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Abstract. We prove that if m is even then a partial m-cycle system on n vertices
can be embedded in an m-cycle system on 2mn+ 1 vertices.

1. Introduction and notation.

LetV(G) and E(G) denote the vertex and edge sets of a graph GG, respectively.
Let Z, = {0,1,...,n— 1}. Let K, and K.y be the complete graph and
the complete bipartite graph, respectively. An m-cycle is a simple graph with

m Vertices, say ug,...,u4m,_; in which the only edges are ugu,,_; and the
edges joining u; to ui; (for 0 < 1 < m — 2). We represent this cycle by
(40,.+, tm—1) OF (U0, Upn_1, Um_2,... ,41) or any cyclic shift of these. A

(partial ) m-cycle system is an order pair (V, C( m)) where C(m) is a set of
edge-disjoint m-cycles which partition (a subset of) the edge setof the complete
graph with vertex set V.

A partial m-cycle system (Z,, Cy(m)) is embedded in an m-cycle system
(Zy,Ca(m)) if Cy(m) C Ca(m). A nauwral problem then is to find as small
a value of v as possible so that every partial m-cycle on n vertices can be em-
bedded in an m-cycle system on v vertices. The best result to date is Wilson’s
theorem [8] which shows that all partial m-cycle systems can be finitely em-
bedded, but the size v of the m-cycle system is an exponential function of n.
(Of course, Wilson’s result is proved for the embedding of partial graph de-
compositions in general, not just for m-cycle systems.) The only other results
related to this problem deal with the particular case when m is odd. A 3-cycle
system is more commonly known as a Steiner triple system. Originally, a finite
embedding of a partial Steiner triple system on n vertices in a Steiner triple sys-
lem on v vertices was found by Treash [7], but v is an exponential function of
n. Gradually over the years, several results [1, 4] have culminated in reducing
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v to at most 4 n+ 1. Most recently it has been shown [5] that if m is odd then
a partial m-cycle system on n vertices can be embedded in an m-cycle system
onat most m((m — 2)n(n— 1) + 2n+ 1) vertices. There it is also shown
that a partial weak Steiner m-cycle system on n vertices can be embedded in
an m-cycle system on m(2n+ 1) vertices when m is odd.

Here we consider embedding partial m-cycle systems when m is even. This
seems to be an casier problem than when m is odd. We show that a partial m-
cycle system on n vertices can be embedded in an m-cycle system on at most
2mn+ 1 vertices.

Let AK, denote the graph on n vertices in which each pair of vertices is
joined by exactly A edges. Some results have been obtained on the general-
ized embedding problem when K, is replaced by A K,. However, using the
technique described in [3], it can be shown that if any partial m-cycle system
of K, can be embedded in an m-cycle system of Kyn then any partial m-
cycle system of A K, can be embedded in an m-cycle system of AK,, where
v < f(m(m — 2) ?). So, clearly, the case when )\ = 1 is of most interest.

All graphs in this paper arc simple. See [2] for any graph theoretical terms
that are not defined. Throughout the rest of this paper we shall assume that m
is even and at least 4; we shall write m = 2k. Let [x] denote the greatest
integer less than or equal to x.

2. Preliminary results.

In this paper, we make extensive use of the following result. We say that a
graph G can be decomposed into m-cycles if there exists a set of m-cycles
C(m), the edges of which partition F(G). Recall that we write m = 2 k.

Lemma2.1. [6] K., can be decomposed intom-cycles ifand only ift > k,
y > k, m divides zy and z and y are even.

By Lemma 2.1, K, ,, can be decomposed into m-cycles; we denote such a
set of m-cycles on the vertex set {1,7} x {0,1,... ,m — 1} by C(4, j; m).

Two partial m-cycle systems ( Z,,, C1) and (Z,, C,) are mutually balanced
ifforallsj € E(K,),ijisinacyclein C) ifand only ifij isinacycle in C,.
The following mutually balanced m-cycle systems, both defined on the vertex
set Zm X Zm, are of vital importance in proving our result. Let

m-1

Ai(m) = U C(1,1+ 1;m),

i=0
where all vertices are reduced modulo m, and

AZ(m) ={((O)x))(lyz+y)1(2)z+2y))"' ,(m—1,2:+(m— l)y)) l
0<z<m—-1,0<y<m~-1}.
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Lemma 2.2, (Zmy X Zpm, A1(m)) and (2, X 2, A2(m)) are mutually bal-
anced partial m-cycle systems.

To construct m-cycle systems we need the following result. Again recall that
m=2k.

Lemma 2.3. There exists an m-cycle systemon2m + 1 vertices.

Proof: In each of 2 cascs, we define an m-cycle a(m) = (ay,a3,... ,0m) aS
follows.
Letm=4z. Forl < i< m/2,definc

a; = (—=1)*, and
(m/2) =2+ if 1 is odd,
U E (dmp —1—1  ifviseven,
where everything is reduced modulo 2m + 1.

Letm =4z + 2. Define

a;i=(=1)"1i-1) forl1 <1< m/2 -2,
Q-1 = 1 ——Ic,ak=k—2,

ake1 = —k,ake2 = k+ 1,
Qm2;=m— 1+ 21 for0 <1< (m-6)/4, and
Qm-2i+1 =m—1 — 24 for1 <1< (m—6)/4,

where everything is reduced modulo 2m + 1.

Now define a(m) + i to be the m-cycle formed by adding « modulo 2 m + 1
to each vertex in a(m). Then C(m) = {a(m) +i |0 < i < 2m} is the
required sct of m-cycles.

Example 2.4: a(8) = (16,2,14,4,3,9,5,7) and a(10) = (0,20,2,17,
3,16,6,11,7,9).

Finally, we conclude this section with a construction of some m-cycle sys-
tems. Let ({oo} U ({1,7} x Zm), B(i,j;m)) be an m-cycle system (which
exists by Lemma 2.3). Let E = {(i,i+n) |0 < i< n—1}.

Theorem 2.5. Foranyn > 1, ({00} U(Z2, X Z,,), D(n, m)) is anm-cycle
system, where we define

n—1
D(n,m) = <U B(i,i+n;m)) U U C(1,7;m)
=0 0<i<j<2n-1
GRHEE
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3. Embedding partial m-cycle systems.

Theorem 3.1. A partial m-cycle system onn vertices can be embedded in an
m-cycle system on2mn+ 1 vertices.

Proof: Let(Z,, Ci(m)) beapartial m-cycle system. Let ({00}U(Z2,% Zy,),
D(n,m)) be the m-cycle system constructed in Theorem 2.5. For each m-
cycleu = (uo,u1,... ,Um_1) € Ci1(m) let A, (u; m) be the m-cycles formed
from those in A, (m) by replacing each vertex 1 with u;. Then by Lemma

m-1
2.2, |J C(ui,u+1; m) (of course, reducing the subscripts of u; modulo m)
i=0
and A, (u;m) form mutually balanced partial m-cycle systems. For each
m-1
u € Cy(m), remove the m-cycles in | J C(u;, ujs1; m) from D(n, m) and
u=0

replace them with the m-cycles in Az (u; m), thus forming another m-cycle
system ({oo} U (Z24 X Zm), C2(m)). Then since ((uo,0),(u1,0),...,
(tm-1,0)) € Az(u;m), ({00} U(Z2a X Zm), C2(m)) is the required em-
bedding of (Z,, C; (m)).

Remark: Clearly, Thecorem 3.1 can be strengthened in several ways. For ex-
ample, a partial m-cycle system on n vertices can be embedded in an m-cycle
systemon 2 mt+ 1 vertices forany t > n. Also, if 1 is not an edge in any cycle
in C)(m) then the vertices in {n+ i,n+ j} x Z,, nced not be introduced in
the embedding process, as B(1,J; m) can be used instead of the two m-cycle
systems B(1,1+ n; m) and B(J,; + n; m) when constructing D(n, m). This

observation shows that if G is the graph consisting of the cycles in C;(m)
and ¢ is the maximum number of independent edges in the complement of G
then (Z,, Ci(m)) can be embedded in an m-cycle system on 1+ 2 m(n— o)

vertices.
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