'On the existence of Kirkman triple systems containing Kirkman subsystems

Rolf Rees and D. R. Stinson
Mount Allison University and University of Manitoba

Abstract. The obvious necessary conditions for the existence of a Kirkman triple
system of order v containing a Kirkman subsystem of order w are v = w = 3 modulo
6, v > 3w. We show that these conditions are sufficient.

1. Introduction

A pairwise balanced design (or, PBD) is a pair (X, A), such that X is a set of
elements (called points) and A is a set of subsets of X (called blocks), such that
every unordered pair of points is contained in a unique block of A. If v is a positive
integer and K is a set of positive integers, then we say that (X, A) is a (v, K)-
PBDIif |X| = v,and |A| € K for every A € A. The integer v is called the order
of the PBD.

Using this notation, we can define a Steiner triple system of order v, which we
denote STS(v), tobe a (v, {3})-PBD. Itis of course well-known that an STS(v)
exists if and only if v = 1 or 3 modulo 6.

Let (X,.A) be a PBD. If a set of points Y C X has the property that, for any
A€ A, either[YNA| < 1orACY,then we say that Y is a subdesign or flat of
the PBD. The order of the subdesign is |Y'|. The subdesignY is proper if Y # X.
If Y is a subdesign, then we can delete all blocks A C Y and replace them by a
single block, Y', and the resultis a PBD. Also, any block or point of a PBD is itself
a subdesign.

The problem of constructing Steiner triple systems containing subsystems was
studied by Doyen and Wilson in [2]. The obvious necessary conditions for the
existence of an STS(v) containing an STS(w) as a subsystem are v > 2w + 1,
v = 1 or3modulo 6, w = 1 or 3 modulo 6. In [2], it is shown that these necessary
conditions are sufficient.

A parallel class in a PBD is a set of blocks that form a partition of the point
set. APBD s resolvable if the block set can be partitioned into parallel classes. A
Kirkman triple system of order v, or KTS(v), is defined to be aresolvable STS(v).
In [14], Ray-Chaudhuri and Wilson showed that there exists a KTS(v) if and only
if v = 3 modulo 6.

In this paper, we are interested in KTS(v) which contain KTS(w) as subsys-
tems. We say that a KTS(w) is a subsystem of a KTS(v) only if the parallel
classes of the KTS(w) are induced by the parallel classes of the KTS(v). We shall
describe the subsystem as a sub-KTS(w). The obvious necessary conditions for
the existence of a KTS(v) containing a sub-KTS(w) isv > 3w, v = w = 3 mod-
ulo 6. This problem has been studied in several recent papers, and the following
results have been proved.
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Theorem 1.1 [15, 12]. Forallv = w =3 modulo 6, v >4w -9, there exists a
KTS( v) containing a sub-KTS(w).

Theorem 1.2 [11]. Forallw = 3 modulo 6,v = 3w, 3w + 6 or3w + 12, there
exists a KTS(v) containing a sub-KTS(w), except possibly when w = 45, 51,
63,or87 andv =3w+ 12,

Theorem 1.3 [12]. Supposev = w = 3 modulo 6,v > 3w, andv—w = 12s+6
or12s+ 12, wheres € {0,1,2,3,4,5,6,7,20, 24,25, 28,29, 30, 31, 36,
40, 44,45, 52,59, 60, 63,64, 65} ors > 68. Then there exists a KTS(v)
conlaining a sub-KTS(w).

There are precisely 884 ordered pairs (v, w), where v = w = 3 modulo 6 and
v > 3w, which are not covered by any of the three theorems above. These are
listed in the Appendix. In this paper, we eliminate all of these possible exceptons.

2. Constructions for Kirkman triple systems containing subsystems

We need to define several types of designs. First, we define a useful generalization
of a PBD called a group-divisible design. A group-divisible design (or, GDD), is
atriple (X, G, A), which satisfies the following properties:

(1) G is a partition of X into subsets called groups;

(2) A is a set of subsets of X (called blocks) such that a group and a block
contain at most one common point;

(3) every pair of points from distinct groups occurs in a unique block.

The group-type (or type) of a GDD (X, G, A) is the multiset {|G|: G € G}.
We usually use an “exponential” notation to describe group-types: a group-type
17273k . denotes 1 occurrences of 1, j occurences of 2, etc. As with PBDs, we
will say that a GDD is a K-GDD if |A| € K for every A € A. As well, we say
that a GDD is resolvable if the blocks can be partitioned into parallel classes.

Now, we define the idea of a GDD with a hole. Informally, an incomplete GDD,
or IGDD, is a GDD from which a sub-GDD is missing (this is the “hole™). We
give a formal definition. An IGDD is a quadruple (X, Y, G, A) which satisfies the
following properties:

(1) X isasetof points,andY C X;

(2) G is a partition of X into groups;

(3) A is a set of blocks, each of which intersects each group in at most one
point;

(4) no block contains two members of Y';

(5) every pair of points {z,y} from distinct groups, such that at least one of
z, y is in X\Y', occurs in a unique block of A.

We say that an IGDD (X,Y,G, A) is a K-IGDD if |A| € K for every block
A € A. The type of the IGDD is defined to be the multiset of ordered pairs



{(|G], |IGNnY]|):G € G}. As with GDDs, we shall use an exponential notation
to describe types. Note that if Y = @, then the IGDD is a GDD.

We have already defined PBDs with subdesigns. If we allow the subdesign to
be missing (i.e., a hole), we have an incomplete PBD, as follows. An incomplete
PBD (or IPBD) is a triple (X, Y, A), where X is a set of points, Y C X, and A
is a set of blocks which satisfies the following properties:

(1) forany A€ A,|ANY| < 1;
(2) any two points z, y, not both in Y', occur in a unique block.

Hence, Y is the hole. Note that (X,Y, A) is an IPBD if and only if (X, A U
{Y'}) isaPBD. We say that (X,Y, A) isa (v,w; K)-IPBDif |X| = v, |V]| = w,
and |A| € K forevery A € A.

We also employ a more general type of incomplete PBD. We are interested in
the situation when we have two subdesigns, of given sizes, which intersect in a
third subdesign of a given size. However, as usual, the subdesigns need not be
present, i.e. we allow holes. We will refer to these designs as o-IPBDs, in order
to suggest the structure of the holes. We give a formal definition. An incomplete
o-PBDisatuple (X,Y1,Y2,A),whereY) C X,Y> C X,and A is a set of blocks
such that every pair of points {z, y} occurs in a unique block, unless {z,y} C Y}
or{z,y} C Y2, in which case the pair occurs in no block. We say that the o-IPBD
isa(v;wy,wy; wy; K)-o-IPBDIf | X| = v, |Y]| = wy, V2| = wa, V1 NY2 | = ws,
and |A| € K forevery A € A.

Our main application of o-IPBDs involves using them to fill in the groups of
IGDDs. This construction was presented in [17].

Construction 2.1 Filling in groups Let K be a set of positive integers, and let
ba0. Suppose that the following designs exist:

(1) aK-IGDD of type {(t1,u1), (t2,u2),..., (ta, tus) };
(2) a(ti+ b;u;+ a,b;a; K)-o-IPBD,for1 <1< n—1;and
(3) a(t, + b; u, + a)-IPBD.

Then there exists a (¢ + b,u + a; K)-IPBD, wheret = 3 t;andu = u;.

In this paper, we also make extensive use of Kirkman triple systems with holes
of various types. We refer to these as incomplete KTS, or IKTS. If we have a
KTS(v) containing a sub-KTS(w), we can remove the subsystem, leaving a hole.
We shall denote the resulting incomplete system by (v, w)-IKTS. (Of course, if we
have a (v, w)-IKTS, where v = w = 3 modulo 6, then we can fill a KTS(w) into
the hole, constructing a KTS(v) containing a sub-KTS(w).) Next, suppose we
have a KTS(v) which contains sub-KTS(w;) and sub-KTS(w,) which intersect
in a sub-KTS(ws). If we remove these subsystems, we obtain an incomplete
system which we denote by (v; wy, wz; w3)-o-IKTS.

We also make extensive use of an object which can be thought of as aresolvable
GDD having a spanning set of holes. A K-frame is a K-GDD (X, H, A), in
which the set of blocks A can be partitioned into holey parallel classes, each of



which is a partition of X /H, for some H € H. The members of H are called
holes. We refer to a {3 }-frame as a Kirkman frame.

As before, the rype of a frame (X, H, A) is defined to be the multiset {|H |: H €
H}. It can be shown (see [15] and [9]) that for each hole H of a { k}-frame, there
are | H|/(k — 1) holey parallel classes which partition X \ H. It is also interesting
to note that a {k}-frame of type {t1,t2,...,t,} is equivalent to a {k + 1}-IGDD
of type {(kt1/(k—1),t1/(k— 1)), (kt2/(k—1),t2/(k=1)), ..., (ktn/(k —
1),ta/(k — 1)) }.

If we fill in the holes of Kirkman frames, we can construct KTS with sub-KTS,
as follows.

Construction 2.2 Filling In Holes Let a > 0, and suppose that there exists a
Kirkman frame of type {t;,t2,...,ts}; a KTS(¢; + a) containing a sub-KTS(a),
for1 <1< n—1;and a KTS(t, + a). Then there exists a KTS(t + a), where
t =Y t;, containing a sub-KTS(t, + a). '

We also use incomplete (Kirkman) frames, which bear the same relationship to
Kirkman frames as IGDDs do to GDDs. An incomplete K -frame is a K-1IGDD
(X,Y,H, A) in which the set of blocks A can be partitioned into holey parallel
classes, each of which is a partition of X/H, for some H € H, or a partition
of X\(HUY), for some H € H. It can be shown that for each hole 1, there
are | NY'|/2 holey parallel classes which partition X \(H UY’), and |H\Y|/2
holey parallel classes which partition X'\ /1.

We also construct KTS containing sub-KTS by filling in the holes of incomplete
Kirkman frames with o-IKTS.

Construction 2.3 Generalized Filling In Holes Let b > a > 0. Suppose that
the following designs exist:

(1) an incomplete Kirkman frame of type {(t1,u1), (t2,u2),..., (ta,us) };
(2) a(ti+b; ui+a, db; a)-o-IKTS,for1 <1< n-—1;and
(3) a(t, +b; u, +a)-IKTS.

Then there exists a (¢t + b, u+ a)-IKTS, wheret = Y t;and u = ¥ u;.

We also observe that if we fill in all but one group of a Kirkman frame (Con-
struction 2.2), we obtain an IKTS, and if we fill in all but two groups, we obtain a
o-IKTS.

It will be necessary to build families of IGDDs. Qur basic construction for
IGDDs is a recursive one. We refer to it as the “Fundamental IGDD Construction”
(see [8] and [11]).

Construction 2.4 Fundamental IGDD Construction Suppose (X,Y,G, A) is
an IGDD, and let t,s: X — Z* U {0} be functions such that t(z) < s(z),
for every z € X. For every block A € A, suppose that we have a K-IGDD
of type {(s(z),t(x)):z € A}. Suppose also that we have a K-IGDD of type



{(Xcecny 3(2), Y zecny () : G € G}. Then there exists a K-IGDD of type
{(XCrec 3(2), 2sec (2)): G €G).

We use a similar IGDD construction to build frames and incomplete frames (sce

(15D).

Construction 2.5 Fundamental Frame Construction Suppose (X,Y,G,A) is
an IGDD, and let s: X — Z* U {0} be a function. For every block A € A,
suppose that we have a Kirkman frame of type {(s(z): = € A}. Then there exists
an incomplete Kirkman frame of type {(}_,cc 3(2), Y cecny 3(2)): G €G }.

As applications of the above, we mention a family of constructions which are
called the product constructions. These utilize (incomplete) transversal designs,
which we now define. A transversal design TD(k, ) is a {k}-GDD of type n".
It is well-known that a TD( k, n) is equivalent to k — 2 mutually orthogonal Latin
squares (MOLS) of order n. We also definea TD(k, n) - TD(k, m) (an incomplete
transversal design) to be a { k}-IGDD of group-type (n, m)*.

The most general product construction is referred to as the Generalized S ingular
Indirect Product, or GSIP.

Construction 2.6 Generalized Singular Indirect Product Suppose u,t, v, w,
a, and b are non-negative integers such that0 < b—a < v—-w,a < w L v.
Suppose that the following designs exist :
(1) aKirkman frame of type t*;
(2) aTD(u,(v — b)/t)—TD(u, (w — a) /t);
(3) a(v; w,b; a)-o-1KTS; and
(4) a(b,a)-IKTS.
Then there exists a (u(v — b) + b, u(w — a) + a)-IKTS.
Proof: Start with the given incomplete TD, give every point weight t, and apply
the Fundamental Frame Construction. We get an incomplete Kirkman frame of
type (v — b, w — a)*. Now fill in the holes. 1}

When b = a, we obtain the Singular Indirect Product, or SIP.

Construction 2.7 Singular Indirect Product Suppose u, t, v, w, and a are non-
negative integers such that 0 < a < w < v. Suppose that the following designs
exist :
(1) aKirkman frame of type t*;
(2) aTD(u, (v — a) /t)—TD(u, (w — a) /t); and
3) a(v; w)-IKTS.
Then there exists a (u(v — a) + a, u(w — a) + a)-IKTS.
When b = a = w, we obtain the Singular Direct Product, or SDP.

Construction 2.8 Singular Direct Product Suppose u, t, v and w are non-
negative integers such that w < v. Suppose that the following designs exist:
(1) aKirkman frame of type t";



(2) aTD(u, (v — w) /t);
(3) a(v,w)-IKTS: and
(4) aKTS(w).

Then, there is a (u(v — w) + w, w)-IKTS and a (u(v—w) + w, v)-IKTS.

3. Applications of the constructions

We now describe two recursive constructions for producing Kirkman triple sys-
tems containing Kirkman subsystems, which will eliminate all but 31 of the 884
exceptions. These constructions will make use of Kirkman frames constructed in

[15].

Lemma 3.1. There exists 2 Kirkman frame of ype t* if and only ift is even,
u2>4,andt(u— 1) = 0 mod 3.

Proof: See [15, Theorem 4.5].
We shall use certain incomplete TDs.

Lemma 3.2. For all positive integers v and w such thatv > 3w and ( v,w) #
(6,1), there is a TIX4,v)-TD(4, w),

Proof: See [4]. §
We shall also require some particular classes of o-IKTS.

Lemma 3.3. Forallm 2 0, there exists a (18 m + 9;6m + 3,9;3)<-IKTS.

Proof: Form = 0, the design exists trivially. Form > 0, start witha TD(4, 6 m+
3)-TD(4,3) (Lemma 3.2). Delete all the points in one group. Then, on two of
the remaining groups, fill in (6m + 3,3)-IKTS. ¥

Lemma 3.4. Forallm > 2, there exists a(18m+ 15; 6 m + 3,15; 3)<-IKTS.

Proof: For m = 2, use a Kirkman frame of type 124, filling in two holes with
(15,3)-IKTS. For m 2 3, start with a resolvable {3}-GDD of type 6™ ! (see
[10] and [1)). Adjoin infinite points to the parallel classes of this GDD, to con-
struct a {4 }-GDD of type 6 ™! (3m)!. Give every point weight 2 and apply the
Fundamental Frame Construction, Thjs produces a frame of type 12™+! (6 m)!.

Now fill in all but one hole of size 12 with ( 15,3)-IKTS. §

Construction 3.1 Suppose there exists a TD(6,m),0 < ¢ <m,and0 < u <
m. Leta > 0. Suppose there exist KTS(6 m + a) and KTS(6m + 6t + a), each
containing a KTS(a), and a KTS(6m+6u+ a). Then there exists a KTS(36 m+
6t+6u+ a) containing a sub-KTS(6m + 6 4 + a).

Proof: Start with a TD(6,m), and give the points in the first four groups weight
6; give t of the points in the 5th group weight 12, and give the remaining points
in the 5th group weight 6; and give u of the points in the 6th group weight 12,



and give the remaining points in the 6th group weight 6. In order to apply the
Fundamental Frame Construction, we need Kirkman frames of types 66, 6512
and 64122, which are obtained as follows. A frame of type 66 exists by Lemma
3.1. We get a frame of type 6° 12! by applying the Fundamental Construction to
a {4}-GDD of type 336!, giving every point weight 2 (this GDD is produced by
adjoining infinite points to 6 parallel classes of a KTS(15)). Similarly, we get a
frame of type 64 122 by applying the Fundamental Construction to a {4 }-GDD of
type 3462, giving every point weight 2 (this GDD is exhibited in the Appendix of
[12]). Hence, we build a Kirkman frame of type (6 m)* (6 m + 6t)! (6 m + 6 u)!
(forany 0 <t < m,0 < u < m). We now add on a infinite points, and fill in
KTS containing sub-KTS(a), and the KTS(6m + 6u +a). N

Construction 3.2 Suppose there isa TD(6,m),0 <t < m,0 < u < m,and
a = 3 or 6. Then there exists a KTS(72m + 18t + 12u + 2a + 3) containing a
sub-KTS(24m + 6t + 3).

Proof: Start with a TD(6,m), delete m —t points from the Sth group, and delete
m — u points from the 6th group. Then, give the points in the first five groups
weights (9, 3), and give the points in the 6th group weights (6, 0). In order to
apply the Fundamental IGDD construction, we need {4 }-IGDDs of types (9,3)%,
(9,3)%,(9,3)*6',and (9,3)°6. The first two IGDDs are equivalent to frames
of types 64 and 6° respectively (see the remark preceding Construction 2.2). The
last two IGDDs are presented in the Appendix of [11]. Then, we obtain a {4 }-
IGDD of type (9m,3m)*(9t,3t)!(6u)'. Next, assign every point weight 2,
and apply the Fundamental Frame Construction. This produces an incomplete
frame of type (18 m, 6 m)* (18¢,6t) ' (12u). Next, we will fill o-IKTS into the
holes of the frame, using Construction 2.3. We adjoin a total of 2a + 3 points, 3
of which are incorporated into the sub-KTS.

Ifa=3,thenwefillin (18 m+9; 6 m+3,9; 3)©-IKTS, (18t+9;6t+3,9; 3)-
o-IKTS, and (12 u + 9, 3)-IKTS. These exist from Lemma 3.3.

Ifa=6,t>1,thenwefill in (18 m + 15;6m + 3,15; 3)-0-IKTS, (18t +
15;6¢t + 3,15; 3)--IKTS, and (12u + 15, 3)-IKTS. These exist from Lemma
34.

Ifa=6,t=1,u 1,2, then we instead use (18 m + 15;6m + 3, 15; 3) -o-
IKTS, (12u + 15; 3, 15; 3) ©-IKTS, and (18t + 15,9)-IKTS.

Ifa=6,t=1,andu = 1 or 2, we proceed slightly differently. We start
with a TD(S5,m) and delete m — u — 1 points from the Sth group. Give all
points weight (9, 3), except for u points in the fifth group, which get weights

- (6, 0). Proceeding as before, we obtain an incomplete Kirkman frame of type
(18m,6m)*(12u + 18,6)!. Now, fill in (18m + 15;6m + 3, 15; 3)©-IKTS,
and (12u + 33,9)-IKTS.

This covers all cases, so the proof is complete. §



By computer, we established that Constructions 3.1 and 3.2 eliminate all but
31 ordered pairs (v, w), which are presented in Table 1. Appropriate applications
of Constructions 3.1 and 3.2 for the remaining 853 ordered pairs are given in the
research report [13].

Table 1
The 31 exceptions remaining after application of Constructions 3.1 and 3.2

(141,39) (147,45) (153,45) (159,45) (165,45)
(165,51) (171,51) (177,51) (183,51) (189,51)
(189,57) (195,57) (201,57) (201,63) (207,63)
(255,69) (261,69) (261,75) (267,75) (273,75)
(279,75) (261,81) (267,81) (273,81) (279,81)
(285,81) (273,87) (279,87) (285,87) (291,87)
(297,93)

15 of the exceptions in Table 1 can be eliminated by the product constructions.
We list these in Table 2. In all applications, t = 2 and u = 4, so we are using
Kirkman frames of type 2. The requisite incomplete TDs exist by Lemma 3.2.

At this point, 16 ordered pairs remain as possible exceptions. We eliminate most
of these using a well-known PBD construction. First, we define the set Ky 3 =
{k=1mod 3, k >4}.

Lemma 3.5. Suppose thereis a(v, w; K, 3)-IPBD. Thenthereisa Qu+1, 2w+
1) -IKTS.

Proof: The IPBD gives rise to a GDD of type w! 1*~%. Give every point weight
2, and apply the Fundamental Frame Construction. This produces a frame of type
(2w) 2%, Now fill KTS(3) into the holes of size 2.

Lemma 3.6. Suppose there is a resolvable {4 }-GDD of type t*, wheret = 0
mod 3, andlet0 < s < t(u—1)/3. Thenthereisa(6tu+6s+9 , 2tu+3) -IKTS.

Proof: Adjoin infinite points to s of the parallel classes of the GDD. This produces
a{4,5}-GDD of type t*s' in which every block of size 5 hits the group of size s.
Assign weights (3, 1) to every point of the original GDD, and assign weights (3,
0) to the s infinite points. Apply the Fundamental IGDD construction, using {4 }-
IGDDs of types (3,1)*(3,0)" and (3, 1)*. (These arise from deleting a block
from {4 }-GDDs of types 3¢ and 3%, respectively.) We construct in this way a
{4 }-IGDD of type (3t,t)%(3s).

Next, we fill in the groups of this IGDD with o-IPBDs using Construction 2.1.
Seta = 1landb = 4. We use (3t + 4:¢ + 1,4;1; K1 3)--IPBDs, which are
constructed by adjoining t + 1 infinite points to the parallel classes of a KTS(2t+
3). For the last group, we use a block of size 3 s + 4. This givesusa (3tu+3s+
4,tu+ 1; K 3)-IPBD. Now, apply Lemma 3.5. J
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Table 2

v w construction ingredients remarks
153 45 SDP 153 =4(45-9)+9  (45,9)-IKTS
TD(4, 18)
165 45 SIP 165=4(45 -5)+5 (45,15)-1KTS
45=4(15 -5)+5 TD(4,20) — TD(4,5)
171 51 SIP 171=4(45-3)+3 (45,15)-IKTS
S1=4(15-3)+3 TD(4,21) — TD(4,6)
177 51 SDP 177=4(51-9)+9 (51,9) - IKTS
TD(4,21)
183 51 GSIP 183 = 4(57 — 15) + 15 (57;15,15;3)©-IKTS a {4}-GDD of type 643!
S1=4(15-3)+3 TD(4,21) — TD(4,6) gives rise to a frame of
type 1246, and so 1o
the required o-IKTS.
201 57 SDP 201 =4(57-9)+9 (57,9)-IKTS
TD(4,24)
207 63 SDP 207 = 4(63 — 15) + 15 (63,15)-IKTS
TD(4,24)
261 69 SIP 261 =4(69 —5)+5 (69,21)-IKTS
69=4(21 =5)+5 TD(4,32) — TD(4,8)
267 15 SIP 267 =4(69 —3)+3 (69,21)-IKTS
75=4021=-3)+3 TD(4,33) —TD(4,9)
273 75 SDP 273=4(75-9)+9 (75,9)-IKTS
TD(4,33)
279 75 GSIP 279 = 4(81 —15) + 15 (81;15,21;3)-0-IKTS a {4}-GDD of type 659!
75=4(21-3)+3 TD(4,33) — TD(4,9) gives rise to a frame of
type 12518}, and so to
the required o-IKTS.
261 81 SDP 261 = 4(81 —21) + 21 (81,21)-IKTS
TD(4,30)
273 81 SIP 273=4(69 —1)+1 (69,21)-IKTS
81=4(21 —-1)+1 TD(4,34) — TD(4,10)
279 81 SDP 279 = 4(81 — 15) + 15 (81,15)-IKTS
TD(4,33)
285 87 SDP 285 = 4(87 —21) + 21 (87,21)-IKTS
TD(4,33)

In a similar fashion, we have

Lemma 3.7. Suppose there is a resolvable {4}-GDD of type t*, wheret =
1 mod 3, andlet0 < s < t(u—1)/3. Then there isa(6tu+ 63+ 3,2tu+1)-
IKTS.

Proof: As before, construct a {4 }-IGDD of type (3t,t)*(3s)'. Then, seta = 0
and b= 1. We fillin (3t + 1,t; K1 3)-IPBDs (which are constructed by adjoining
t infinite points to the parallel classes of a KTS(2¢+ 1)) and ablock of size 3s+ 1
(if s > 0). We geta (3tu+ 3s+ 1,tu; K, 3)-IPBD. Now, apply Lemma 3.5. §

A slightly different application of the same idea gives us
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Lemma 3.8. Suppose there is a {4 }-frame of type t*, wheret = 0 mod 3, and
0 < s < t/3. Also, suppose there is a (3t + 33 + 4,t+ 1; K, 3)-IPBD. Then
thereexists a(6tu+ 6s+ 9 ,2tu + 3)-IKTS.

Proof: Adjoin s points to a hole of the frame, constructing a {4,5}-IGDD of
type t“~'(t + s,5)!. Assign weights (3, 1) to every point of the original GDD,
and assign weights (3, 0) to the s infinite points. Apply the Fundamental IGDD
Construction, resulting in a {4 }-IGDD of type (3¢, t) %~ (3t+3s,3t)!. Then, set
a=landb=4. Weuse(3t+4;t+1,4;1; K 3)-o-IPBDs, which are constructed
as in Lemma 3.6. For the last group, we use the (3t + 3 s + 4 , 0+ 1; Ky 3)-IPBD.
This givesusa (3tu+ 3s+ 4,tu + 1; K, 3)-IPBD. Apply Lemma 3.5.

We list several applications of these constructions in Table 3.

Table 3
v w lemma ingredients remarks
141 39 3.5 (70,19; {4})-IPBD see [7]
147 45 36 t=3,u=8,s=2 (73,22;{4,7,10})-IPBD see Appendix
159 45 3.5 (79,22; (4})-IPBD see [6]
165 51 3.6 t=3,u=8,3=2 resolvable {4}-GDD of type 3% see [5]
189 51 36 t=3,u=8,s5=6 resolvable {4}-GDD of type 38 see [5]
189 57 3.7 t=4,u=7,3=3 resolvable {4)-GDD of type 47  see [3]
195 57 37 t=4,u=7,s=4 resolvable {4}-GDD of type 47 see [3]
201 63 3.8 t=6,u=5,5=2 {4}-frame of type 6° see [16)
™(4,7)
261 75 36 t=9,u=4,3=6 resolvable TD(4,9)
267 81 37 t=4, u=10, s=4 resolvable {4}-GDD of type 410 see [3]
285 81 37 t=4, u=10, s=7 resolvable {4)}-GDD of type 410 see (3]
297 93 38 t=9,u=5,s=3 {4}-frame of type 9° see [16]

TD(4, 10)

We can eliminate the four remaining exceptions by ad hoc means.
Lemma 3.9. There is a KTS(279) containing a sub-KTS(87).

Proof: Start witha {4 }-GDD of type 649! (this is obtained by adjoining infinite
points to the 9 parallel classes of a resolvable {3}-GDD of type 6, which is
constructed in [10]). Give every point weight 8, and apply the frame construction.
This produces a frame of type 48472, Now adjoin 15 infinite points, filling in
(63, 15)-IKTS and KTS(87). §

Lemma 3.10. There is a KTS(255) containing a sub-KTS(69).

Proof: Start with a TD(5,4). Give every point weight 12, except for one point
which gets weight 6, and apply the frame construction. We fill in frames of type
12 and 1246 (this latter frame is obtained by applying the frame construction to

12



a{4}-GDDof type 63!, giving the points weight 2). This produces a frame of
type 484421, Now adjoin 21 infinite points, filling in (69, 21)-IKTS, (63 ,21)-
IKTS, and KTS(69). §

Lemma 3.11. There is a KTS(273) containing a sub-K TS(87).

Proof: A {4 }-IGDD of type (9,3)*6! is given in the Appendix of [11]. The
design is presented as a {3,4 }-GDD of type 6* whose blocks of size three can be
partitioned into twelve holey parallel classes. Three of these holey parallel classes
correspond to each of the first four groups. It is easy to verify that the blocks of
size four can be partitioned into two holey parallel classes having the the fifth
group as their hole. Hence, we can construct from this design a {4,5}-IGDD of
type (9,3)*(8,2)'. Now, apply Construction 2.5, giving every point weight 6.
We obtain a Kirkman frame of type (54, 18)#(48, 12)!. Then apply Construction
23 with b = 9 and a = 3, filling in (63; 21, 9; 3)-o-IKTS (which is obtained by
applying Lemma 3.5 to a (31, 10; {4 })-IPBD) and a (57, 15) -IKTS. J

Lemma 3.12. There is a KTS(291) containing a sub-K TS(87).

Proof: Remove a point from the hole of the (73,22; {4,7,10})-IPBD given
in the appendix, producing a {4,7}-GDD of type 3'49!21'. Give every point
weight four and apply the Fundamental Frame Construction. Then fill in KTS(15),
a KTS(39) and a KTS(87). 1

As aresult of all the above constructions, we have our main result.

Theorem. Thereisa KTS(v) containing a sub-KTS(w) ifand onlyifv =w=3
modulo 6 andv > 3w.
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Appendix
The 884 exceptions remaining after Theorems 1.1,1.2and 1.3

w valuesof y

39: 141

45: 147 153 159 165

51: 165 171 177 183 189

57: 189 195 201 207 213

63: 201 207 213 219 225 231 237

69: 225 231 237 243 249 255 261 ‘

75: 243 249 255 261 267 273 279 285

81: 261 267 273 279 285 291 297 303 309

87: 273 279 285 291 297 303 309 315 321 327
93: 297 303 309 315 321 327 333 351 357

99 : 315 321 327 333 339 357 363 369 375 381
105: 333 339 345 363 369 375 381 387 393
111: 351 369 375 381 387 393 399 429

117: 375 381 387 393 399 405 435 441 447 453
123 : 387 393 399 405 411 441 447 453 459
129: 405 411 417 447 453 459 465

135: 423 453 459 465 471 525

141: 459 465 471 477 531 537 543 549

147: 465 471 477 483 537 543 549 555 561 567 573
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153 :
159 :
165 :
171 :
177 :
183 :
189 :
195 :
201 :
207 :
213:
219:
225:
231:
237 :
243 :
249 :
255 :
261:
267 :
273 :
279 :
285:

291 :

297 :

477
495
555
561
567
681
573
687
585
699
603
n7
621
759
639
T
663
789
675
801
693
819
1
837
135
849
747
861
765
891
783
909
819
921
825
927
837
939
855
957
873
975
891
993
909

483
549
561
567
573
687
579
693
591
705
609
123
6217
765
657
783
669
795
681
807
699
825
729
843
741
855
753
867
711
897
813
915
825
927
831
933
843
945
861
963
879
981
897

915

489
555
567
573
579
693
585
699
597
711
615
753
633
771
663
789
675
801
687
813
705
831
735
849
747
861
759
885
T
903
819
921
831
933
837
939
849
951
867
969
885
987
903

921

543
561
573
579
585

591
705
603
m
621
759
651
T
669
795
681
807
693
819
723
837
741
855
753
879
765
891
807
909
825
921
837
939
843
945
855
957
873
975
891

549
567
579
585
591

597
11
609

627
765
657
783
675
801
687
813
699
825
729
843
747
873
759
885
m
897
813
915
831
933
843
945
849
951
861
963
879
981
897

555
573
585
591
597

603

615

645

663
789
681
807
693
819
ni
831
735
849
753
879
765
891
801
903
819
921
837
939
849
951
855
957
867
969
885
987
903

993 1023 1029
909 915 933
999 1029 1035 1041 1047
- 939 945 951

1035 1041 1047 1053 1095 1101

561
579
591
597
603

609

621

651

669

687
813
711
825
723
837
741
867
759
885
795
897
807
909
825
927
843
945
855
957
861
963
873
975
891
1017
909
1035
939
1089
957
1107

567
585
597
603
609

615

639

657

675

705

ni
831
729
843
147
873
789
891
801
903
813
915
831
933
849
951
861
963
867
969
879
981
897
1023
9217
1041
945
1095
963
1113

5713
591
615
621
627

633

645

663

681

711

723
837
735
861
753
879
795
897
807
909
819
921
837
939
855
957
867
969
873
975
885
1011
903
1029
933
1083
951
1101

579
609
621
627
633

639

651

669

699

1

729

741

783
885
801
903
813
915
825
927
843
945
861
963
873
999
879
1005
891
1017
921
1035
939
1089
957
1107

585
615
6217
633
639

645

657

675

705

723

735

147

789

807
909
819
921
831
933
849
951
867
993
879
1005
885
1011
897
1023
927
1077
945
1095

621
633
639
645

651

663

693

711

729

741

m

795

813

825
927
837
939
855
957
873
999
885
1011
891
1017
915
1029
933
1083
951
1101

639
645
651

657
669
699
1
735
m
783
801
819
831
933
843
945
861
879
1005
903
1017
909

1023
921

645
651
657
663
687
705
723
765
777
789
807
825
837
849
951
867
897
909
915

927

1071 1077

939

945

1089 1095

957

963

93 969 975 981

969 975 981

669
675

681

693

711

729

771

783

795

813

831

843

855

873

903

915

921

933

951

969

987

987 993 %99 1005



303 :
309 :
315
321:
327

333:
339
345 :
351:
357 :
363 :
369 :
375:
381:
387:
393
399 .

927 945 951

1047

951
1059

963
1071

981
1125

999
1143
1017
1035
1053
1089
1095
1107
1125
1173
1179
1185
1197
1215

1053
957
1065
969
1113
987
1131
1005

1023
1041
1083
1095
1101
1113
1167
1179
1185
1191
1203

1059
963
1107
975
1119
993
1137
1011

1029
1047
1089
1101
1107
1119
1173
1185
1191
1197
1209

957 963 969 975 981

1101
969
1113
981
1125
999

1017

1035
1077
1095
1107
1113
1161
1179
1191
1197
1203

1107
975
1119
987
1131
1005

1023

1041
1083
1101
1149
1155
1167
1185

1113
981
1125
993

1011

1029

1071
1089
1143
1155
1161
1173

1119
987

999

1017

1035

1077
1095
1149
1161
1167
1179

987 993 999

993 999 1005

1005

1023

1065

1083
1137
1155
1167
1173

1011
1029
1071
1089

1143
1161

1017

1059

1077

1131
1149

A (73,22;{4,7,10})-IPBD
Points:  Zgy U{a, bo, by, co, c1, do, dy, e, e1}U{oo;: 0 <1<20}U{oo0}.

Blocks: Develop the following modulo 42, where subscripts on oo are developed
modulo 21 and subscripts on letters are developed modulo 2.

0,6, 12,18, 24, 30, 36
oo, 0, 14, 28
0og, bo, 2, 29
099, d0;41 17
000, 0, 22, 26
ooo, 30, 39, 40

1011

1023

1065

1083

1137
1155

1005 1011

1017 1047

1053 1059

1071 1077

1125 1131

1143 1149

00,a,bo,b1,c0,c1,do,di,e0,e;
009, a, 11, 22
00p, Co, 3, 34
©0p, €p, 6, 41
000, 28, 31, 36
000, 12, 14, 37

16

1041

1053

1065

1119

1137



