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Abstnct. Wc prwc thar if m is even then a partial m-cycle systcm qr n verticcs
can be ernbedded in sr m-cycle ryctern on 2 mn + I verticer.

l. Introduction and notation.
LnrV (G) and ,E( G) denoto the vertex and edge sets of a graph G, respcctively.
LetZn = {0,1,...,r- l}. trt ff,, and Kr,v& t}rccompletegraph and
the complete bipartite graph, respectively. An m-cycle is a simple g*ph *irf,
m vertices, sfl! u6, . .. , um_l in which the only edges ztre ue u__1 ond the
edges joining ui to ui+l (for 0 < i < n - Z). Wc reprcsent rhis cycle by(u0,..., u--l) or (u6, um-r,Lm-2,..., ur) or any ayitia shift of tlrese. A
(partial) m-cycle system is an order pair ( V,C(m)) where C(m) is a scr of
edge-disjoint m-cycles which panidon (a subset of) the cdgc set of the complere
graph with vertex set y.

A partial m-cyc\e system (Zn,Ct(m)) is embedded in an m-cycle system
(Zu,Cz(m)) if Cr(rn) C Cz(m). A narural problem then is to lind as small
a value of u as possible so that evcry partial m_cycle on n vertices can be em_
bedded in an m-cycle system on u verticcs. The bcst re,sult ro date is Wilson,s
theorem [8] which shows [rat all parrial m-cycle systems can be tinircly em_
bcdded, but the siztr u of the m-cycle system is an exponenrierl function of n-
(Of course, Wilson's result is prove<l for the embedding of partial graph de-
composirions in general, nol just for m-cycle syste ms.) the only other rcsulrs
related to this problem deal with the particular case when m is odcl. A 3_cycle
system is more commonly known as a Steiner triple system. Originally, a finite
embedding of a prtial Steiner triple systcm on n vertices in a .steiner triple sys_
l.em on u vertices was found by Treash [7], but u is an cxponcntial function of
n" Cradually over the years, scveral rqsulls [], 4] tnve cuiminated in reducing
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u to at most 4 n + l. Most reccntly it has bcen shown [5] that if m is odd thcn
a partial m-cyclc systcm on n vcrticcs can bc embedderl in an m<ycle system

on at most m((m - 2)"(n - l) + 2n+ l) verticcs. Therc it is also shown
ttnt a partral weak Stcincr m-cycle system on n vertices can bc embcdded in
an m-cycle system on m(2n+ l) vertices whcn m is odd.

Here we consider embcdding partial m-cycle systcms when m is cven. This
seems to bc an easier problcm than when m is odd. Wc show that a paflial m-
cycle systcm on n vcrticcs can bo embcdded in an m-cyclc systcm on at most

Imn+ I vcrtices.
[.et IK,, dcnotc t]rc graph on n vcrtice,s in which each pair of vertice.s is

joined by exactly I ulges. Some rcsulLs have bccn obtaincd on thc gcncral-
izrd embedcling problcm when Ko is replaced by IK". Howevcr, using thc

technique described in [3], it can bc shown that if any partial m-cycle systcm

of Kn can bc embcdded in an m+ycle systcm of K 16 then any partial m-
cycle system of IK* can bc embeddcd in an m*ycle system of IK,, where

u < f (m(m - D\#). So, clearly, the ca.se when I = I is of most inrcrest.

All graphs in this papcr arc simple. Scc [2] for any graph thcoretical terrns

that arc not defined. Throughout. tlrc rest of this paper we shall assume that m
is even and at least 4; we shall write m = 2k. Let [r] denote the greatcst

integcr lcss than or equal to r.

2. Preliminary resulls.

In this paper, we make extensivc use of the following result. We say ttuat a

graph G can be decomposed into m-cyclos if thcre cxists a sct of m+ycles
C(m), the edgcs ot which pafl.ition E(C). Recall that we writc m = 2k.

Lemma 2.1. [6] K,' can Irc dccomJnsed intom-cycles if and only if r ) k,
y ) k, m divides ay and r and y are even.

By Lemma 2.1, K^,^ can bc dccomposed into m-cycles; we denote such a
setof m-cycles onthcvertexset,{i,f} x {0,1,... ,m- t} by C(i, j;m).

TWopanial m-cycle systems (Zn,Cr) and (2",C) wemutually balanced
if foralt ij e E(K^),ij is in acycle in Cr if andonly if i7 is in acycle inCz.
The following mutually balanced m-cycle systems, both delined on the vertex
set Zm x Z^, are of vital importance in proving our rcsull I-et

m-1

/r(m)= U Cg,i+l;m),
r'=0

where all vertices are reduced modulo m, and

At(m) = { ((0,r),(l,r+ il,(2,n* 2y),... ,(m- l,r* (m- t)y)) I

0(r1m-1,0<y1m-l).
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Lemma 2.2. (Z^x Z^,/r (m)) and(Z^x Zm,Az(m)) ate mutually lnl_
anced parlial m-cycle syslcms.

To construct m-cycle systems we need the following resulL Again rccall that
m=2k.
Lemma 2j. There exists an m-cycle system onZm + I vcrlices.

Proof: In each of 2 cases, we de{ine an m-cycle o(m) = (or, 02,.
follows.

I*tm =4r. Forl ( ilmlT,define

a; = (-t)id, and

, o-) as

o1ml2)+i =
(m/2) - 2+ i
(3m/2)-l-t

if f is odd,

if r is even,i
whcrc everything i.s reduccd modulo 2m + I

Letm= 4x,+ 2. Dcfine

oi = (-l)i-t (i - l) for I ( i (. mfT _ 2,
o&-l = | - k,o*= k-2,
ot+l = -krok*2 =,t+ l,

om_zi=m-l+2i for0 ( i<.(m-6)/4, and

om-Zi+t=m-l-2; forl ( i1(m-6)/4,
where everything is reduced modulo 2m + l.

Now deline o(m) + i ro bc rhe mcycleformed by adding i modulo 2m+ |
to each vertex in o(m). Then C(m) = {o(m) +, I 0 < i < Zm} is rhe
rcquired set of m*ycles.
Example2.4: a(8) = (16,2,t4,4,3,9,5,7) ando(10) = (0,20,2,17,
3,16,6, ll,7,g).

Finally, we conclude this section with a construction of some m-cycle sys-
tems. Let ({*} U ({i, j} x Z^), B(i, i;m1y be an m-cyctcsysrem (which
exisrsbyLemma2.s).L-et,E= {(i,i+ n) l0 < d ( n_ l}.
Theorem 2.5. Foranyn ) l, ( too) U(Zt^ x Z^), D(n,m)) rs an moycle
syslem, wherc wa dcline

D(qm) = Ugti,r+n;m)
n-l

r=0

U U
0(icj(2n-1

(ij)( D

C(i 
' 
i; m)

67



3. Emhedding partial m-cycle systems.

Theorem 3,1. A partial m-cycle syslem onn vcrticcs can b embedded in an
m-cyclc syslem on2mn+ I vcrtices,

Proof: Lct ( Z n,Cr ( m) ) bc a partial m-cycle system. trt ( {m}u ( Z2nx Z ^),D(n,m)) bc thc m-cycle systcm constructcd in Thcorcm 2.5. For each m-
cycleu = (u0,uI,... rum-l) g Cr(m) lct Azfu; m) bethcm-cyclesformed
from those n Az(m) by rcplacing each vertex r with u1. Then by Lemma

m-l
2.2, U C(u;,ui+r i m) (of cowse, reducing the subscripts of u; modulo m)

d=0

and A2(u;m) form mutually balanced partial m-cyclo systems. For each

u e Ct(m), remove fte m-cycle.s t "[J' C(ui,ui*r im) from D(q m) and

replace them wittr the m-cycles in azlll: m), thus forming another m-cycle
system ({*} U(Zz" x Z^),Cz(m)). Then since ((u0,0),(ur,0),... ,

(r--r,0)) e AzU; m), (to") u (Zzox Z^),Q.(m)) is therequiredem-
bedding of (2n,0 (m)).
Remark: Clearly, Thcorem 3.1 can bc srengthened in several ways. For ex-

ample, a partial m-cyclc system on n vertices can bc embedded in an m-cycle
system on Zmt+ 1 vcrtices for any t ) n Also, if i7 is not an edge in any cycle
in Cr(m) then the vertices in {n + i,n+ i} x Z^ neclnot bc introduced in
the embedding process, as B( i, j;m) can bc used instcad of the two m-cycle
systems B(1, i + G m) and B(7, j + rt, m) when constructing D(n,m). This
observation shows that if G is the graph consisting of the cyclcs in Cr(m)
and a' is the maximum numbcr of independent edges in the complemcnt of G
then ( Zn,Cr( m) ) can be embedded in an m-cycle system on I + 2m(n- o')
vcrticcs.
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