the parallel classes of this GDD, to construct a $\{4\}$ -GDD of type $6^{m+1}(3m)^1$. Give every point weight 2 and apply the Fundamental Frame Construction. This produces a frame of type $12^{m+1}(6m)^1$. Now fill in all but one hole of size 12 with (15,3)-IKTS.

Construction 3.1 Suppose there exists a TD(6, m), $0 \le t \le m$, and $0 \le u \le m$. Let $a \ge 0$. Suppose there exist KTS(6 m + a) and KTS(6 m + 6t + a), each containing a KTS(a), and a KTS(6 m + 6u + a). Then there exists a KTS(36 m + 6t + a) containing a sub-KTS(6 m + 6u + a).

Proof: Start with a TD(6, m), and give the points in the first four groups weight 6; give t of the points in the 5th group weight 12, and give the remaining points in the 5th group weight 6; and give u of the points in the 6th group weight 12,

and give the remaining points in the 6th group weight 6. In order to apply the Fundamental Frame Construction, we need Kirkman frames of types 6^6 , $6^5 12^1$ and $6^4 12^2$, which are obtained as follows. A frame of type 6^6 exists by Lemma 3.1. We get a frame of type $6^5 12^1$ by applying the Fundamental Construction to a $\{4\}$ -GDD of type $3^5 6^1$, giving every point weight 2 (this GDD is produced by adjoining infinite points to 6 parallel classes of a KTS(15)). Similarly, we get a frame of type $6^4 12^2$ by applying the Fundamental Construction to a $\{4\}$ -GDD of type $3^4 6^2$, giving every point weight 2 (this GDD is exhibited in the Appendix of [12]). Hence, we build a Kirkman frame of type $(6m)^4 (6m+6t)^1 (6m+6u)^1$ (for any $0 \le t \le m$, $0 \le u \le m$). We now add on a infinite points, and fill in KTS containing sub-KTS(a), and the KTS(6m+6u+a).

Construction 3.2 Suppose there is a TD(6, m), $0 \le t \le m$, $0 \le u \le m$, and a = 3 or 6. Then there exists a KTS(72m + 18t + 12u + 2a + 3) containing a sub-KTS(24m + 6t + 3).

Proof: Start with a TD(6, m), delete m-t points from the 5th group, and delete m-u points from the 6th group. Then, give the points in the first five groups weights (9, 3), and give the points in the 6th group weights (6, 0). In order to apply the Fundamental IGDD construction, we need $\{4\}$ -IGDDs of types (9, 3)⁴, (9, 3)⁵, (9, 3)⁴6¹, and (9, 3)⁵6¹. The first two IGDDs are equivalent to frames of types 6^4 and 6^5 respectively (see the remark preceding Construction 2.2). The last two IGDDs are presented in the Appendix of [11]. Then, we obtain a $\{4\}$ -IGDD of type $(9m, 3m)^4(9t, 3t)^1(6u)^1$. Next, assign every point weight 2, and apply the Fundamental Frame Construction. This produces an incomplete frame of type $(18m, 6m)^4(18t, 6t)^1(12u)^1$. Next, we will fill \diamond -IKTS into the holes of the frame, using Construction 2.3. We adjoin a total of 2a + 3 points, 3 of which are incorporated into the sub-KTS.

If a = 3, then we fill in $(18m+9; 6m+3, 9; 3) \Leftrightarrow$ -IKTS, $(18t+9; 6t+3, 9; 3) \Leftrightarrow$ -IKTS, and (12u+9, 3)-IKTS. These exist from Lemma 3.3.

If a = 6, t > 1, then we fill in (18m + 15; 6m + 3, 15; 3) - IKTS, (18t + 15; 6t + 3, 15; 3) - IKTS, and (12u + 15, 3) - IKTS. These exist from Lemma 3.4.

If a = 6, t = 1, $u \neq 1, 2$, then we instead use $(18m + 15; 6m + 3, 15; 3) \Leftrightarrow$ -IKTS, $(12u + 15; 3, 15; 3) \Leftrightarrow$ -IKTS, and (18t + 15, 9)-IKTS.

If a = 6, t = 1, and u = 1 or 2, we proceed slightly differently. We start with a TD(5, m) and delete m - u - 1 points from the 5th group. Give all points weight (9, 3), except for u points in the fifth group, which get weights (6, 0). Proceeding as before, we obtain an incomplete Kirkman frame of type $(18m, 6m)^4(12u + 18, 6)^1$. Now, fill in $(18m + 15; 6m + 3, 15; 3) \rightarrow \text{-IKTS}$, and (12u + 33, 9) - IKTS.

This covers all cases, so the proof is complete.

By computer, we established that Constructions 3.1 and 3.2 eliminate all but 31 ordered pairs (v, w), which are presented in Table 1. Appropriate applications of Constructions 3.1 and 3.2 for the remaining 853 ordered pairs are given in the research report [13].

Table 1

The 31 exceptions remaining after application of Constructions 3.1 and 3.2

```
(141, 39)
         (147,45) (153,45) (159,45)
                                       (165, 45)
(165,51) (171,51)
                   (177,51)
                             (183,51)
                                       (189, 51)
(189,57) (195,57) (201,57)
                             (201,63)
                                       (207, 63)
(255,69) (261,69) (261,75)
                            (267,75)
                                       (273,75)
(279,75) (261,81) (267,81)
                             (273,81)
                                       (279,81)
(285,81) (273,87) (279,87) (285,87)
                                       (291, 87)
(297,93)
```

15 of the exceptions in Table 1 can be eliminated by the product constructions. We list these in Table 2. In all applications, t = 2 and u = 4, so we are using Kirkman frames of type 2^4 . The requisite incomplete TDs exist by Lemma 3.2.

At this point, 16 ordered pairs remain as possible exceptions. We eliminate most of these using a well-known PBD construction. First, we define the set $K_{1,3} = \{k \equiv 1 \mod 3, k \geq 4\}$.

Lemma 3.5. Suppose there is a $(v, w; K_{1,3})$ -IPBD. Then there is a (2v+1, 2w+1) -IKTS.

Proof: The IPBD gives rise to a GDD of type $w^1 1^{v-w}$. Give every point weight 2, and apply the Fundamental Frame Construction. This produces a frame of type $(2w)^1 2^{v-w}$. Now fill KTS(3) into the holes of size 2.

Lemma 3.6. Suppose there is a resolvable $\{4\}$ -GDD of type t^u , where $t \equiv 0 \mod 3$, and let $0 \leq s \leq t(u-1)/3$. Then there is a (6tu+6s+9, 2tu+3)-IKTS.

Proof: Adjoin infinite points to s of the parallel classes of the GDD. This produces a $\{4,5\}$ -GDD of type t^us^1 in which every block of size 5 hits the group of size s. Assign weights (3,1) to every point of the original GDD, and assign weights (3,0) to the s infinite points. Apply the Fundamental IGDD construction, using $\{4\}$ -IGDDs of types $(3,1)^4(3,0)^1$ and $(3,1)^4$. (These arise from deleting a block from $\{4\}$ -GDDs of types 3^4 and 3^5 , respectively.) We construct in this way a $\{4\}$ -IGDD of type $(3t,t)^u(3s)^1$.

Next, we fill in the groups of this IGDD with \diamond -IPBDs using Construction 2.1. Set a=1 and b=4. We use $(3t+4;t+1,4;1;K_{1,3})$ - \diamond -IPBDs, which are constructed by adjoining t+1 infinite points to the parallel classes of a KTS(2t+3). For the last group, we use a block of size 3s+4. This gives us a $(3tu+3s+4,tu+1;K_{1,3})$ -IPBD. Now, apply Lemma 3.5.

Table 2

In a similar fashion, we have

Lemma 3.7. Suppose there is a resolvable $\{4\}$ -GDD of type t^u , where $t \equiv 1 \mod 3$, and let $0 \le s \le t(u-1)/3$. Then there is a (6tu+6s+3,2tu+1)-IKTS.

Proof: As before, construct a $\{4\}$ -IGDD of type $(3t,t)^u(3s)^1$. Then, set a=0 and b=1. We fill in $(3t+1,t;K_{1,3})$ -IPBDs (which are constructed by adjoining t infinite points to the parallel classes of a KTS(2t+1)) and a block of size 3s+1 (if s>0). We get a $(3tu+3s+1,tu;K_{1,3})$ -IPBD. Now, apply Lemma 3.5.

A slightly different application of the same idea gives us

Lemma 3.8. Suppose there is a $\{4\}$ -frame of type t^u , where $t \equiv 0 \mod 3$, and $0 \le s \le t/3$. Also, suppose there is a $(3t + 3s + 4, t + 1; K_{1,3})$ -IPBD. Then there exists a (6tu + 6s + 9, 2tu + 3)-IKTS.

Proof: Adjoin s points to a hole of the frame, constructing a $\{4,5\}$ -IGDD of type $t^{u-1}(t+s,s)^1$. Assign weights (3,1) to every point of the original GDD, and assign weights (3,0) to the s infinite points. Apply the Fundamental IGDD Construction, resulting in a $\{4\}$ -IGDD of type $(3t,t)^{u-1}(3t+3s,3t)^1$. Then, set a=1 and b=4. We use $(3t+4;t+1,4;1;K_{1,3})$ - \circ -IPBDs, which are constructed as in Lemma 3.6. For the last group, we use the $(3t+3s+4,t+1;K_{1,3})$ -IPBD. This gives us a $(3tu+3s+4,tu+1;K_{1,3})$ -IPBD. Apply Lemma 3.5.

We list several applications of these constructions in Table 3.

Table 3

v	\underline{w}	lem	<u>ma</u>	ingredients	remarks
141	39	3.5		(70, 19; {4})-IPBD	see [7]
147	45	3.6	t = 3, u = 8, s = 2	(73,22; {4,7,10})-IPBD	see Appendix
159	45	3.5		(79,22; {4})-IPBD	see [6]
165	51	3.6	t = 3, $u = 8$, $s = 2$	resolvable {4}-GDD of type 38	see [5]
			t = 3, $u = 8$, $s = 6$	resolvable {4}-GDD of type 38	see [5]
189	57	3.7	t = 4, $u = 7$, $s = 3$	resolvable {4}-GDD of type 47	see [3]
195	57	3.7	t = 4, $u = 7$, $s = 4$	resolvable {4}-GDD of type 47	see [3]
201	63	3.8	t = 6, $u = 5$, $s = 2$	{4}-frame of type 6 ⁵	see [16]
				TD(4,7)	,
			t = 9, $u = 4$, $s = 6$	resolvable TD(4,9)	
			t = 4, $u = 10$, $s = 4$	resolvable {4}-GDD of type 4 ¹⁰	see [3]
			t = 4, $u = 10$, $s = 7$	resolvable {4}-GDD of type 4 10	see [3]
297	93	3.8	t = 9, $u = 5$, $s = 3$	{4}-frame of type 95	see [16]
				TD(4,10)	_

We can eliminate the four remaining exceptions by ad hoc means.

Lemma 3.9. There is a KTS(279) containing a sub-KTS(87).

Proof: Start with a $\{4\}$ -GDD of type 6^49^1 (this is obtained by adjoining infinite points to the 9 parallel classes of a resolvable $\{3\}$ -GDD of type 6^4 , which is constructed in [10]). Give every point weight 8, and apply the frame construction. This produces a frame of type 48^472^1 . Now adjoin 15 infinite points, filling in (63, 15)-IKTS and KTS(87).

Lemma 3.10. There is a KTS(255) containing a sub-KTS(69).

Proof: Start with a TD(5,4). Give every point weight 12, except for one point which gets weight 6, and apply the frame construction. We fill in frames of type 12^5 and 12^46^1 (this latter frame is obtained by applying the frame construction to

a $\{4\}$ -GDD of type 6^43^1 , giving the points weight 2). This produces a frame of type 48^442^1 . Now adjoin 21 infinite points, filling in (69, 21)-IKTS, (63, 21)-IKTS, and KTS(69).

Lemma 3.11. There is a KTS(273) containing a sub-KTS(87).

Proof: A $\{4\}$ -IGDD of type $(9,3)^46^1$ is given in the Appendix of [11]. The design is presented as a $\{3,4\}$ -GDD of type 6^4 whose blocks of size three can be partitioned into twelve holey parallel classes. Three of these holey parallel classes correspond to each of the first four groups. It is easy to verify that the blocks of size four can be partitioned into two holey parallel classes having the the fifth group as their hole. Hence, we can construct from this design a $\{4,5\}$ -IGDD of type $(9,3)^4(8,2)^1$. Now, apply Construction 2.5, giving every point weight 6. We obtain a Kirkman frame of type $(54,18)^4(48,12)^1$. Then apply Construction 2.3 with b=9 and a=3, filling in (63;21,9;3)- \circ -IKTS (which is obtained by applying Lemma 3.5 to a $(31,10;\{4\})$ -IPBD) and a (57,15)-IKTS.

Lemma 3.12. There is a KTS(291) containing a sub-KTS(87).

Proof: Remove a point from the hole of the $(73, 22; \{4,7,10\})$ -IPBD given in the appendix, producing a $\{4,7\}$ -GDD of type $3^{14}9^{1}21^{1}$. Give every point weight four and apply the Fundamental Frame Construction. Then fill in KTS(15), a KTS(39) and a KTS(87).

As a result of all the above constructions, we have our main result.

Theorem. There is a KTS(v) containing a sub-KTS(w) if and only if $v \equiv w \equiv 3$ modulo 6 and $v \geq 3w$.

References

- 1. A. M. Assaf and A. Hartman, Resolvable group divisible designs with block size 3, Annals of Disc. Math. (to appear).
- 2. J. Doyen and R. M. Wilson, *Embeddings of Steiner triple systems*, Disc. Math. 5 (1973), 229–239.
- 3. H. Hanani, D. K. Ray-Chaudhuri, and R. M. Wilson, *On resolvable designs*, Discrete Math. 3 (1972), 75–97.
- 4. K. Heinrich and L. Zhu, Existence of orthogonal Latin squares with aligned subsquares, Discrete Math. 59 (1986), 69-78.
- 5. E. R. Lamken and S. A. Vanstone, *Elliptic semiplanes and group divisible designs*, Aequationes Math. 30 (1986), 80-92.
- 6. W. H. Mills, On the covering of pairs by quadruples II, J. Combin. Theory A 15 (1973), 138–166.
- 7. W. H. Mills, Certain pairwise balanced designs, preprint.
- 8. R. C. Mullin, P. J. Schellenberg, S. A. Vanstone, and W. D. Wallis, On the existence of frames, Discrete Math. 37 (1981), 79–104.

- 9. R. Rees, Frames and the $g^{(k)}(v)$ problem, Discrete Math. (to appear).
- 10. R. Rees and D. R. Stinson, On resolvable group-divisible designs with block size 3, Ars Combinatoria 23 (1987), 107–120.
- 11. R. Rees and D. R. Stinson, Kirkman triple systems with maximum subsystems, Ars Combinatoria 25 (1988), 125–132.
- 12. R. Rees and D. R. Stinson, On combinatorial designs with subdesigns, Annals of Discrete Math. (to appear).
- 13. R. Rees and D. R. Stinson, On the existence of Kirkman triple systems containing Kirkman subsystems, Mathematics and Computer Science Research Report M/CS 87-8, Mount Allison University, Sackville, New Brunswick.
- 14. D. K. Ray-Chaudhuri and R. M. Wilson, Solution of Kirkman's school-girl problem, Amer. Math. Soc. Symp. Pure Math. 19 (1971), 187–204.
- 15. D. R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65 (1987), 289-300.
- 16. D. R. Stinson, The equivalence of certain incomplete transversal designs and frames, Ars Combinatoria 22 (1986), 81–87.
- 17. D. R. Stinson, A new proof of the Doyen-Wilson theorem, J. Austral. Math. Soc. A (to appear).

Appendix

The 884 exceptions remaining after Theorems 1.1, 1.2 and 1.3

```
w values of v
 39: 141
 45: 147 153 159 165
 51: 165 171 177 183 189
 57: 189 195 201 207 213
 63: 201 207 213 219 225 231 237
 69: 225 231 237 243 249 255 261
 75: 243 249 255 261 267 273 279 285
 81: 261 267 273 279 285 291 297 303 309
 87: 273 279 285 291 297 303 309 315 321 327
 93: 297 303 309 315 321 327 333 351 357
 99: 315 321 327 333 339 357 363 369 375 381
105: 333 339 345 363 369 375 381 387 393
111: 351 369 375 381 387 393 399 429
117: 375 381 387 393 399 405 435 441 447 453
123 : 387 393 399 405 411 441 447 453 459
129: 405 411 417 447 453 459 465
135: 423 453 459 465 471 525
141: 459 465 471 477 531 537 543 549
147: 465 471 477 483 537 543 549 555 561 567 573
```

```
579
                                                                    585
      477
             483
                   489
                         543
                               549
                                     555
                                           561
                                                 567
                                                       573
153:
                                                              609
                                                                    615
                         561
                               567
                                     573
                                           579
                                                 585
                                                       591
                                                                          621
159:
      495
            549
                   555
                                           591
                                                 597
                                                              621
                                                                   627
                                                                          633
                                                                                639
                                                                                      645
                         573
                               579
                                     585
                                                       615
165:
      555
             561
                   567
                                                                                            669
                                                                                      651
      561
            567
                   573
                         579
                               585
                                     591
                                           597
                                                 603
                                                       621
                                                              627
                                                                    633
                                                                          639
                                                                                645
171:
                               591
                                     597
                                           603
                                                 609
                                                       627
                                                              633
                                                                    639
                                                                          645
                                                                                651
                                                                                      657
                                                                                            675
                         585
      567
             573
                   579
177:
       681
             687
                   693
                                                              639
                                                                    645
                                                                          651
                                                                                657
                                                                                      663
                                                                                            681
      573
             579
                   585
                         591
                               597
                                     603
                                           609
                                                 615
                                                       633
183:
                         705
                               711
       687
             693
                   699
                                                                                      687
                                                                                            693
                                           621
                                                 639
                                                       645
                                                              651
                                                                    657
                                                                          663
                                                                                669
       585
             591
                   597
                         603
                               609
                                     615
189:
                         717
       699
             705
                   711
                                                                                      705
                                                                                             711
                         621
                                           651
                                                 657
                                                        663
                                                              669
                                                                    675
                                                                          693
                                                                                699
195:
       603
             609
                   615
                               627
                                     645
                         759
       717
                   753
                               765
             723
                                                                                            729
                                                                                      723
                                                              699
                                                                    705
                                                                          711
                                                                                717
201:
       621
             627
                   633
                         651
                               657
                                     663
                                           669
                                                  675
                                                        681
                               783
                                     789
       759
             765
                   771
                         777
                                                                                735
                                                                                      765
                                                                                             771
                                                  705
                                                        711
                                                              717
                                                                    723
                                                                          729
                         669
                               675
                                           687
207:
       639
             657
                   663
                                      681
                         795
                                            813
       777
             783
                   789
                               801
                                      807
                                                                                      777
                                                                                             783
                         681
                                      693
                                            711
                                                  717
                                                        723
                                                              729
                                                                    735
                                                                          741
                                                                                771
       663
             669
                   675
                               687
213:
                                            825
                                                        837
       789
             795
                   801
                         807
                               813
                                      819
                                                  831
                                                                          777
                                                                                783
                                                                                      789
                                                                                             795
219:
       675
             681
                   687
                         693
                               699
                                      717
                                            723
                                                  729
                                                        735
                                                              741
                                                                    747
       801
             807
                   813
                         819
                               825
                                      831
                                            837
                                                  843
                                                        861
                                                              783
                                                                          795
                                                                                 801
                                                                                       807
                                                                                             813
225:
       693
                   705
                         723
                               729
                                      735
                                            741
                                                  747
                                                        753
                                                                    789
             699
                                                        879
                                            867
                                                  873
                                                              885
       819
             825
                   831
                         837
                               843
                                      849
231:
       711
             729
                   735
                         741
                               747
                                      753
                                            759
                                                  789
                                                        795
                                                              801
                                                                    807
                                                                          813
                                                                                 819
                                                                                       825
                                                                                             831
                                                                    909
                               873
                                      879
                                            885
                                                  891
                                                        897
                                                              903
       837
                   849
                         855
             843
                                                                                 831
                                                                                       837
                                                                                             843
       735
             741
                   747
                         753
                                759
                                      765
                                            795
                                                  801
                                                        807
                                                              813
                                                                    819
                                                                          825
237:
       849
             855
                   861
                          879
                                885
                                      891
                                            897
                                                  903
                                                        909
                                                              915
                                                                     921
                                                                          927
                                                                                 933
                                            807
                                                              825
                                                                     831
                                                                          837
                                                                                 843
                                                                                       849
                                                                                             855
243:
       747
             753
                   759
                          765
                                771
                                      801
                                                  813
                                                        819
                                                                                       951
                          891
                                897
                                      903
                                            909
                                                  915
                                                        921
                                                              927
                                                                     933
                                                                          939
                                                                                 945
       861
             867
                   885
                                                                                 861
                                                                                       867
                                                                                             873
249:
       765
             771
                   777
                          807
                                813
                                      819
                                            825
                                                  831
                                                        837
                                                              843
                                                                     849
                                                                           855
             897
                   903
                          909
                                915
                                      921
                                            927
                                                  933
                                                        939
                                                              945
                                                                     951
                                                                           957
       891
                                                                                       897
                                                                                             903
                                                  849
                                                        855
                                                                     867
                                                                           873
                                                                                 879
       783
                          825
                                831
                                      837
                                            843
                                                              861
255:
             813
                   819
       909
             915
                    921
                          927
                                933
                                      939
                                            945
                                                  951
                                                        957
                                                              963
                                                                     993
                                                                          999
                                                                                1005
                                                              873
                                                                     879
                                                                           885
                                                                                 903
                                                                                       909
                                                                                             915
261:
       819
             825
                    831
                          837
                                843
                                      849
                                            855
                                                  861
                                                        867
        921
                          939
                                945
                                      951
                                            957
                                                  963
                                                        969
                                                              999
                                                                   1005
                                                                          1011
                                                                               1017
             927
                    933
                                                  867
                                                         873
                                                              879
                                                                     885
                                                                           891
                                                                                 909
                                                                                       915
                                                                                             921
267:
       825
              831
                    837
                          843
                                849
                                      855
                                            861
                                                                                1023
        927
                   939
                          945
                                951
                                      957
                                            963
                                                  969
                                                        975
                                                             1005
                                                                    1011
                                                                          1017
              933
                                                                                             933
                          855
                                            873
                                                  879
                                                        885
                                                               891
                                                                     897
                                                                           915
                                                                                 921
                                                                                       927
273:
       837
              843
                   849
                                861
                                      867
                                                                                      1077
        939
              945
                    951
                          957
                                963
                                      969
                                            975
                                                  981
                                                       1011
                                                             1017
                                                                   1023
                                                                         1029
                                                                                1071
                                                                                 939
                                                                                             951
279:
       855
                          873
                                879
                                      885
                                            891
                                                  897
                                                         903
                                                               921
                                                                     927
                                                                           933
                                                                                       945
              861
                    867
                                                                    1077
        957
              963
                    969
                          975
                                981
                                      987
                                           1017
                                                 1023
                                                       1029
                                                             1035
                                                                          1083
                                                                                1089
                                                                                      1095
                                                                                 957
                                                                                       963
                                                                                             969
285:
       873
              879
                    885
                          891
                                897
                                      903
                                            909
                                                  927
                                                        933
                                                              939
                                                                     945
                                                                           951
                               1023
                                     1029
                                           1035
                                                 1041
                                                       1083 1089
                                                                    1095
                                                                          1101
        975
              981
                    987
                          993
                                            939
                                                              957
                                                                           969
                                                                                 975
                                                                                       981
                                                                                             987
291:
        891
              897
                    903
                          909
                                915
                                      933
                                                  945
                                                         951
                                                                     963
        993
              999
                   1029
                         1035
                               1041
                                     1047 1089
                                                 1095
                                                       1101
                                                             1107
                                                                                       999 1005
 297:
      909
              915
                    921
                          939
                                945
                                      951
                                            957
                                                  963
                                                        969
                                                              975
                                                                     981
                                                                           987
                                                                                 993
       1035 1041 1047 1053 1095 1101 1107 1113
```

```
303: 927 945
               951 957
                          963
                               969
                                    975
                                          981 987
                                                   993 999 1005 1011 1041
     1047 1053 1059 1101 1107
                              1113 1119
           957
                963
                     969
                          975
                                981
                                     987
                                          993
                                               999 1005 1011 1017 1047 1053
     1059 1065 1107 1113 1119 1125
315: 963
           969
                975
                     981
                          987
                               993
                                    999 1005 1011 1017 1023 1053 1059 1065
          1113 1119 1125 1131
     1071
321: 981
          987
                993
                     999 1005 1011 1017 1023 1029 1059 1065 1071 1077 1119
     1125 1131 1137
327: 999 1005 1011 1017 1023 1029 1035 1065 1071 1077 1083 1125 1131 1137
     1143
333 : 1017 1023 1029 1035 1041 1071 1077 1083 1089 1131 1137 1143 1149
339 : 1035 1041 1047 1077 1083 1089 1095 1137 1143 1149 1155
345 : 1053 1083 1089 1095 1101 1143 1149 1155 1161
351: 1089 1095 1101 1107 1149 1155 1161 1167
357: 1095 1101 1107 1113 1155 1161 1167 1173
363 : 1107 1113 1119 1161 1167 1173 1179
369: 1125 1167 1173 1179 1185
375: 1173 1179 1185 1191
381: 1179 1185 1191 1197
387: 1185 1191 1197 1203
393: 1197 1203 1209
399: 1215
```

A (73, 22; {4,7,10})-IPBD

Points: $\mathbb{Z}_{42} \cup \{a, b_0, b_1, c_0, c_1, d_0, d_1, e_0, e_1\} \cup \{\infty_i : 0 \le i \le 20\} \cup \{\infty\}.$

Blocks: Develop the following modulo 42, where subscripts on ∞ are developed modulo 21 and subscripts on letters are developed modulo 2.

```
0, 6, 12, 18, 24, 30, 36 \infty, a, b_0, b_1, c_0, c_1, d_0, d_1, e_0, e_1

\infty, 0, 14, 28 \infty_0, a, 11, 22

\infty_0, b_0, 2, 29 \infty_0, c_0, 3, 34

\infty_0, d_0, 4, 17 \infty_0, e_0, 6, 41

\infty_0, 0, 22, 26 \infty_0, 28, 31, 36

\infty_0, 30, 39, 40 \infty_0, 12, 14, 37
```